Displaying publications 1 - 20 of 52 in total

Abstract:
Sort:
  1. Anand K, Vadivalagan C, Joseph JS, Singh SK, Gulati M, Shahbaaz M, et al.
    Chem Biol Interact, 2021 Aug 01;344:109497.
    PMID: 33991505 DOI: 10.1016/j.cbi.2021.109497
    Extracellular vesicles like exosomes are important therapeutic tactics for treating COVID -19. By utilizing convalescent plasma derived exosomes (CPExo) from COVID-19 recovered persistence could accelerate the treatment strategies in the current state of affairs. Adequate literature has shown that administering the exosome to the in vivo system could be beneficial and could target the pathogens in an effective and precise manner. In this hypothesis we highlight the CPExo instead of convalescent plasma (CP), perhaps to dispense of exosomes are gratified and it's more effectively acquired immune response conferral through antibodies. COVID-19 convalescent plasma has billions of exosomes and it has aptitudes to carry molecular constituents like proteins, lipids, RNA and DNA, etc. Moreover, exosomes are capable of recognizing antigens with adequate sensitivity and specificity. Many of these derivatives could trigger an immune modulation into the cells and act as an epigenetic inheritor response to target pathogens through RNAs. COIVID-19 resistance activated plasma-derived exosomes are either responsible for the effects of plasma beyond the contained immune antibodies or could be inhibitory. The proposed hypothesis suggests that preselecting the plasma-derived antibodies and RNAs merged exosomes would be an optimized therapeutic tactic for COVID-19 patients. We suggest that, the CPExo has a multi-potential effect for treatment efficacy by acting as immunotherapeutic, drug carrier, and diagnostic target with noncoding genetic materials as a biomarker.
    Matched MeSH terms: Antigens/immunology
  2. Tanko P, Mohd Yusoff S, Emikpe BO, Onilude OM, Abdullateef A
    J Immunoassay Immunochem, 2021 May 04;42(3):265-284.
    PMID: 33577382 DOI: 10.1080/15321819.2020.1862862
    This study investigated dexamethasone-treatment, shedding routes, tissue antigen distribution, and pathology of caprine Brucellosis. Eighteen non-pregnant goats were randomly grouped into A, B, and C. Group A was administered dexamethasone for 7 days at 2 mg/kg before inoculating 0.5 mL B. melitensis at 107 CFU ocularly while group B was inoculated 0.5 mL B. melitensis only, and C as control negative. Blood samples, ocular, nasal, and vaginal swabs were obtained for evaluation. Three goats were sacrificed from each group at days 21 and 42 post-inoculation (pi) and selected tissues collected for PCR, histopathology, and immunohistochemistry. Brucella melitensis was detected in the ocular swabs of group A significantly higher than group B. Shedding was prolonged in group A compared to B. The overall shedding was 22.2% in group A and 9.4% in group B. The uterus of both groups A and B revealed mild inflammation and microgranuloma, extensive necrotic lesions in lymph nodes. Liver showed multifocal necrosis predominantly in group A. Lesion scoring showed significantly higher scores in A compared to B. Strong immunostaining was observed in the liver, lungs, and spleen, predominantly at day 21 pi. This study demonstrated dexamethasone prolonged shedding, tissue antigen distribution, and pathology in dexamethasone-treated goats.
    Matched MeSH terms: Antigens/immunology*
  3. Ninyio NN, Ho KL, Yong CY, Chee HY, Hamid M, Ong HK, et al.
    Int J Mol Sci, 2021 Feb 15;22(4).
    PMID: 33672018 DOI: 10.3390/ijms22041922
    Hepatitis B is a major global health challenge. In the absence of an effective treatment for the disease, hepatitis B vaccines provide protection against the viral infection. However, some individuals do not have positive immune responses after being vaccinated with the hepatitis B vaccines available in the market. Thus, it is important to develop a more protective vaccine. Previously, we showed that hepatitis B virus (HBV) 'a' determinant (aD) displayed on the prawn nodavirus capsid (Nc) and expressed in Spodoptera frugiperda (Sf9) cells (namely, Nc-aD-Sf9) self-assembled into virus-like particles (VLPs). Immunisation of BALB/c mice with the Nc-aD-Sf9 VLPs showed significant induction of humoral, cellular and memory B-cell immunity. In the present study, the biophysical properties of the Nc-aD-Sf9 VLPs were studied using dynamic light scattering (DLS) and circular dichroism (CD) spectroscopy. Enzyme-linked immunosorbent assay (ELISA) was used to determine the antigenicity of the Nc-aD-Sf9 VLPs, and multiplex ELISA was employed to quantify the cytokine response induced by the VLPs administered intramuscularly into BALB/c mice (n = 8). CD spectroscopy of Nc-aD-Sf9 VLPs showed that the secondary structure of the VLPs predominantly consisted of beta (β)-sheets (44.8%), and they were thermally stable up to ~52 °C. ELISA revealed that the aD epitope of the VLPs was significantly antigenic to anti-HBV surface antigen (HBsAg) antibodies. In addition, multiplex ELISA of serum samples from the vaccinated mice showed a significant induction (p < 0.001) of IFN-γ, IL-4, IL-5, IL-6, IL-10, and IL-12p70. This cytokine profile is indicative of natural killer cell, macrophage, dendritic cell and cytotoxic T-lymphocyte activities, which suggests a prophylactic innate and adaptive cellular immune response mediated by Nc-aD-Sf9 VLPs. Interestingly, Nc-aD-Sf9 induced a more robust release of the aforementioned cytokines than that of Nc-aD VLPs produced in Escherichia coli and a commercially used hepatitis B vaccine. Overall, Nc-aD-Sf9 VLPs are thermally stable and significantly antigenic, demonstrating their potential as an HBV vaccine candidate.
    Matched MeSH terms: Hepatitis B Surface Antigens/immunology
  4. Jalalonmuhali M, Caroll R, Deayton S, Emery T, Humphreys I, Lim SJ, et al.
    Hum Immunol, 2020 Dec;81(12):679-684.
    PMID: 32736900 DOI: 10.1016/j.humimm.2020.07.005
    BACKGROUND: Angiotensin II type 1 receptor antibody (AT1R-Ab) is a non-HLA antibody that has been reported to cause antibody-mediated rejection and graft loss in kidney transplantation. The prevalence of positive AT1R-Ab varies between 8% and 18% in different regions. Thus, this study aims to determine the prevalence of AT1R-Ab among the Malaysian population.

    METHODOLOGY: All sera for AT1R-Ab were collected at the University Malaya Medical Centre (UMMC), Kuala Lumpur, Malaysia. The sera were centrifuged and kept refrigerated at -80 °C before being transported to the South Australian Transplantation and Immunogenetics Laboratory (SATIS). Enzyme-linked immunosorbent assay kit (One Lambda) was used for the detection of AT1R-Ab, and it was performed according to the manufacturer's instructions. The level of >17.1 U/mL was considered to be AT1R-Ab positive; 10.0-17.1 U/mL at risk, and <10.0 U/mL negative.

    RESULTS: A total of 115 samples were collected from 99 patients pre and post-kidney transplant recipients. From the pre-transplant sera (n = 68) 17.7% were positive, 35.3% were at risk and 47.0% were negative. The positive AT1R-Ab cohort were relatively younger, with a mean age of 34.7 ± 8.3 years old and statistically significant, with a p-value of 0.028. Among the sera that were tested positive, 19.0% were from the Chinese ethnicity, 6.7% from Malay and 16.7% from Indian. There was no difference in the rejection episodes, persistent or de novo HLA-DSA, and graft function between the group (AT1R-Ab negative vs AT1R-Ab at risk and positive) and the results were consistent in a model adjusted for all potential confounders.

    CONCLUSION: The prevalence of positive (>17.1 U/mL) pre-transplant AT1R-Ab was 17.7% and 35.3% were at risk (10.0-17.1 U/mL) in our pre-transplant cohort.

    Matched MeSH terms: HLA-DQ Antigens/immunology
  5. Dass SA, Norazmi MN, Acosta A, Sarmiento ME, Tye GJ
    Int J Biol Macromol, 2020 Jul 15;155:305-314.
    PMID: 32240734 DOI: 10.1016/j.ijbiomac.2020.03.229
    T cell receptor (TCR)-like antibodies, obtained with the use of phage display technology, sandwich the best of the both arms of the adaptive immune system. In this study, in vitro selections against the latency associated Mycobacterium tuberculosis (Mtb) heat shock protein 16 kDa antigen (16 kDa) presented by HLA-A*011 and HLA-A*24 were carried out with the use of a human domain phage antibody library. TCR-like domain antibodies (A11Ab and A24Ab) were successfully generated recognizing 16 kDa epitopes presented by HLA-A*011 and HLA-A*24 molecules respectively. Both antibodies were found to be functional in soluble form and exhibited strong binding capacity against its targets. The results obtained support the future evaluation of these ligands for the development of diagnostic and therapeutic tools for tuberculosis infection.
    Matched MeSH terms: HLA-A Antigens/immunology*
  6. Jalalonmuhali M, Carroll RP, Tsiopelas E, Clayton P, Coates PT
    Hum Immunol, 2020 Jul;81(7):323-329.
    PMID: 32327243 DOI: 10.1016/j.humimm.2020.04.002
    BACKGROUND: Blood transfusion during the post-operative period of kidney transplantation is common as part of a life-saving procedure, especially in the event of acute blood loss. However, there have been conflicting opinions since the pre-cyclosporine era. The risk of sensitization post-transfusion remains the main limiting factor following transfusion in kidney transplant recipients. Thus, the objective of this study is to assess the development of de novo HLA-DSA, HLA-Ab and allograft rejection post blood transfusion.

    METHODOLOGY: This is a retrospective cohort study recruiting all kidney transplant recipients in South Australia from January 2010 till December 2018. Following that, the incidence of blood transfusion within one week post-operatively were traced (transfusion group). The outcomes were compared with all other transplant recipients (non-transfusion group). Recipient's demographic, donor characteristics and immunological risk profiles were obtained from the transplant unit database, while the biopsy report, history of blood transfusion, latest serum creatinine and follow-up status was gathered from the electronic medical system (OASIS). The HLA-DSA and HLA-Ab results were collected from the NOMS database. Finally, the survival data were merged with the Australia and New Zealand Dialysis and Transplant (ANZDATA) Registry for South Australia recipients graft survival.

    RESULTS: A total of 699 patients were eligible for analysis. The mean age was 50.64 ± 13.23 years old. There were more elderly (>65 years old) and females who needed transfusion. The majority had glomerulonephritis as the primary disease. There was no statistical difference in donor characteristics, cold ischemic time and immunological risk between the transfusion and non-transfusion group. There was no difference in the development of de novo HLA-DSA, HLA-Ab and rejection episodes between the group and the results were consistent in a model adjusted for all potential confounders. Median graft survival in days between the transfusion vs non-transfusion group was 1845 IQR (961,2430) and 1250 IQR (672,2013).

    CONCLUSION: Blood transfusion under strong immunosuppressive cover within a one-week post-operative period is safe with no significant association with the development of de novo HLA-DSA, HLA-Ab or clinical rejection.

    Matched MeSH terms: HLA Antigens/immunology*
  7. Chan TT, Chan WK, Wong GL, Chan AW, Nik Mustapha NR, Chan SL, et al.
    Am J Gastroenterol, 2020 06;115(6):867-875.
    PMID: 32149781 DOI: 10.14309/ajg.0000000000000588
    OBJECTIVES: Previous exposure to hepatitis B virus (HBV) may increase the risk of hepatocellular carcinoma (HCC) in patients with chronic hepatitis C. We aim to study the impact of previous HBV infection on the severity and outcomes of patients with nonalcoholic fatty liver disease (NAFLD).

    METHODS: This was a multicenter study of 489 patients with biopsy-proven NAFLD and 69 patients with NAFLD-related or cryptogenic HCC. Antihepatitis B core antibody (anti-HBc) was used to detect the previous HBV infection.

    RESULTS: In the biopsy cohort, positive anti-HBc was associated with lower steatosis grade but higher fibrosis stage. 18.8% and 7.5% of patients with positive and negative anti-HBc had cirrhosis, respectively (P < 0.001). The association between anti-HBc and cirrhosis remained significant after adjusting for age and metabolic factors (adjusted odds ratio 2.232; 95% confidence interval, 1.202-4.147). At a mean follow-up of 6.2 years, patients with positive anti-HBc had a higher incidence of HCC or cirrhotic complications (6.5% vs 2.2%; P = 0.039). Among patients with NAFLD-related or cryptogenic HCC, 73.9% had positive anti-HBc. None of the patients had positive serum HBV DNA. By contrast, antihepatitis B surface antibody did not correlate with histological severity.

    DISCUSSION: Positive anti-HBc is associated with cirrhosis and possibly HCC and cirrhotic complications in patients with NAFLD. Because a significant proportion of NAFLD-related HCC may develop in noncirrhotic patients, future studies should define the role of anti-HBc in selecting noncirrhotic patients with NAFLD for HCC surveillance.

    Matched MeSH terms: Hepatitis B Core Antigens/immunology*
  8. Jalalonmuhali M, Ng KP, Mohd Shariff NH, Lee YW, Wong AH, Gan CC, et al.
    Transplant Proc, 2020 05 21;52(6):1718-1722.
    PMID: 32448671 DOI: 10.1016/j.transproceed.2020.02.140
    The shortage of deceased donors led to an increase of living related renal transplant performed in the presence of donor-specific antibodies (DSAs) or ABO incompatibilities. There are various desensitization protocols that have been proposed. Here, we describe the outcome of these sensitized patients. This is a prospective cohort study recruiting all kidney transplant recipients from August 2016 until June 2018. Deceased donations, ABO incompatible patients, and sensitized patients who were not prescribed on our desensitization protocol were excluded. Recipients were screened for the presence of HLA-antibodies 1 month before transplant. Those with positive DSA will undergo flow cytometry (risk stratification). We are using a protocol that consisted of intravenous rituximab 200 mg (day -14), intravenous antithymocyte globulin 5mg/kg (day 0-4), plasma exchange post transplant for patients with mean fluorescent intensity (MFI) < 3000, and negative flow cytometry. Those patients with MFI ≥ 3000 or positive flow cytometry need extra cycles pretransplant. A total of 40 patients were recruited, and 20 were sensitized patients. Among the sensitized group 4 of 20 had flow cytometry crossmatch positive, while all had preformed HLA-DSA. A total of 8 of 20 had class I HLA-DSA, 11 of 20 had class II HLA-DSA, and 1of 20 was positive for both class I and II HLA-DSA. Mean immunodominant MFI was 2133.4 (standard deviation [SD], 4451.24) and 1383.7 (SD, 2979.02) for class I and class II, respectively. At 1 year, mean serum creatinine was 108.90 (SD, 25.95) and 118.42 (SD, 31.68) in sensitized and unsensitized patients, respectively. One of 20 unsensitized patients had Banff 1B rejection at 3 months, and there was no significant rejection in sensitized patients at 6 months and 1 year. There was no difference in the occurrence of de novo HLA-DSA between the groups. Desensitization protocols may help to overcome incompatibility barriers in living donor renal transplant. The combination of low-dose rituximab, antithymocyte globulin, and judicious use of plasma exchange has worked well for our cohort.
    Matched MeSH terms: HLA Antigens/immunology*
  9. Hajar CGN, Zulkafli Z, Md Riffin NS, Tuan Mohammad TH, Safuan S, Nelson BR, et al.
    Transfus Apher Sci, 2020 Apr;59(2):102651.
    PMID: 31606336 DOI: 10.1016/j.transci.2019.09.004
    BACKGROUND: Human neutrophil antigens (HNAs) are implicated in several clinical disorders and their allelic variations have been reported for many populations. This new study was aimed to report the genotype and alleles frequencies of HNA-1, -3, -4 and -5 loci in Malays, Chinese and Indians in Peninsular Malaysia.

    METHODS: A total of 222 blood samples were collected from healthy, unrelated Malay, Chinese and Indian individuals. Their HNA-1, -3 and -4 and HNA-5 loci were genotyped using polymerase chain reaction-sequence specific primer (PCR-SSP) or PCR-restriction fragment length polymorphism (RFLP) assays.

    RESULTS: All HNA loci are polymorphic, except for HNA -4. Geneotypes HNA-1a/1b, -3a/3b and -4a/4a were observed most frequently at these three loci in all three ethnic groups. In contrast, HNA-5a/5b and -5a/5a were observed as the predominant genotypes in Malays vs. Chinese and Indians, respectively. The Malays, Chinese and Indians shared HNA -3a (0.505-0.527), HNA -4a (1.000) and -5a (0.676-0.854) as the most frequent alleles. However, HNA-1a was found to be the most common in Malays (0.506) and Chinese (0.504) and HNA-1b for Indians (0.525).

    CONCLUSION: Combined with HNA data that have been published for Malay subethnic and Orang Asli groups, this study provides the first fully comprehensive HNA dataset for populations to be found in Peninsular Malaysia. Overall, our findings provide further evidence of genetic complexity in the region. This now publicly available HNA dataset can be used as a reliable reference source for improving medical outcomes.

    Matched MeSH terms: Antigens/immunology*
  10. Hossain MG, Mahmud MM, Nazir KHMNH, Ueda K
    Int J Mol Sci, 2020 Jan 15;21(2).
    PMID: 31952213 DOI: 10.3390/ijms21020546
    Mutations in the hepatitis B virus (HBV) genome can potentially lead to vaccination failure, diagnostic escape, and disease progression. However, there are no reports on viral gene expression and large hepatitis B surface antigen (HBsAg) antigenicity alterations due to mutations in HBV isolated from a Bangladeshi population. Here, we sequenced the full genome of the HBV isolated from a clinically infected patient in Bangladesh. The open reading frames (ORFs) (P, S, C, and X) of the isolated HBV strain were successfully amplified and cloned into a mammalian expression vector. The HBV isolate was identified as genotype C (sub-genotype C2), serotype adr, and evolutionarily related to strains isolated in Indonesia, Malaysia, and China. Clinically significant mutations, such as preS1 C2964A, reverse transcriptase domain I91L, and small HBsAg N3S, were identified. The viral P, S, C, and X genes were expressed in HEK-293T and HepG2 cells by transient transfection with a native subcellular distribution pattern analyzed by immunofluorescence assay. Western blotting of large HBsAg using preS1 antibody showed no staining, and preS1 ELISA showed a significant reduction in reactivity due to amino acid mutations. This mutated preS1 sequence has been identified in several Asian countries. To our knowledge, this is the first report investigating changes in large HBsAg antigenicity due to preS1 mutations.
    Matched MeSH terms: Hepatitis B Surface Antigens/immunology*
  11. Ch'ng ACW, Konthur Z, Lim TS
    Methods Enzymol, 2020;630:159-178.
    PMID: 31931984 DOI: 10.1016/bs.mie.2019.10.023
    Directed evolution is a proven approach to fine tune or modify biomolecules for various applications ranging from research to industry. The process of evolution requires methods that are capable of not only generating genetic diversity but also to distinguish the variants of desired characteristics. One method that is synonymous with directed evolution of proteins is phage display. Here, we present a protocol describing the application of magnetic nanoparticles coupled with a processor to carry out the identification of monoclonal antibodies (mAbs) from a diverse antibody library via phage display. Target antigens are coupled to magnetic nanoparticles as the solid phase for the isolation of the binding mAbs via affinity. A gradual enrichment in clones would result in increasing ELISA readouts with increasing rounds of panning. During monoclonal level analysis, positivity can be deduced with comparison to background and controls. The biopanning process can also be adopted for the directed evolution of enzymes, scaffold proteins or even peptides.
    Matched MeSH terms: Antigens/immunology
  12. Chen XY, Butt AM, Mohd Amin MCI
    Mol Pharm, 2019 09 03;16(9):3853-3872.
    PMID: 31398038 DOI: 10.1021/acs.molpharmaceut.9b00483
    The development of oral vaccine formulation is crucial to facilitate an effective mass immunization program for various vaccine-preventable diseases. In this work, the efficacy of hepatitis B antigen delivered by bacterial nanocellulose/poly(acrylic acid) composite hydrogel microparticles (MPs) as oral vaccine carriers was assessed to induce both local and systemic immunity. Optimal pH-responsive swelling, mucoadhesiveness, protein drug loading, and drug permeability were characterized by MPs formulated with minimal irradiation doses and acrylic acid concentration. The composite hydrogel materials of bacterial nanocellulose and poly(acrylic acid) showed significantly greater antigen release in simulated intestinal fluid while ensuring the integrity of antigen. In in vivo study, mice orally vaccinated with antigen-loaded hydrogel MPs showed enhanced vaccine immunogenicity with significantly higher secretion of mucosal immunoglobulin A, compared to intramuscular vaccinated control. The splenocytes from the same group demonstrated lymphoproliferation and significant increased secretion of interleukin-2 cytokines upon stimulation with hepatitis B antigen. Expression of CD69 in CD4+ T lymphocytes and CD19+ B lymphocytes in splenocytes from mice orally vaccinated with antigen-loaded hydrogel MPs was comparable to that of the intramuscular vaccinated control, indicating early activation of lymphocytes elicited by our oral vaccine formulation in just two doses. These results demonstrated the potential of antigen-loaded hydrogel MPs as an oral vaccination method for hepatitis B.
    Matched MeSH terms: Hepatitis B Surface Antigens/immunology*
  13. Bakhtiar MF, Too CL, Tang MM, Sulaiman S, Tan LK, Ahmad-Fauzi NA, et al.
    Clin Exp Allergy, 2019 04;49(4):537-540.
    PMID: 30693574 DOI: 10.1111/cea.13347
    Matched MeSH terms: HLA Antigens/immunology
  14. Nadarajan VS
    Transfusion, 2018 05;58(5):1189-1198.
    PMID: 29441590 DOI: 10.1111/trf.14538
    BACKGROUND: Antibodies to Mia , MUT, and Mur are among the most frequently identified alloantibodies in Southeast Asia. Understanding the characteristics of these antibodies in terms of induction and evanescence would aid in optimizing methods for their detection.

    STUDY DESIGN AND METHODS: Antibody testing results between the years 2013 and 2015 with relevant patient demographic data and red blood cell (RBC) transfusion history were retrieved. Cumulative alloimmunization incidence and evanescence to MUT and Mur were estimated by Kaplan-Meier analysis in relation to the number of RBC units transfused and time.

    RESULTS: Of 70,543 selected patients, 6186 nonalloimmunized subjects with available antibody testing results posttransfusion were identified. Cumulative alloimmunization incidence for MUT increased from 0.12% (95% confidence interval [CI], 0.03-0.21) to 0.63% (95% CI, 0.25-1.01), while for Mur it increased from 0.04% (95% CI, 0-0.09) to 0.42% (95% CI, 0.05-0.79) when a patient was transfused 2 RBC units as compared to 12. Both antibodies had high evanescence rates and at 1 year, anti-MUT and -Mur will be detected in only 45% (95% CI, 35%-57%) and 27% (95% CI, 17%-43%), respectively, of previously positive patients. MUT and Mur immunogenicity was estimated to be 1.7 and 1.2 times higher than E when their rate of evanescence was taken into account.

    CONCLUSION: Antibodies to MUT and Mur develop following multiple RBC exposures. Immunogenicity of MUT/Mur and evanescence rates of the corresponding antibodies is higher compared to anti-E. Appropriate selection of antibody screening cells is needed in view of the high prevalence, immunogenicity, and evanescence of the antibodies.

    Matched MeSH terms: Blood Group Antigens/immunology*
  15. Chin CF, Ler LW, Choong YS, Ong EB, Ismail A, Tye GJ, et al.
    J Microbiol Methods, 2016 Jan;120:6-14.
    PMID: 26581498 DOI: 10.1016/j.mimet.2015.11.007
    Antibody phage display panning involves the enrichment of antibodies against specific targets by affinity. In recent years, several new methods for panning have been introduced to accommodate the growing application of antibody phage display. The present work is concerned with the application of streptavidin mass spectrometry immunoassay (MSIA™) Disposable Automation Research Tips (D.A.R.T's®) for antibody phage display. The system was initially designed to isolate antigens by affinity selection for mass spectrometry analysis. The streptavidin MSIA™ D.A.R.T's® system allows for easy attachment of biotinylated target antigens on the solid surface for presentation to the phage library. As proof-of-concept, a domain antibody library was passed through the tips attached with the Hemolysin E antigen. After binding and washing, the bound phages were eluted via standard acid dissociation and the phages were rescued for subsequent panning rounds. Polyclonal enrichment was observed for three rounds of panning with five monoclonal domain antibodies identified. The proposed method allows for a convenient, rapid and semi-automated alternative to conventional antibody panning strategies.
    Matched MeSH terms: Antigens/immunology
  16. Lim TS, Chan SK
    Curr Pharm Des, 2016;22(43):6480-6489.
    PMID: 27669969 DOI: 10.2174/1381612822666160923111924
    BACKGROUND: Antibody phage display is highly dependent on the availability of antibody libraries. There are several forms of libraries depending mainly on the origin of the source materials. There are three major classes of libraries, mainly the naïve, immune and synthetic libraries.

    METHODS: Immune antibody libraries are designed to isolate specific and high affinity antibodies against disease antigens. The pre-exposure of the host to an infection results in the production of a skewed population of antibodies against the particular infection.

    RESULTS: This characteristic takes advantage of the in vivo editing machinery to generate bias and specific immune repertoire. The skewed but diverse repertoire of immune libraries has been adapted successfully in the generation of antibodies against a wide range of diseases.

    CONCLUSION: We envisage immune antibody libraries to play a greater role in the discovery of antibodies for diseases in the near future.

    Matched MeSH terms: Antigens/immunology
  17. Syed Azim SM, Muhamad NA, Leong CF, Hussin NH
    Malays J Pathol, 2015 Aug;37(2):109-14.
    PMID: 26277667 MyJurnal
    Antibody screening is important for the antenatal screening and pre-transfusion tests. This study aimed to compare the MUT/Mur kodecytesAbtectcell III (CSL Abtectcell III) red cell antibody screening kit with DiaMed ID-Dia Cell I-II-III Asia that was then used in our laboratory. In this study, 125 samples were randomly chosen, with 67 samples of known antibody specificities and 58 samples identified as negative for antibody, as the negative control. Concordant negative results were obtained in 57 out of 58 antibody negative samples. Concordant antibody positive results with both reagents were seen in 49 out of 67 samples. There were 18 discrepant results of antibody screening with CSL Abtetcell III (16/18 for vMNS antibodies). The sensitivity and specificity for CSL Abtectcell III were 73.0% and 98.3% respectively. In conclusion, the CSL Abtectcell III reagent would be an acceptable alternative for screening of red cell alloantibodies. It was able to detect all the clinically significant alloantibodies.
    Matched MeSH terms: Blood Group Antigens/immunology*
  18. Hudu SA, Harmal NS, Saeed MI, Alshrari AS, Malik YA, Niazlin MT, et al.
    Eur J Clin Microbiol Infect Dis, 2015 Jul;34(7):1349-59.
    PMID: 25792010 DOI: 10.1007/s10096-015-2358-1
    Hepatitis B virus surface mutants are of enormous importance because they are capable of escaping detection by serology and can infect both vaccinated and unvaccinated populations, thus putting the whole population at risk. This study aimed to detect and characterise hepatitis B-escaped mutants among blood donors and vaccinees. One thousand serum samples were collected for this study from blood donors and vaccinees. Hepatitis B surface antigen, antibodies and core antibodies were tested using a commercial enzyme-linked immunosorbent assay (ELISA) kit. DNA detection was performed via nested polymerase chain reaction (PCR), and the S gene was sequenced and analysed using bioinformatics. Of the 1,000 samples that were screened, 5.5% (55/1,000) were found to be HBsAg-negative and anti-HBc- and HBV DNA-positive. All 55 isolates were found to belong to genotype B. Several mutations were found across all the sequences from synonymous and non-synonymous mutations, with the most nucleotide mutations occurring at position 342, where adenine was replaced by guanine, and cytosine at position 46 was replaced by adenine in 96.4% and 98% of the isolates, respectively. Mutation at position 16 of the amino acid sequence was found to be common to all the Malaysian isolates, with 85.7% of the mutations occurring outside the major hydrophilic region. This study revealed a prevalence of 5.5% for hepatitis B-escaped mutations among blood donors and vaccinated undergraduates, with the most common mutation being found at position 16, where glutamine was substituted with lysine.
    Matched MeSH terms: Hepatitis B Surface Antigens/immunology
  19. Barathan M, Mohamed R, Saeidi A, Vadivelu J, Chang LY, Gopal K, et al.
    Eur J Clin Invest, 2015 May;45(5):466-74.
    PMID: 25721991 DOI: 10.1111/eci.12429
    Hepatitis C virus (HCV) causes persistent disease in ~85% of infected individuals, where the viral replication appears to be tightly controlled by HCV-specific CD8+ T cells. Accumulation of senescent T cells during infection results in considerable loss of functional HCV-specific immune responses.
    Matched MeSH terms: HLA-DR Antigens/immunology
  20. Gopinath SC, Tang TH, Citartan M, Chen Y, Lakshmipriya T
    Biosens Bioelectron, 2014 Jul 15;57:292-302.
    PMID: 24607580 DOI: 10.1016/j.bios.2014.02.029
    Sensing applications can be used to report biomolecular interactions in order to elucidate the functions of molecules. The use of an analyte and a ligand is a common set-up in sensor development. For several decades, antibodies have been considered to be potential analytes or ligands for development of so-called "immunosensors." In an immunosensor, formation of the complex between antibody and antigen transduces the signal, which is measurable in various ways (e.g., both labeled and label-free based detection). Success of an immunosensor depends on various factors, including surface functionalization, antibody orientation, density of the antibody on the sensor platform, and configuration of the immunosensor. Careful optimization of these factors can generate clear-cut results for any immunosensor. Herein, current aspects, involved in the generated immunosensors, are discussed.
    Matched MeSH terms: Antigens/immunology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links