Displaying all 19 publications

Abstract:
Sort:
  1. Khan MZ, Ling YS, Yaqoob I, Kumar NN, Kuang LL, San WC
    ScientificWorldJournal, 2014;2014:240729.
    PMID: 25544952 DOI: 10.1155/2014/240729
    A low-energy plasma focus device was used as an electron beam source. A technique was developed to simultaneously measure the electron beam intensity and energy. The system was operated in Argon filling at an optimum pressure of 1.7 mbar. A Faraday cup was used together with an array of filtered PIN diodes. The beam-target X-rays were registered through X-ray spectrometry. Copper and lead line radiations were registered upon usage as targets. The maximum electron beam charge and density were estimated to be 0.31 μC and 13.5 × 10(16)/m(3), respectively. The average energy of the electron beam was 500 keV. The high flux of the electron beam can be potentially applicable in material sciences.
    Matched MeSH terms: Argon*
  2. Quah HJ, Cheong KY
    Nanoscale Res Lett, 2013;8(1):53.
    PMID: 23360596 DOI: 10.1186/1556-276X-8-53
    The effects of different post-deposition annealing ambients (oxygen, argon, forming gas (95% N2 + 5% H2), and nitrogen) on radio frequency magnetron-sputtered yttrium oxide (Y2O3) films on n-type gallium nitride (GaN) substrate were studied in this work. X-ray photoelectron spectroscopy was utilized to extract the bandgap of Y2O3 and interfacial layer as well as establishing the energy band alignment of Y2O3/interfacial layer/GaN structure. Three different structures of energy band alignment were obtained, and the change of band alignment influenced leakage current density-electrical breakdown field characteristics of the samples subjected to different post-deposition annealing ambients. Of these investigated samples, ability of the sample annealed in O2 ambient to withstand the highest electric breakdown field (approximately 6.6 MV/cm) at 10-6 A/cm2 was related to the largest conduction band offset of interfacial layer/GaN (3.77 eV) and barrier height (3.72 eV).
    Matched MeSH terms: Argon
  3. Khoirulzariah Ismail, Anis Farhan Kamaruddin, , Noor Ayuni Ahmad Shafiai
    MyJurnal
    Lasers have been identified as one of the preventive tools that can be utilised to prevent white spot lesion in ortho- dontic practice. The aim of this scoping review was to evaluate the current scientific literature on the use of lasers specifically to prevent white spot lesion in orthodontic cases. Search was performed in PubMed, Web of Science, Scopus and EBSCO databases from the past ten years. The records obtained were peruse considering specific in- clusion and exclusion criteria. From the total of 1123 studies that were evaluated, 68 papers were included for this review. A variety of laser types has been reported including Er;YAG, Er,Cr:YSGG, Argon and CO2 lasers. CO2 laser has a good number of evidence of it’s positive result and can be suggested to be use in clinical practise. However, since most data for the other type of lasers were derived from in vitro studies, they must be interpreted with care. Randomised clinical trials would be beneficial to give more meaningful evidence for clinicians to adopt lasers in their practice.
    Matched MeSH terms: Argon
  4. Mord Yusof Othman, Saleem H. Zaidi, Kamaruzzaman Sopian, Marhama Jelita
    Sains Malaysiana, 2014;43:575-582.
    Analisis terma dan prestasi modul fotovoltan semi-lutsinar yang dipasang pada tetingkap dwi kaca (TDK) telah dikaji. Di dalam TDK terjadi pemindahan haba olakan yang disebabkan oleh perbezaan suhu. Perisian COMSOL digunakan untuk menyelesaikan model matematik dengan empat jenis gas yang berlainan disimulasikan untuk mengisi ruang dalam TDK iaitu udara, argon, kripton dan xenon. Ruang dalam TDK diubah antara 5 hingga 100 mm. Keadaan cuaca di Kuala Lumpur, Malaysia telah digunakan. Modul fotovoltan yang digunakan untuk kajian simulasi ialah jenis silikon amorfus (Si-a). Kajian ini mendapati penggunaan gas xenon dalam ruang TDK memberikan prestasi maksimum dalam mengurangkan beban penyejukan. Ketebalan optimum ruang TDK bergantung kepada jenis gas yang digunakan dan secara umumnya berada dalam julat 10 hingga 20 mm.
    Matched MeSH terms: Argon
  5. Noraishah Othman, Siti Kartom Kamarudin, Muhd Noor Md Yunus, Abd. Halim Shamsuddin, Siti Rozaimah, Zahirah Yaakob
    MyJurnal
    The production of carbon dioxide from Karas woods under argon atmosphere was investigated using a direct pyrolysis-combustion approach. Direct burning was used in this study, using argon for yrolysis and oxygen during combustion to look at the yield of carbon dioxide, produced at different parameters, such as the temperature, retention time and flow rate of argon, as the carrier gas. In this study, a new methodology, 23 response surface central composite design was successfully employed for the experimental design and analysis of results. Central composite experimental design and response surface method were utilized to determine the best operating condition for a maximum carbon dioxide production. Appropriate predictable empirical linear model was developed by incorporating interaction effects of all the variables involved. The results of the analysis revealed that linear equation models fitted well with the experimental for carbon dioxide yield. Nevertheless, the R-Squared obtained using the direct pyrolysis-combustion was 0.7118, indicating that the regression line was not at the best-fitted line.
    Matched MeSH terms: Argon
  6. Muhammad Azwadi Sulaiman, Hutagalung, Sabar D., Zainal A. Ahmad
    MyJurnal
    CaCu3Ti4O12 (CCTO) has attracted a great attention for electronic devices miniaturization due to its
    very high dielectric constant properties at a wide range of frequency and nearly constant over broad temperature range. The origins of the giant dielectric constant have been speculated from electrical heterogeneous of interior elements of the CCTO ceramics. Four origins were suggested contributed to the electrical heterogeneous. In this study heat treatment were done with the electrode contact in Argon gas environment and the electrical properties over very wide frequency of CCTO ceramics were investigated. Cylindrical CCTO pellets samples were prepared by solid state reaction method and single phase of XRD pattern was obtained after sintering processes. Electrical impedance responds were measured at frequency from 100 Hz to 1 GHz for the samples for untreated and heat treated at 200ºC, 250ºC, 300ºC, 350ºC and 400ºC of CCTO. Improvement to the dielectric constant can be seen for 350ºC and 400ºC samples and dielectric loss were improved for 200ºC and 300ºC samples for overall frequency. The variations were discussed based on oxygen deficiency content and resistivity of the elements inside of CCTO structure.
    Matched MeSH terms: Argon
  7. Noraziana Parimin, Linus, Andy
    MyJurnal
    This research was conducted to study the effect of reinforcement particles on iron-cobalt (FeCo) composites. The composition of silicon carbide (SiC) was varied from 0 to 20 wt%. The composite was fabricated via powder metallurgy (PM) method, which consists of mixing, compaction and sintering processes. The powder was mixed for 2 hours to obtain uniformity between SiC and Fe-Co matrix and compacted to a cylindrical shape at 250 MPa. Samples were sintered for 2 hours at 900 o C with 10 o C/minute heating rate in argon atmosphere. The influences of reinforcement particle on the sintered samples were characterized in terms of microstructure and hardness testing. The Fe-Co/20wt%SiC composites show highest hardness value.
    Matched MeSH terms: Argon
  8. Noraishah Othman, Muhd Noor Md Yunus, Siti Kartom Kamarudin, Abd Halim Shamsuddin, Siti Rozaimah, Zahirah Yaakob
    MyJurnal
    Production of carbon dioxide from degraded woods especially Karas or Aquilariella Malaccensis using integrated pyrolysis-combustion is important for radiocarbon dating application. The effects of pyrolysis temperatures (300-400 0 C), retention times (20-35 minutes) and flow rates of argon (400- 1000 ml/min) on the production of carbon dioxide were studied. The experiments were arranged according to a 2 3 response surface central composite statistical design (CSD). This response surface methodology (RSM) was used to assess factor interactions and empirical models regarding carbon dioxide yield. The optimized yield of carbon dioxide was 82.57% for Karas and the optimum reaction conditions are 300 0 C of pyrolysis temperature, 20 minutes retention time and 982ml/min flow rates of argon. Scanning electron microscope (SEM) and X-ray Diffraction (XRD) were conducted to assess the morphological characteristics of the woods and to look at the potential crystalline structure produced after the process took place, respectively.
    Matched MeSH terms: Argon
  9. Chen TF, Siow KS, Ng PY, Majlis BY
    Mater Sci Eng C Mater Biol Appl, 2017 Oct 01;79:613-621.
    PMID: 28629060 DOI: 10.1016/j.msec.2017.05.091
    Our studies focused on improving the biocompatibility properties of two microfluidic prototyping substrates i.e. polyurethane methacrylate (PUMA) and off-stoichiometry thiol-ene (OSTE-80) polymer by Ar and N2plasma treatment. The contact angle (CA) measurement showed that both plasma treatments inserted oxygen and nitrogen moieties increased the surface energy and hydrophilicity of PUMA and OSTE-80 polymer which corresponded to an increase of nitrogen to carbon ratios (N/C), as measured by XPS, to provide a conducive environment for cell attachments and proliferation. Under the SEM observation, the surface topography of PUMA and OSTE-80 polymer showed minimal changes after the plasma treatments. Furthermore, ageing studies showed that plasma-treated PUMA and OSTE-80 polymer had stable hydrophilicity and nitrogen composition during storage in ambient air for 15days. After in vitro cell culture of human umbilical vein endothelial cells (HUVECs) on these surfaces for 24h and 72h, both trypan blue and alamar blue assays indicated that PUMA and OSTE-80 polymer treated with N2plasma had the highest viability and proliferation. The polar nitrogen moieties, specifically amide groups, encouraged the HUVECs adhesion on the plasma-treated PUMA and OSTE-80 surfaces. Interestingly, PUMA polymer treated with Ar and N2plasma showed different HUVECs morphology which was spindle and cobblestone-shaped respectively after 72h of incubation. On the contrary, a monolayer of well-spread HUVECs formed on the Ar and N2plasma-treated OSTE-80 polymers. These variable morphologies observed can be ascribed to the adherence HUVECs on the different elastic moduli of these surfaces whereby further investigation might be needed. Overall, Ar and N2plasma treatment had successfully altered the surface properties of PUMA and OSTE-80 polymer by increasing its surface energy, hydrophilicity and chemical functionalities to create a biocompatible surface for HUVECs adhesion and proliferation.
    Matched MeSH terms: Argon
  10. Iwasaki T, Muruganathan M, Schmidt ME, Mizuta H
    Nanoscale, 2017 Jan 26;9(4):1662-1669.
    PMID: 28074959 DOI: 10.1039/c6nr08117g
    The transformation of systematic vacuum and hydrogen annealing effects in graphene devices on the SiO2 surface is reported based on experimental and van der Waals interaction corrected density functional theory (DFT) simulation results. Vacuum annealing removes p-type dopants and reduces charged impurity scattering in graphene. Moreover, it induces n-type doping into graphene, leading to the improvement of the electron mobility and conductivity in the electron transport regime, which are reversed by exposing to atmospheric environment. On the other hand, annealing in hydrogen/argon gas results in smaller n-type doping along with a decrease in the overall conductivity and carrier mobility. This degradation of the conductivity is irreversible even the graphene devices are exposed to ambience. This was clarified by DFT simulations: initially, silicon dangling bonds were partially terminated by hydrogen, subsequently, the remaining dangling bonds became active and the distance between the graphene and SiO2 surface decreased. Moreover, both annealing methods affect the graphene channel including the vicinity of the metal contacts, which plays an important role in asymmetric carrier transport.
    Matched MeSH terms: Argon
  11. Liao X, Zhang Y, Wang J, Kang J, Zhang J, Wang J, et al.
    Materials (Basel), 2019 Nov 09;12(22).
    PMID: 31717524 DOI: 10.3390/ma12223698
    The tunability of semi-conductivity in SrTiO3 single crystal substrates has been realized by a simple encapsulated annealing method under argon atmosphere. This high temperature annealing-induced property changes are characterized by the transmission spectra, scanning electron microscopy (SEM) and synchrotron-based X-ray absorption (XAS). We find the optical property is strongly influenced by the annealing time (with significant decrease of transmittance). A sub gap absorption at ~427 nm is detected which is attributed to the introduction of oxygen vacancy. Interestingly, in the SEM images, annealing-induced regularly rectangle nano-patterns are directly observed which is contributed to the conducting filaments. The XAS of O K-edge spectra shows the changes of electronic structure by annealing. Very importantly, resistance switching response is displayed in the annealed SrTiO3 single crystal. This suggests a possible simplified route to tune the conductivity of SrTiO3 and further develop novel resistance switching materials.
    Matched MeSH terms: Argon
  12. Toussi SM, Fakhru’L-Razi A, Luqman Chuah A, Suraya A
    Single-walled carbon nanotubes (SWCNTs) were synthesized by catalytic chemical vapor deposition (CCVD) of ethanol (C2H5OH) over Fe-Mo-MgO catalyst by using argon as a carrier gas. The reaction conditions are important factors that influence the yield and quality of carbon nanotubes. The effects of temperature and flow rate of carrier gas were investigated to increase the yield of carbon nanotubes. The synthesized carbon nanotubes were characterized by scanning electron microscopy, transmission electron microscopy, X-Ray diffraction and thermo-gravimetric analysis. The results showed that the growth of carbon nanotubes was effectively influenced by the reaction ambience and the synthesis condition. The temperature and flow rate of carrier gas played a key role in the yield and quality of synthesized CNTs. The estimated yield of synthesized carbon nanotubes was almost over 70%.
    Matched MeSH terms: Argon
  13. Wong JL, Tie ST, Lee J, Kannan SK, Rashid Ali MR, Ibrahim A, et al.
    Med J Malaysia, 2014 Aug;69(4):195-6.
    PMID: 25500852 MyJurnal
    Recurrent respiratory papillomatosis (RRP) is a benign disease caused by the human papilloma virus (HPV), characterized by the formation of recurrent, epithelial neoplastic lesions in the airways. While benign, they can cause significant airway obstruction in some cases. Difficulties in treatment arise from the recurrent nature of the lesions despite repeated procedures. Other known procedures that result in deep tissue damage also cause unacceptable collateral damage to the underlying airway mucosa. We describe a case of recurrent papillomatosis that was successfully treated with argon plasma coagulation ( APC) when laser and electrocautery ablation had failed in the past. After the papillomatasis was treated with APC, there is no recurrence on repeat scope at 4 months and 9 months after the initial procedure. The procedure was done as a day case and there is no complication from the procedure. The property of the APC that allows it to cause only superficial thermal damage to the tissue makes it a suitable adjunct therapy to the treatment of papillomas, which are usually superficial lesions.
    Matched MeSH terms: Argon Plasma Coagulation
  14. Mohd Muzamir Mahat, Nurfazianawatie Mohd Zin, Nurul Afaah Abdullah, Salifairus Mohammad Jafar, Mohd Firdaus Malek, M. Rusop, et al.
    Science Letters, 2020;14(2):24-33.
    MyJurnal
    The synthesis of graphene by double thermal chemical vapor deposition (DTCVD) using waste of industrial cooking oil (WICO) as a natural carbon source was investigated. The synthesis parameter (Argon gas flow rate) was varied between 50sccm to 300sccm by 50sccm increments. The function of Argon gas is to provide ambient condition, remove the atmospheric air from the tube and could improve the crystallinity of graphene during synthesis. WICO (from AYAMAS food processing) was placed in the first furnace (precursor furnace) and nickel was placed in the second furnace (deposition furnace). During the synthesis, elevated quantities of carbon from the source material are separated and precipitated on the Nickel surface. The sample were characterized by using Field Emission Scanning Electron Microscopy (FESEM), X-Ray Diffraction (XRD), Energy Dispersive X-ray (EDX), and Ultraviolet Visible (UV-Vis) spectroscopy. Based on FESEM images, at 250sccm, hexagonal graphene formation was observed. Besides, optical properties can be seen by UV-Vis and as the results show that 250sccm is the highest reflectivity value. Consequently, graphene synthesis from WICO using various Argon gas flow rate as precursor is successfully demonstrated.
    Matched MeSH terms: Argon
  15. Farah Anis Jasni, Kuan, Yew Cheong, Lockman, Zainovia, Zainuriah Hassan
    MyJurnal
    Thin films of cerium oxide (CeO2) were prepared on silicon (Si) substrate by metal organic decomposition route. 0.25 M of cerium (III) acetylacetonate (acac) was used as starting materials with the addition of methanol and acetic acid as solvents. Oxide conversion of the film by thermal treatment was conducted at temperature ranging from 400 o C to 1000 o C for 15 min in argon ambient. X-ray diffraction (XRD) analysis utilizing Cukα radiation (Model Brukker’s Diffrac Plus ), Filmetrics system measurement, field emission scanning electron microscope (FE-SEM) (Model Zeiss Supra 35VP FE-SEM) and atomic force microscopy (AFM) (Model SII Nanonavi) were employed to characterize the phase formed and morphologies of the film produced.
    Matched MeSH terms: Argon
  16. Hutagalung, Sabar D., Eng, Siew T., Zainal A. Ahmad, Ishak Mat, Yussof Wahab
    MyJurnal
    One-dimensional nanostructure materials are very attractive because of their electronic and optical properties depending on their size. It is well known that properties of material can be tuned by reducing size to nanoscale because at the small sizes, that they behave differently with its bulk materials and the band gap will control by the size. The tunability of the band gap makes nanostructured materials useful for many applications. As one of the wide band gaps semiconductor compounds, zinc selenide (ZnSe) nanostructures (nanoparticles, nanowires, nanorods) have received much attention for the application in optoelectronic devices, such as blue laser diode, light emitting diodes, solar cells and IR optical windows. In this study, ZnSe nanostructures have been synthesized by reduction process of zinc selenate using hydrazine hydrate (N2H4.2H2O). The reductive agent of hydrazine hydrate was added to the starting materials of zinc selenate were heat treated at 500 o C for 1 hour under argon flow to form onedimensional nanostructures. The SEM and TEM images show the formation of nanocompositelike structures, which some small nanobars and nanopellets stick to the rod. The x-ray diffraction and elemental composition analysis confirm the formation of mixture zinc oxide and zinc selenide phases.
    Matched MeSH terms: Argon
  17. Shrestha R, Subedi DP, Gurung JP, Wong CS
    Sains Malaysiana, 2016;45:1689-1696.
    The development of a non-thermal plasma jet with a capillary configuration working at atmospheric pressure is reported
    in this paper. The plasma jet is powered by a power source with frequency of several kilohertz. The working gas is
    argon. The plasma obtained has been characterized by optical emission spectroscopic measurements and electrical
    measurements of the discharge using voltage and current probes. The electron temperature has been estimated by using
    the modified Boltzmann plot method utilizing the Ar 4p-4s transition. The electron temperatures at various positions
    along the plasma jet length have been obtained and it is found that the electron temperature decreases at position further
    from orifice. The electron density has been estimated from current and voltage measurements using the power balance
    method. The effects of gas flow rate, applied voltage and frequency on the characteristics of the plasma jet have also been
    investigated. The applications of the atmospheric pressure plasma jet (APPJ) developed to modify the surface properties
    of Polyethyleneterephthalate (PET) and polycarbonate (PC) have been tested. Our results showed that the atmospheric
    pressure non-thermal plasma jet can be effectively used to enhance the surface wettability and surface energy of the
    PET and PC. The plasma jet has also been tested for inactivation of prokaryotic cells (Escherichia coli, Staphylococcus
    aureus). In the case of E. coli, better than 4 log10 reduction can be achieved. The effect of plasma jet on the pH of cell
    culture medium has suggested that the plasma species, particularly the electrons, are solely responsible for the effect
    of inactivation of living cells.
    Matched MeSH terms: Argon
  18. Siow SL, Mahendran HA, Seo CJ
    Int J Colorectal Dis, 2017 Jan;32(1):131-134.
    PMID: 27527929 DOI: 10.1007/s00384-016-2635-1
    PURPOSE: The management of haemorrhagic radiation proctitis is challenging because of the necessity for repeated intervention. The efficacy of argon plasma coagulation has been described before but the optimum treatment strategy remains debatable. This is a review of our experience over a decade treating patients with haemorrhagic radiation proctitis and their follow-up.

    METHODS: This is a retrospective review of consecutive patients who underwent argon plasma coagulation for haemorrhagic radiation proctitis between January 2003 and December 2013. The patients were followed up using a prospectively maintained database.

    RESULTS: Ninety-one patients were included with a mean follow-up of 13.1 months. Majoity (n = 85, 93.4 %) of the patients were female. Mean age at the time of treatment was 58.2 (range 23-87) years old. Majority of the patients (n = 73, 80.2 %) received radiotherapy for gynaecological malignancies followed by colorectal (n = 13, 14.3 %) and urological (n = 5, 5.5 %) malignancies. Mean interval between radiation and proctitis was 13.8 (range 3-40) months. Seventy-nine percent of patients were successfully treated after 1-2 sessions. Seventeen (18.7 %) patients experienced self-limiting early complications, and three (3.3 %) had late complications of rectal stenosis which was managed conservatively. Severity of bleeding during the initial presentation is an independent factor that predicts the number of sessions required for successful haemostasis (p = 0.002).

    CONCLUSIONS: Argon plasma coagulation is a reasonable treatment option in patients with haemorrhagic radiation proctitis with good safety profile. Our study suggests that the number of APC sessions required to arrest bleeding correlates with the severity of bleeding on initial presentation.

    Matched MeSH terms: Argon Plasma Coagulation/adverse effects*
  19. Chew LT, Bradley DA, Mohd AY, Jamil MM
    Appl Radiat Isot, 2000 9 26;53(4-5):633-8.
    PMID: 11003500
    Inductively Coupled Argon Plasma Atomic Emission Spectroscopy (ICP-AES) has been used to determine Pb, Zn and Cu levels in 47 exfoliated human teeth (all of which required extraction for orthodontic reasons). Lead concentrations for the group were 1.7 microg (g tooth mass)(-1) to 40.5 microg (g tooth mass)(-1). with a median of 9.8 microg (g tooth mass)(-1). A median lead level in excess of the group value was found for the teeth of six lorry drivers who were included in the study. A more significant enhancement was found for the seven subjects whose age was in excess of 60 years. The median values for Zn and Cu were 123.0 and 0.6 microg (g tooth mass)(-1) respectively. Present values for tooth-Zn are lower than published data for other ethnic groups.
    Matched MeSH terms: Argon
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links