Displaying publications 1 - 20 of 147 in total

Abstract:
Sort:
  1. Abdul Wahab R, Basri M, Raja Abdul Rahman RN, Salleh AB, Abdul Rahman MB, Leow TC
    Enzyme Microb Technol, 2016 Nov;93-94:174-181.
    PMID: 27702478 DOI: 10.1016/j.enzmictec.2016.08.020
    Site-directed mutagenesis of the oxyanion-containing amino acid Q114 in the recombinant thermophilic T1 lipase previously isolated from Geobacillus zalihae was performed to elucidate its role in the enzyme's enantioselectivity and reactivity. Substitution of Q114 with a hydrophobic methionine to yield mutant Q114M increased enantioselectivity (3.2-fold) and marginally improved reactivity (1.4-fold) of the lipase in catalysing esterification of ibuprofen with oleyl alcohol. The improved catalytic efficiency of Q114L was concomitant with reduced flexibility in the active site while the decreased enantioselectivity of Q114L could be directly attributed to diminished electrostatic repulsion of the substrate carboxylate ion that rendered partial loss in steric hindrance and thus enantioselectivity. The highest E-values for both Q114L (E-value 14.6) and Q114M (E-value 48.5) mutant lipases were attained at 50°C, after 12-16h, with a molar ratio of oleyl alcohol to ibuprofen of 1.5:1 and at 2.0% (w/v) enzyme load without addition of molecular sieves. Pertinently, site-directed mutagenesis on the Q114 oxyanion of T1 resulted in improved enantioselectivity and such approach may be applicable to other lipases of the same family. We demonstrated that electrostatic repulsion phenomena could affect flexibility/rigidity of the enzyme-substrate complex, aspects vital for enzyme activity and enantioselectivity of T1.
    Matched MeSH terms: Catalytic Domain/genetics
  2. Abu Bakar A, Akhtar MN, Mohd Ali N, Yeap SK, Quah CK, Loh WS, et al.
    Molecules, 2018 Mar 08;23(3).
    PMID: 29518053 DOI: 10.3390/molecules23030616
    Flavokawain B (1) is a natural chalcone extracted from the roots of Piper methysticum, and has been proven to be a potential cytotoxic compound. Using the partial structure of flavokawain B (FKB), about 23 analogs have been synthesized. Among them, compounds 8, 13 and 23 were found in new FKB derivatives. All compounds were evaluated for their cytotoxic properties against two breast cancer cell lines, MCF-7 and MDA-MB-231, thus establishing the structure-activity relationship. The FKB derivatives 16 (IC50 = 6.50 ± 0.40 and 4.12 ± 0.20 μg/mL), 15 (IC50 = 5.50 ± 0.35 and 6.50 ± 1.40 μg/mL) and 13 (IC50 = 7.12 ± 0.80 and 4.04 ± 0.30 μg/mL) exhibited potential cytotoxic effects on the MCF-7 and MDA-MB-231 cell lines. However, the methoxy group substituted in position three and four in compound 2 (IC50 = 8.90 ± 0.60 and 6.80 ± 0.35 μg/mL) and 22 (IC50 = 8.80 ± 0.35 and 14.16 ± 1.10 μg/mL) exhibited good cytotoxicity. The lead compound FKB (1) showed potential cytotoxicity (IC50 = 7.70 ± 0.30 and 5.90 ± 0.30 μg/mL) against two proposed breast cancer cell lines. It is evident that the FKB skeleton is unique for anticancer agents, additionally, the presence of halogens (Cl and F) in position 2 and 3 also improved the cytotoxicity in FKB series. These findings could help to improve the future drug discovery process to treat breast cancer. A molecular dynamics study of active compounds revealed stable interactions within the active site of Janus kinase. The structures of all compounds were determined by ¹H-NMR, EI-MS, IR and UV and X-ray crystallographic spectroscopy techniques.
    Matched MeSH terms: Catalytic Domain
  3. Abu Bakar AR, Ripen AM, Merican AF, Mohamad SB
    Nat Prod Res, 2019 Jun;33(12):1765-1768.
    PMID: 29394875 DOI: 10.1080/14786419.2018.1434631
    Dysregulation of matrix metalloproteinases (MMPs) activity is known in many pathological conditions with which most of the conditions are related to elevate MMPs activities. Ficus deltoidea (FD) is a plant known for its therapeutic properties. In order to evaluate the therapeutic potential of FD leaf extract, we study the enzymatic inhibition properties of FD leaf extract and its major bioactive compounds (vitexin and isovitexin) on a panel of MMPs (MMP-2, MMP-8 and MMP-9) using experimental and computational approaches. FD leaf extract and its major bioactive compounds showed pronounced inhibition activity towards the MMPs tested. Computational docking analysis revealed that vitexin and isovitexin bind to the active site of the three tested MMPs. We also evaluated the cytotoxicity and cell migration inhibition activity of FD leaf extract in the endothelial EA.hy 926 cell line. Conclusively, this study provided additional information on the potential of FD leaf extract for therapeutical application.
    Matched MeSH terms: Catalytic Domain
  4. Abuelizz HA, Anouar EH, Ahmad R, Azman NIIN, Marzouk M, Al-Salahi R
    PLoS One, 2019;14(8):e0220379.
    PMID: 31412050 DOI: 10.1371/journal.pone.0220379
    Previously, we synthesized triazoloquinazolines 1-14 and characterized their structure. In this study, we aimed to evaluate the in vitro activity of the targets 1-14 as α-glucosidase inhibitors using α-glucosidase enzyme from Saccharomyces cerevisiae type 1. Among the tested compounds, triazoloquinazolines 14, 8, 4, 5, and 3 showed the highest inhibitory activity (IC50 = 12.70 ± 1.87, 28.54 ± 1.22, 45.65 ± 4.28, 72.28 ± 4.67, and 83.87 ± 5.12 μM, respectively) in relation to that of acarbose (IC50 = 143.54 ± 2.08 μM) as a reference drug. Triazoloquinazolines were identified herein as a new class of potent α-glucosidase inhibitors. Molecular docking results envisaged the plausible binding interaction between the target triazoloquinazolines and α-glucosidase enzyme and indicated considerable interaction with the active site residues.
    Matched MeSH terms: Catalytic Domain
  5. Adamu A, Shamsir MS, Wahab RA, Parvizpour S, Huyop F
    J Biomol Struct Dyn, 2017 Nov;35(15):3285-3296.
    PMID: 27800712 DOI: 10.1080/07391102.2016.1254115
    Dehalogenases are of high interest due to their potential applications in bioremediation and in synthesis of various industrial products. DehL is an L-2-haloacid dehalogenase (EC 3.8.1.2) that catalyses the cleavage of halide ion from L-2-halocarboxylic acid to produce D-2-hydroxycarboxylic acid. Although DehL utilises the same substrates as the other L-2-haloacid dehalogenases, its deduced amino acid sequence is substantially different (<25%) from those of the rest L-2-haloacid dehalogenases. To date, the 3D structure of DehL is not available. This limits the detailed understanding of the enzyme's reaction mechanism. The present work predicted the first homology-based model of DehL and defined its active site. The monomeric unit of the DehL constitutes α/β structure that is organised into two distinct structural domains: main and subdomains. Despite the sequence disparity between the DehL and other L-2-haloacid dehalogenases, its structural model share similar fold as the experimentally solved L-DEX and DehlB structures. The findings of the present work will play a crucial role in elucidating the molecular details of the DehL functional mechanism.
    Matched MeSH terms: Catalytic Domain
  6. Agarwal T, Annamalai N, Khursheed A, Maiti TK, Arsad HB, Siddiqui MH
    J Mol Graph Model, 2015 Sep;61:141-9.
    PMID: 26245696 DOI: 10.1016/j.jmgm.2015.07.003
    Recent developments in the target based cancer therapies have identified HSF1 as a novel non oncogenic drug target. The present study delineates the design and molecular docking evaluation of Rohinitib (RHT) - Cantharidin (CLA) based novel HSF1 inhibitors for target-based cancer therapy. Here, we exploited the pharmacophoric features of both the parent ligands for the design of novel hybrid HSF1 inhibitors. The RHT-CLA ligands were designed and characterized for ADME/Tox features, interaction with HSF1 DNA binding domain and their pharmacophoric features essential for interaction. From the results, amino acid residues Ala17, Phe61, His63, Asn65, Ser68, Arg71 and Gln72 were found crucial for HSF1 interaction with the Heat shock elements (HSE). The hybrid ligands had better affinity towards the HSF1 DNA binding domain, in comparison to RHT or CLA and interacted with most of the active site residues. Additionally, the HSF1-ligand complex had a reduced affinity towards HSE in comparison to native HSF1. Based on the results, ligand RC15 and RC17 were non carcinogenic, non mutagenic, completely biodegradable under aerobic conditions, had better affinity for HSF1 (1.132 and 1.129 folds increase respectively) and diminished the interaction of HSF1 with HSE (1.203 and 1.239 folds decrease respectively). The simulation analysis also suggested that the ligands formed a stable complex with HSF1, restraining the movement of active site residues. In conclusion, RHT-CLA hybrid ligands can be used as a potential inhibitor of HSF1 for non-oncogene target based cancer therapy.
    Matched MeSH terms: Catalytic Domain
  7. Agbo EN, Makhafola TJ, Choong YS, Mphahlele MJ, Ramasami P
    Molecules, 2015 Dec 25;21(1):E28.
    PMID: 26712730 DOI: 10.3390/molecules21010028
    Suzuki-Miyaura cross-coupling of 6-bromo-2-styrylquinazolin-4(3H)-ones with arylboronic acids afforded a series of novel 6-aryl-2-styrylquinazolin-4(3H)-ones. These compounds were evaluated for potential anticancer properties against the human renal (TK-10), melanoma (UACC-62) and breast cancer (MCF-7) cell lines. Their antimicrobial properties were also evaluated against six Gram-positive and four Gram-negative bacteria, as well as two strains of fungi. Molecular docking studies (in silico) were conducted on compounds 5a, b, d and 6a, b, d-f to recognize the hypothetical binding motif of the title compounds within the active site of the dihydrofolate reductase and thymidylate synthase enzymes.
    Matched MeSH terms: Catalytic Domain/drug effects
  8. Ahmad S, Zaib S, Jalil S, Shafiq M, Ahmad M, Sultan S, et al.
    Bioorg Chem, 2018 10;80:498-510.
    PMID: 29996111 DOI: 10.1016/j.bioorg.2018.04.012
    In this research work, we report the synthesis and biological evaluation of two new series of 1-benzyl-4-(benzylidenehydrazono)-3,4-dihydro-1H-benzo[c] [1,2]thiazine 2,2-dioxides and 1-benzyl-4-((1-phenylethylidene)hydrazono)-3,4-dihydro-1H-benzo[c][1,2]thiazine 2,2-dioxides. The synthetic plan involves the mesylation of methyl anthranilate with subsequent N-benzylation of the product. The methyl 2-(N-benzylmethylsulfonamido)benzoate was subjected to cyclization reaction in the presence of sodium hydride to obtain 1-benzyl-1H-benzo[c][1,2]thiazin-4(3H)-one 2,2-dioxide which was treated with hydrazine hydrate to get corresponding hydrazone precursor. Finally, the titled compounds were obtained by reaction of hydrazone with various substituted aldehydes and ketones. The synthesized derivatives were subjected to carry out their inhibition activities against monoamine oxidases along with modelling investigations to evaluate their binding interactions and dynamic stability during the docking studies. The inhibition profile of potent compounds was found as competitive for both the isozymes. The compounds were more selective inhibitors of MAO-A as compared to MAO-B. Moreover, drug likeness profile of the derivatives was evaluated to have an additional insight into the physicochemical properties. The molecular dynamic simulations predicted the behaviour of amino acids with the active site residues.
    Matched MeSH terms: Catalytic Domain
  9. Al-Amiery AA, Kadhum AAH, Kadihum A, Mohamad AB, How CK, Junaedi S
    Materials (Basel), 2014 Jan 28;7(2):787-804.
    PMID: 28788488 DOI: 10.3390/ma7020787
    The efficiency of Schiff base derived from 4-aminoantipyrine, namely 2-(1,5-dimethyl-4-(2-methylbenzylidene)amino)-2-phenyl-1H-pyrazol-3(2H)-ylidene) hydrazinecarbothioamide as a corrosion inhibitor on mild steel in 1.0 M H2SO4 was investigated using electrochemical impedance spectroscopy (EIS), potentiodynamic polarization (PD) and electrochemical frequently modulation (EFM) in addition to the adsorption isotherm, corrosion kinetic parameters and scanning electron microscopy (SEM). The results showed that this inhibitor behaved as a good corrosion inhibitor, even at low concentration, with a mean efficiency of 93% and, also, a reduction of the inhibition efficiency as the solution temperature increases. A polarization technique and EIS were tested for different concentrations and different temperatures to reveal that this compound is adsorbed on the mild steel, therefore blocking the active sites, and the adsorption follows the Langmuir adsorption isotherm model. The excellent inhibition effectiveness of 2-(1,5-dimethyl-4-(2-methylbenzylidene)amino)-2-phenyl-1H-pyrazol-3(2H)-ylidene)hydrazinecarbothioamide was also verified by scanning electron microscope (SEM).
    Matched MeSH terms: Catalytic Domain
  10. Al-Anazi M, Al-Najjar BO, Khairuddean M
    Molecules, 2018 Dec 05;23(12).
    PMID: 30563058 DOI: 10.3390/molecules23123203
    Human Epidermal Growth Factor Receptor-1 (EGFR), a transmembrane tyrosine kinase receptor (RTK), has been associated with several types of cancer, including breast, lung, ovarian, and anal cancers. Thus, the receptor was targeted by a variety of therapeutic approaches for cancer treatments. A series of chalcone derivatives are among the most highly potent and selective inhibitors of EGFR described to date. A series of chalcone derivatives were proposed in this study to investigate the intermolecular interactions in the active site utilizing molecular docking and molecular dynamics simulations. After a careful analysis of docking results, compounds 1a and 1d were chosen for molecular dynamics simulation study. Extensive hydrogen bond analysis throughout 7 ns molecular dynamics simulation revealed the ability of compounds 1a and 1d to retain the essential interactions needed for the inhibition, especially MET 93. Finally, MM-GBSA calculations highlight on the capability of the ligands to bind strongly within the active site with binding energies of -44.04 and -56.6 kcal/mol for compounds 1a and 1d, respectively. Compound 1d showed to have a close binding energy with TAK-285 (-66.17 kcal/mol), which indicates a high chance for compound 1d to exhibit inhibitory activity, thus recommending to synthesis it to test its biological activity. It is anticipated that the findings reported here may provide very useful information for designing effective drugs for the treatment of EGFR-related cancer disease.
    Matched MeSH terms: Catalytic Domain
  11. Ali Y, Muhamad Bunnori N, Susanti D, Muhammad Alhassan A, Abd Hamid S
    Front Chem, 2018;6:210.
    PMID: 29946538 DOI: 10.3389/fchem.2018.00210
    Calixarene derivatives are reported as potential therapeutic agents. Azo derivatives of calixarenes have not been given much consideration to explore their biomedical applications. In the present study, some azo-based derivatives of calix[4]arene were synthesized and characterized and their antibacterial and antiviral potentials were studied. The mono azo products of sulphanilamide, sulfaguanidine and 2-methyl-4-aminobenzoic acid showed good activity against bacterial strains with minimum inhibition concentration values ranging from 0.97 to 62.5 μg/mL. For mono azo products, the diazotized salt was applied as a limiting reagent. The use of calix[4]arene and sodium acetate trihydrate in 1:3 (molar ratio) helped in partial substitution. Molecular docking was performed to see the interaction of the designed compounds with two bacterial and one viral (neuraminidase) receptor. Some of the derivatives showed good interaction with the active site of bacterial and neuraminidase enzymes through hydrogen, hydrophobic and pi-pi interactions, and could inhibit the activity of the selected enzymes.
    Matched MeSH terms: Catalytic Domain
  12. Almandil NB, Taha M, Rahim F, Wadood A, Imran S, Alqahtani MA, et al.
    Bioorg Chem, 2019 04;85:109-116.
    PMID: 30605884 DOI: 10.1016/j.bioorg.2018.12.025
    New series of quinoline-based thiadiazole analogs (1-20) were synthesized, characterized by EI-MS, 1H NMR and 13C NMR. All synthesized compounds were subjected to their antileishmanial potential. Sixteen analogs 1-10, 12, 13, 16, 17, 18 and 19 with IC50 values in the range of 0.04 ± 0.01 to 5.60 ± 0.21 µM showed tremendously potent inhibition as compared to the standard pentamidine with IC50 value 7.02 ± 0.09 µM. Analogs 11, 14, 15 and 20 with IC50 8.20 ± 0.35, 9.20 ± 0.40, 7.20 ± 0.20 and 9.60 ± 0.40 µM respectively showed good inhibition when compared with the standard. Structure-activity relationships have been also established for all compounds. Molecular docking studies were performed to determine the binding interaction of the compounds with the active site target.
    Matched MeSH terms: Catalytic Domain
  13. Almansour AI, Kumar RS, Arumugam N, Basiri A, Kia Y, Ali MA, et al.
    Molecules, 2015 Jan 29;20(2):2296-309.
    PMID: 25642838 DOI: 10.3390/molecules20022296
    A series of novel dimethoxyindanone embedded spiropyrrolidines were synthesized in ionic liquid, [bmim]Br and were evaluated for their inhibitory activities towards cholinesterases. Among the spiropyrrolidines, compound 4f exhibited the most potent activity with an IC50 value of 1.57 µM against acethylcholinesterase (AChE). Molecular docking simulation for the most active compound was employed with the aim of disclosing its binding mechanism to the active site of AChE receptor.
    Matched MeSH terms: Catalytic Domain
  14. Ang TF, Salleh AB, Normi YM, Leow TC
    3 Biotech, 2018 Jul;8(7):314.
    PMID: 30023146 DOI: 10.1007/s13205-018-1333-9
    Artificial metalloenzymes are unique as they combine the good features of homogeneous and enzymatic catalysts, and they can potentially improve some difficult catalytic assays. This study reports a method that can be used to create an artificial metal-binding site prior to proving it to be functional in a wet lab. Haloalkane dehalogenase was grafted into a metal-binding site to form an artificial metallo-haloalkane dehalogenase and was studied for its potential functionalities in silico. Computational protocols regarding dynamic metal docking were studied using native metalloenzymes and functional artificial metalloenzymes. Using YASARA Structure, a simulation box covering template structure was created to be filled with water molecules followed by one mutated water molecule closest to the metal-binding site to metal ion. A simple energy minimization step was subsequently run using an AMBER force field to allow the metal ion to interact with the metal-binding residues. Long molecular dynamic simulation using YASARA Structure was performed to analyze the stability of the metal-binding site and the distance between metal-binding residues. Metal ions fluctuating around 2.0 Å across a 20 ns simulation indicated a stable metal-binding site. Metal-binding energies were predicted using FoldX, with a native metalloenzyme (carbonic anhydrase) scoring 18.0 kcal/mol and the best mutant model (C1a) scoring 16.4 kcal/mol. Analysis of the metal-binding site geometry was performed using CheckMyMetal, and all scores for the metalloenzymes and mutant models were in an acceptable range. Like native metalloenzymes, the metal-binding site of C1a was supported by residues in the second coordination shell to maintain a more coordinated metal-binding site. Short-chain multihalogenated alkanes (1,2-dibromoethane and 1,2,3-trichloropropane) were able to dock in the active site of C1a. The halides of the substrate were in contact with both the metal and halide-stabilizing residues, thus indicating a better stabilization of the substrate. The simple catalytic mechanism proposed is that the metal ion interacted with halogen and polarized the carbon-halogen bond, thus making the alpha carbon susceptible to attack by nucleophilic hydroxide. The interaction between halogen in the metal ion and halide-stabilizing residues may help to improve the stabilization of the substrate-enzyme complex and reduce the activation energy. This study reports a modified dynamic metal-docking protocol and validation tests to verify the metal-binding site. These approaches can be applied to design different kinds of artificial metalloenzymes or metal-binding sites.
    Matched MeSH terms: Catalytic Domain
  15. Ang TF, Maiangwa J, Salleh AB, Normi YM, Leow TC
    Molecules, 2018 05 07;23(5).
    PMID: 29735886 DOI: 10.3390/molecules23051100
    The variety of halogenated substances and their derivatives widely used as pesticides, herbicides and other industrial products is of great concern due to the hazardous nature of these compounds owing to their toxicity, and persistent environmental pollution. Therefore, from the viewpoint of environmental technology, the need for environmentally relevant enzymes involved in biodegradation of these pollutants has received a great boost. One result of this great deal of attention has been the identification of environmentally relevant bacteria that produce hydrolytic dehalogenases—key enzymes which are considered cost-effective and eco-friendly in the removal and detoxification of these pollutants. These group of enzymes catalyzing the cleavage of the carbon-halogen bond of organohalogen compounds have potential applications in the chemical industry and bioremediation. The dehalogenases make use of fundamentally different strategies with a common mechanism to cleave carbon-halogen bonds whereby, an active-site carboxylate group attacks the substrate C atom bound to the halogen atom to form an ester intermediate and a halide ion with subsequent hydrolysis of the intermediate. Structurally, these dehalogenases have been characterized and shown to use substitution mechanisms that proceed via a covalent aspartyl intermediate. More so, the widest dehalogenation spectrum of electron acceptors tested with bacterial strains which could dehalogenate recalcitrant organohalides has further proven the versatility of bacterial dehalogenators to be considered when determining the fate of halogenated organics at contaminated sites. In this review, the general features of most widely studied bacterial dehalogenases, their structural properties, basis of the degradation of organohalides and their derivatives and how they have been improved for various applications is discussed.
    Matched MeSH terms: Catalytic Domain
  16. Ashaari NS, Ab Rahim MH, Sabri S, Lai KS, Song AA, Abdul Rahim R, et al.
    Sci Rep, 2021 Aug 24;11(1):17094.
    PMID: 34429465 DOI: 10.1038/s41598-021-96524-z
    Linalool and nerolidol are terpene alcohols that occur naturally in many aromatic plants and are commonly used in food and cosmetic industries as flavors and fragrances. In plants, linalool and nerolidol are biosynthesized as a result of respective linalool synthase and nerolidol synthase, or a single linalool/nerolidol synthase. In our previous work, we have isolated a linalool/nerolidol synthase (designated as PamTps1) from a local herbal plant, Plectranthus amboinicus, and successfully demonstrated the production of linalool and nerolidol in an Escherichia coli system. In this work, the biochemical properties of PamTps1 were analyzed, and its 3D homology model with the docking positions of its substrates, geranyl pyrophosphate (C10) and farnesyl pyrophosphate (C15) in the active site were constructed. PamTps1 exhibited the highest enzymatic activity at an optimal pH and temperature of 6.5 and 30 °C, respectively, and in the presence of 20 mM magnesium as a cofactor. The Michaelis-Menten constant (Km) and catalytic efficiency (kcat/Km) values of 16.72 ± 1.32 µM and 9.57 × 10-3 µM-1 s-1, respectively, showed that PamTps1 had a higher binding affinity and specificity for GPP instead of FPP as expected for a monoterpene synthase. The PamTps1 exhibits feature of a class I terpene synthase fold that made up of α-helices architecture with N-terminal domain and catalytic C-terminal domain. Nine aromatic residues (W268, Y272, Y299, F371, Y378, Y379, F447, Y517 and Y523) outlined the hydrophobic walls of the active site cavity, whilst residues from the RRx8W motif, RxR motif, H-α1 and J-K loops formed the active site lid that shielded the highly reactive carbocationic intermediates from the solvents. The dual substrates use by PamTps1 was hypothesized to be possible due to the architecture and residues lining the catalytic site that can accommodate larger substrate (FPP) as demonstrated by the protein modelling and docking analysis. This model serves as a first glimpse into the structural insights of the PamTps1 catalytic active site as a multi-substrate linalool/nerolidol synthase.
    Matched MeSH terms: Catalytic Domain
  17. Babatunde O, Hameed S, Salar U, Chigurupati S, Wadood A, Rehman AU, et al.
    Mol Divers, 2021 Mar 01.
    PMID: 33650031 DOI: 10.1007/s11030-021-10196-5
    A variety of dihydroquinazolin-4(1H)-one derivatives (1-37) were synthesized via "one-pot" three-component reaction scheme by treating aniline and different aromatic aldehydes with isatoic anhydride in the presence of acetic acid. Chemical structures of compounds were deduced by different spectroscopic techniques including EI-MS, HREI-MS, 1H-, and 13C-NMR. Compounds were subjected to α-amylase and α-glucosidase inhibitory activities. A number of derivatives exhibited significant to moderate inhibition potential against α-amylase (IC50 = 23.33 ± 0.02-88.65 ± 0.23 μM) and α-glucosidase (IC50 = 25.01 ± 0.12-89.99 ± 0.09 μM) enzymes, respectively. Results were compared with the standard acarbose (IC50 = 17.08 ± 0.07 μM for α-amylase and IC50 = 17.67 ± 0.09 μM for α-glucosidase). Structure-activity relationship (SAR) was rationalized by analyzing the substituents effects on inhibitory potential. Kinetic studies were implemented to find the mode of inhibition by compounds which revealed competitive inhibition for α-amylase and non-competitive inhibition for α-glucosidase. However, in silico study identified several important binding interactions of ligands (synthetic analogues) with the active site of both enzymes.
    Matched MeSH terms: Catalytic Domain
  18. Bahaman AH, Abdul Wahab R, Hamid AAA, Halim KBA, Kaya Y, Edbeib MF
    J Biomol Struct Dyn, 2020 Sep;38(14):4246-4258.
    PMID: 31608812 DOI: 10.1080/07391102.2019.1679667
    Fungi of the Trichoderma species are valued industrial enzymes in support of the 'zero-waste' technology to convert agro-industrial biomass into valuable products, i.e. nanocellulose (NC). In this study, an in silico approach using substrate docking and molecular dynamic (MD) simulation was used to predict the order of which the multilayers of cellulosic polymers, i.e. lignin, hemicellulose and cellulose in oil palm leaves (OPL) are degraded by fungal enzymes, endocellulase and exocellulase. The study aimed to establish the catalytic tendencies of the enzymes to optimally degrade the cellulosic components of OPL for high yield production of NC. Energy minimized endocellulase and exocellulase models revealed satisfactory scores of PROCHECK (90.0% and 91.2%), Verify3D (97.23% and 98.85%) and ERRAT (95.24% and 91.00%) assessments. Active site prediction by blind docking, COACH meta-server and multiple sequence alignment indicated the catalytic triads for endocellulase and exocellulase were Ser116-His205-Glu249 and Ser382-Arg124-Asp385, respectively. Binding energy of endocellulase docked with hemicellulose (-6.0   kcal mol-1) was the most favourable followed by lignin (-5.6   kcal mol-1) and cellulose (-4.4   kcal mol-1). Exocellulase, contrarily, bonded favorably with lignin (-8.7   kcal mol-1), closely followed by cellulose (-8.5   kcal mol-1) and hemicellulose (-8.4   kcal mol-1). MDs simulations showed that interactions of complexes, endocellulase-hemicellulose and the exocellulase-cellulose being the most stable. Thus, the findings of the study successfully identified the specific actions of sugar-acting enzymes for NC production. Communicated by Ramaswamy H. Sarma.
    Matched MeSH terms: Catalytic Domain
  19. Baharum H, Morita H, Tomitsuka A, Lee FC, Ng KY, Rahim RA, et al.
    Mar Biotechnol (NY), 2011 Oct;13(5):845-56.
    PMID: 21181422 DOI: 10.1007/s10126-010-9344-5
    Type III polyketide synthases (PKSs) produce an array of metabolites with diverse functions. In this study, we have cloned the complete reading frame encoding type III PKS (SbPKS) from a brown seaweed, Sargassum binderi, and characterized the activity of its recombinant protein biochemically. The deduced amino acid sequence of SbPKS is 414 residues in length, sharing a higher sequence similarity with bacterial PKSs (38% identity) than with plant PKSs. The Cys-His-Asn catalytic triad of PKS is conserved in SbPKS with differences in some of the residues lining the active and CoA binding sites. The wild-type SbPKS displayed broad starter substrate specificity to aliphatic long-chain acyl-CoAs (C(6)-C(14)) to produce tri- and tetraketide pyrones. Mutations at H(331) and N(364) caused complete loss of its activity, thus suggesting that these two residues are the catalytic residues for SbPKS as in other type III PKSs. Furthermore, H227G, H227G/L366V substitutions resulted in increased tetraketide-forming activity, while wild-type SbPKS produces triketide α-pyrone as a major product. On the other hand, mutant H227G/L366V/F93A/V95A demonstrated a dramatic decrease of tetraketide pyrone formation. These observations suggest that His(227) and Leu(366) play an important role for the polyketide elongation reaction in SbPKS. The conformational changes in protein structure especially the cavity of the active site may have more significant effect to the activity of SbPKS compared with changes in individual residues.
    Matched MeSH terms: Catalytic Domain
  20. Basiri A, Murugaiyah V, Osman H, Kumar RS, Kia Y, Ali MA
    Bioorg Med Chem, 2013 Jun 1;21(11):3022-31.
    PMID: 23602518 DOI: 10.1016/j.bmc.2013.03.058
    A series of hitherto unreported pyrido-pyrimidine-2-ones/pyrimidine-2-thiones were synthesized under microwave assisted solvent free reaction conditions in excellent yields and evaluated in vitro for their acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes inhibitory activity. Among the pyridopyrimidine derivatives, 7e and 7l displayed 2.5- and 1.5-fold higher enzyme inhibitory activities against AChE as compared to standard drug, galanthamine, with IC50 of 0.80 and 1.37 μM, respectively. Interestingly, all the compounds except 6k, 7j and 7k displayed higher inhibitory potential against BChE enzyme in comparison to standard with IC50 ranging from 1.18 to 18.90 μM. Molecular modeling simulations of 7e and 7l was performed using three-dimensional structure of Torpedo californica AChE (TcAChE) and human butyrylcholinesterase (hBChE) enzymes to disclose binding interaction and orientation of these molecule into the active site gorge of respective receptors.
    Matched MeSH terms: Catalytic Domain
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links