Displaying publications 1 - 20 of 29 in total

Abstract:
Sort:
  1. Ghazali MM, Mohd Zan MS, Yusof AA, Abdullah JM, Jaffar H, Ariff AR, et al.
    Malays J Med Sci, 2005 Jul;12(2):27-33.
    PMID: 22605955 MyJurnal
    Neoplastic transformation appears to be a multi-step process in which the normal controls of cell proliferation and cell-cell interaction are lost, thus transforming normal cells into cancer. The tumorigenic process involves the interplay between oncogenes and tumour suppressor genes. In this study, we have selected the ras family, c-myc and epidermal growth factor receptor (EGFR) genes to detect whether their abnormalities are associated with the expression and progression of glioma cases in Malay patients. We have used the polymerase chain reaction-single stranded conformation polymorphism followed by direct sequencing for the study. For the ras gene family, we screened the point mutations in codons 12 and 61 of the H-, K-, and N-ras gene; for EGFR and c-myc, we analyzed only the exon 1 in glioma samples. In mutational screening analyses of the ras family, c-myc and EGFR gene, there was no mobility shift observed in any tumour analyzed. All patterns of single stranded conformation polymorphism (SSCP) band observed in tumour samples were normal compared to those in normal samples. The DNA sequencing results in all high-grade tumours showed that all base sequences were normal. All 48 patients survived after five years of treatment. In simple logistic regression analysis, variables which were found to be significant were hemiplegia (p=0.047) and response radiotherapy (p=0.003). Hemiplegics were 25 times more likely to have high pathological grade compared to those without. Patients with vascular involvement were 5.5 times more likely to have higher pathological grade. However, these findings were not significant in multivariate analysis. Patients who had radiotherapy were nearly 14 times more likely to have higher pathological grade. Multivariate analysis revealed that patients with hemiplegia were more likely to have higher pathological grade (p= 0.008). Those with higher pathological grading were 80 times more likely to have radiotherapy (p=0.004).
    Matched MeSH terms: Cell Communication
  2. Sosroseno W, Sugiatno E
    Acta Biomed, 2008 Aug;79(2):110-6.
    PMID: 18788505
    BACKGROUND AND AIMS OF THE WORK: Nitric oxide (NO) has been reported to enhance the production of cAMP by hydroxyapatite (HA)-induced a human osteoblast cell line (HOS cells). The aim of the present study was to test the hypothesis that exogenous NO may up-regulate the proliferation of hydroxyapatite (HA)-induced HOS cells via the cyclic-AMP-protein kinase A (PKA) pathway.
    Matched MeSH terms: Cell Communication
  3. Ooi YY, Ramasamy R, Rahmat Z, Subramaiam H, Tan SW, Abdullah M, et al.
    Int Immunopharmacol, 2010 Dec;10(12):1532-40.
    PMID: 20850581 DOI: 10.1016/j.intimp.2010.09.001
    The immunoregulatory properties of mesenchymal stem cells (MSC) have been demonstrated on a wide range of cells. Here, we describe the modulatory effects of mouse bone marrow-derived MSC on BV2 microglia proliferation rate, nitric oxide (NO) production and CD40 expression. Mouse bone marrow MSC were co-cultured with BV2 cells at various seeding density ratios and activated with lipopolysaccharide (LPS). We show that MSC exert an anti-proliferative effect on microglia and are potent producers of NO when stimulated by soluble factors released by LPS-activated BV2. MSC suppressed proliferation of both untreated and LPS-treated microglia in a dose-dependent manner, significantly reducing BV2 proliferation at seeding density ratios of 1:0.2 and 1:0.1 (pcells at different ratios revealed interesting dynamics in NO production. A high number of MSC significantly increases NO in co-cultures whilst a lower number reduces NO. The increased NO levels in co-cultures may be MSC-derived, as we also show that activated BV2 cells stimulate MSC to produce NO. Cell-cell interaction is not a requirement for this effect as soluble factors released by activated BV2 cells alone do stimulate MSC to produce high levels of NO. Although NO is implicated as a mediator for T cell proliferation, it does not appear to play a major role in the suppression of microglia proliferation. Additionally, MSC reduced the expression of the microglial co-stimulator molecule, CD40. Collectively, these regulatory effects of MSC on microglia offer insight into the potential moderating properties of MSC on inflammatory responses within the CNS.
    Matched MeSH terms: Cell Communication/immunology
  4. Ramasamy R, Tong CK, Yip WK, Vellasamy S, Tan BC, Seow HF
    Cell Prolif, 2012 Apr;45(2):132-9.
    PMID: 22309282 DOI: 10.1111/j.1365-2184.2012.00808.x
    BACKGROUND: Mesenchymal stem cells (MSC) have great potential in regenerative medicine, immunotherapy and gene therapy due to their unique properties of self-renewal, high plasticity, immune modulation and ease for genetic modification. However, production of MSC at sufficient clinical scale remains an issue as in vitro generation of MSC inadequately fulfils the demand with respect to patients.

    OBJECTIVES: This study has aimed to establish optimum conditions to generate and characterize MSC from human umbilical cord (UC-MSC).

    MATERIALS AND METHODS: To optimize MSC population growth, basic fibroblast growth factor (bFGF) was utilized in culture media. Effects of bFGF on expansion kinetics, cell cycle, survival of UC-MSC, cytokine secretion, expression of early stem-cell markers and immunomodulation were investigated.

    RESULTS: bFGF supplementation profoundly enhanced UC-MSC proliferation by reducing population doubling time without altering immunophenotype and immunomodulatory function of UC-MSC. However, cell cycle studies revealed that bFGF drove the cells into the cell cycle, as a higher proportion of cells resided in S phase and progressed into M phase. Consistent with this, bFGF was shown to promote expression of cyclin D proteins and their relevant kinases to drive UC-MSC to transverse cell cycle check points, thus, committing the cells to DNA synthesis. Furthermore, supplementation with bFGF changed the cytokine profiles of the cells and reduced their apoptotic level.

    CONCLUSION: Our study showed that bFGF supplementation of UC-MSC culture enhanced the cells' growth kinetics without compromising their nature.

    Matched MeSH terms: Cell Communication/immunology
  5. Fonseka M, Ramasamy R, Tan BC, Seow HF
    Cell Biol Int, 2012 Sep;36(9):793-801.
    PMID: 22335239 DOI: 10.1042/CBI20110595
    hUCB-MSC (human umbilical cord blood-derived mesenchymal stem cells) offer an attractive alternative to bone marrow-derived MSC for cell-based therapy by being less invasive a source of biological material. We have evaluated the effect of hUCB-MSC on the proliferation of K562 (an erythromyeloblastoid cell line) and the cytokine secretion pattern of hUCB-MSC. Co-culturing of hUCB-MSC and K562 resulted in inhibition of proliferation of K562 in a dose-dependent manner. However, the anti-proliferative effect was reduced in transwells, suggesting the importance of direct cell-to-cell contact. hUCB-MSC inhibited proliferation of K562, arresting them in the G0 /G1 phase. NO (nitric oxide) was not involved in the hUCB-MSC-mediated tumour suppression. The presence of IL-6 (interleukin 6) and IL-8 were obvious in the hUCB-MSC conditioned media, but no significant increase was found in 29 other cytokines. Th1 cytokines, IFNα (interferon α), Th2 cytokine IL-4 and Th17 cytokine, IL-17 were not secreted by hUCB-MSC. There was an increase in the number of hUCB-MSC expressing the latent membrane-bound form of TGFβ1 co-cultured with K562. The anti-proliferative effect of hUCB-MSC was due to arrest of the growth of K562 in the G0 /G1 phase. The mechanisms underlying increased IL-6 and IL-8 secretion and LAP (latency-associated peptide; TGFβ1) by hUCB-MSC remains unknown.
    Matched MeSH terms: Cell Communication
  6. Fariha MM, Chua KH, Tan GC, Lim YH, Hayati AR
    J Cell Mol Med, 2013 May;17(5):681-92.
    PMID: 23551495 DOI: 10.1111/jcmm.12051
    Human chorion-derived stem cells (hCDSC) were previously shown to demonstrate multipotent properties with promising angiogenic characteristics in monolayer-cell culture system. In our study, we investigated the angiogenic capability of hCDSC in 3-dimensional (3D) in vitro and in vivo angiogenic models for the purpose of future application in the treatment of ischaemic diseases. Human CDSC were evaluated for angiogenic and endogenic genes expressions by quantitative PCR. Growth factors secretions were quantified using ELISA. In vitro and in vivo vascular formations were evaluated by histological analysis and confocal microscopic imaging. PECAM-1(+) and vWF(+) vascular-like structures were observed in both in vitro and in vivo angiogenesis models. High secretions of VEGF and bFGF by hCDSC with increased expressions of angiogenic and endogenic genes suggested the possible angiogenic promoting mechanisms by hCDSC. The cooperation of hCDSC with HUVECS to generate vessel-like structures in our systems is an indication that there will be positive interactions of hCDSC with existing endothelial cells when injected into ischaemic tissues. Hence, hCDSC is suggested as the novel approach in the future treatment of ischaemic diseases.
    Matched MeSH terms: Cell Communication/drug effects
  7. Zainol FD, Thammawongsa N, Mitatha S, Ali J, Yupapin P
    Artif Cells Nanomed Biotechnol, 2013 Dec;41(6):368-75.
    PMID: 23305176 DOI: 10.3109/21691401.2012.759124
    A novel design of nerve communications and networks using the coupling effects between bio-cells and optical dipoles is proposed. The electrical signals are coupled to the dipoles and cells which propagate within the optical networks for long distance without any electromagnetic interference. Results have shown that the use of optical spins in the spin networks, referred as Spinnet, can be formed. This technique can be used to improve the nerve communication performance. It is fabricated as a nano-biotic circuit system, and has great potential for future disability applications and diagnosis of the links of nerves across the dead cells.
    Matched MeSH terms: Cell Communication*
  8. Gan HY, Gan HM, Tarasco AM, Busairi NI, Barton HA, Hudson AO, et al.
    Genome Announc, 2014;2(6).
    PMID: 25377711 DOI: 10.1128/genomeA.01133-14
    Here, we report the whole-genome sequences and annotation of five oligotrophic bacteria from two sites within the Lechuguilla Cave in the Carlsbad Caverns National Park, NM. Three of the five genomes contain an acyl-homoserine lactone signal synthase ortholog (luxI) that is involved in cell-to-cell communication via quorum sensing.
    Matched MeSH terms: Cell Communication
  9. Yunos NY, Tan WS, Koh CL, Sam CK, Mohamad NI, Tan PW, et al.
    Sensors (Basel), 2014;14(7):11595-604.
    PMID: 24984061 DOI: 10.3390/s140711595
    Quorum sensing (QS) is a bacterial cell-to-cell communication system controlling QS-mediated genes which is synchronized with the population density. The regulation of specific gene activity is dependent on the signaling molecules produced, namely N-acyl homoserine lactones (AHLs). We report here the identification and characterization of AHLs produced by bacterial strain ND07 isolated from a Malaysian fresh water sample. Molecular identification showed that strain ND07 is clustered closely to Pseudomonas cremoricolorata. Spent culture supernatant extract of P. cremoricolorata strain ND07 activated the AHL biosensor Chromobacterium violaceum CV026. Using high resolution triple quadrupole liquid chromatography-mass spectrometry, it was confirmed that P. cremoricolorata strain ND07 produced N-octanoyl-L-homoserine lactone (C8-HSL) and N-decanoyl-L-homoserine lactone (C10-HSL). To the best of our knowledge, this is the first documentation on the production of C10-HSL in P. cremoricolorata strain ND07.
    Matched MeSH terms: Cell Communication/physiology*
  10. Khalili AA, Ahmad MR
    Int J Mol Sci, 2015 Aug 05;16(8):18149-84.
    PMID: 26251901 DOI: 10.3390/ijms160818149
    Cell adhesion is essential in cell communication and regulation, and is of fundamental importance in the development and maintenance of tissues. The mechanical interactions between a cell and its extracellular matrix (ECM) can influence and control cell behavior and function. The essential function of cell adhesion has created tremendous interests in developing methods for measuring and studying cell adhesion properties. The study of cell adhesion could be categorized into cell adhesion attachment and detachment events. The study of cell adhesion has been widely explored via both events for many important purposes in cellular biology, biomedical, and engineering fields. Cell adhesion attachment and detachment events could be further grouped into the cell population and single cell approach. Various techniques to measure cell adhesion have been applied to many fields of study in order to gain understanding of cell signaling pathways, biomaterial studies for implantable sensors, artificial bone and tooth replacement, the development of tissue-on-a-chip and organ-on-a-chip in tissue engineering, the effects of biochemical treatments and environmental stimuli to the cell adhesion, the potential of drug treatments, cancer metastasis study, and the determination of the adhesion properties of normal and cancerous cells. This review discussed the overview of the available methods to study cell adhesion through attachment and detachment events.
    Matched MeSH terms: Cell Communication
  11. Tan MS, Moore SC, Tabor RF, Fegan N, Rahman S, Dykes GA
    BMC Microbiol, 2016 09 15;16:212.
    PMID: 27629769 DOI: 10.1186/s12866-016-0832-2
    BACKGROUND: Processing of fresh produce exposes cut surfaces of plant cell walls that then become vulnerable to human foodborne pathogen attachment and contamination, particularly by Salmonella enterica. Plant cell walls are mainly composed of the polysaccharides cellulose, pectin and hemicelluloses (predominantly xyloglucan). Our previous work used bacterial cellulose-based plant cell wall models to study the interaction between Salmonella and the various plant cell wall components. We demonstrated that Salmonella attachment was favoured in the presence of pectin while xyloglucan had no effect on its attachment. Xyloglucan significantly increased the attachment of Salmonella cells to the plant cell wall model only when it was in association with pectin. In this study, we investigate whether the plant cell wall polysaccharides mediate Salmonella attachment to the bacterial cellulose-based plant cell wall models through specific carbohydrate interactions or through the effects of carbohydrates on the physical characteristics of the attachment surface.

    RESULTS: We found that none of the monosaccharides that make up the plant cell wall polysaccharides specifically inhibit Salmonella attachment to the bacterial cellulose-based plant cell wall models. Confocal laser scanning microscopy showed that Salmonella cells can penetrate and attach within the tightly arranged bacterial cellulose network. Analysis of images obtained from atomic force microscopy revealed that the bacterial cellulose-pectin-xyloglucan composite with 0.3 % (w/v) xyloglucan, previously shown to have the highest number of Salmonella cells attached to it, had significantly thicker cellulose fibrils compared to other composites. Scanning electron microscopy images also showed that the bacterial cellulose and bacterial cellulose-xyloglucan composites were more porous when compared to the other composites containing pectin.

    CONCLUSIONS: Our study found that the attachment of Salmonella cells to cut plant cell walls was not mediated by specific carbohydrate interactions. This suggests that the attachment of Salmonella strains to the plant cell wall models were more dependent on the structural characteristics of the attachment surface. Pectin reduces the porosity and space between cellulose fibrils, which then forms a matrix that is able to retain Salmonella cells within the bacterial cellulose network. When present with pectin, xyloglucan provides a greater surface for Salmonella cells to attach through the thickening of cellulose fibrils.

    Matched MeSH terms: Cell Communication*
  12. Lee, Soo Leng, Zainal Ariff Abdul Rahman, Tsujigiwa, Hidetsugu, Takabatake, Kiyofumi, Nakano, Keisuke, Chai, Wen Lin, et al.
    Ann Dent, 2016;23(1):13-22.
    MyJurnal
    In recent years, three-dimensional (3D) in vitro cell culture models have earned great attention, especially in the field of human cancer disease modelling research as they provide a promising alternative towards the conventional two-dimensional (2D) monolayer culture of cells with improved tissue organization. In 2D cell culture systems, the complexity of cells on a planar surface does not accurately reflects the in vivo cellular microenvironment. Cells propagated in 3D cell culture model, on the other hand, exhibit physiologically relevant cell-to-cell interactions and cell-to-extracellular matrix (ECM) interactions, important in maintaining a normal homeostasis and specificity of tissues. This review gives an overview on 2D models and their limitations, followed by 3D cell culture models, their advantages, drawbacks and challenges in present perspectives. The review also highlights the dissimilarities of 2D and 3D models and the applicability of 3D models in current cancer research
    Matched MeSH terms: Cell Communication
  13. Chan SC, Mok SY, Ng DW, Goh SY
    Biol Cybern, 2017 Dec;111(5-6):459-472.
    PMID: 29128889 DOI: 10.1007/s00422-017-0740-z
    Ultra-slow cortical oscillatory activity of 1-100 mHz has been recorded in human by electroencephalography and in dissociated cultures of cortical rat neurons, but the underlying mechanisms remain to be elucidated. This study presents a computational model of ultra-slow oscillatory activity based on the interaction between neurons and astrocytes. We predict that the frequency of these oscillations closely depends on activation of astrocytes in the network, which is reflected by oscillations of their intracellular calcium concentrations with periods between tens of seconds and minutes. An increase of intracellular calcium in astrocytes triggers the release of adenosine triphosphate from these cells which may alter transmission at nearby synapses by increasing or decreasing neurotransmitter release. These results provide theoretical support for the emerging awareness of astrocytes as active players in the regulation of neural activity and identify neuron-astrocyte interactions as a potential primary mechanism for the emergence of ultra-slow cortical oscillations.
    Matched MeSH terms: Cell Communication/physiology*
  14. Huang X, Shan L, Cheng K, Weng W
    ACS Biomater Sci Eng, 2017 Dec 11;3(12):3254-3260.
    PMID: 33445368 DOI: 10.1021/acsbiomaterials.7b00551
    The topography at the micro/nanoscale level for biomaterial surfaces has been thought to play vital roles in their interactions with cells. However, discovering the interdisciplinary mechanisms underlying how cells respond to micro-nanostructured topography features still remains a challenge. In this work, ∼37 μm 3D printing used titanium microspheres and their further hierarchical micro-nanostructured spheres through hydrothermal treatment were adopted to construct typical model surface topographies to study the preosteoblastic cell responses (adhesion, proliferation, and differentiation). We here demonstrated that not only the hierarchical micro-nanostructured surface topography but also their distribution density played critical role on cell cytocompatibility. The microstructured topography feature surface with middle-density distributed titanium microspheres showed significantly enhanced cell responses, which might be attributed to the better cellular interaction due to the cell aggregates. However, the hierarchical micro-nanostructured topography surface, regardless of the distribution density of titanium microspheres, improved the cell-surface interactions because of the enhanced initial protein adsorption, thereby reducing the cell aggregates and consequently their responses. This work, therefore, provides new insights into the fundamental understanding of cell-material interactions and will have a profound impact on further designing micro-nanostructured topography surfaces to control cell responses.
    Matched MeSH terms: Cell Communication
  15. Jolly JJ, Chin KY, Farhana MFN, Alias E, Chua KH, Hasan WNW, et al.
    Iran J Med Sci, 2018 Mar;43(2):208-213.
    PMID: 29749990
    Osteoblasts (OBs) and osteoclasts (OCs) are 2 major groups of bone cells. Their cell-to-cell interactions are important to ensure the continuity of the bone-remodeling process. Therefore, the present study was carried out to optimize an OB/OC co-culture system utilizing the human OB cell line hFOB 1.19 and OCs extracted from peripheral blood mononuclear cells (PBMNCs). It was a 2-step procedure, involving the optimization of the OB culture and the co-culture of the OBs with PBMNCs at an optimum ratio. Firstly, pre-OBs were cultured to 90% confluency and the time required for differentiation was determined. OB differentiation was determined using the van Gieson staining to detect the presence of collagen and Alizarin Red for calcium. Secondly, OBs and OCs were co-cultured at the ratios of 1 OC: 1 OB, 1 OC: 4 OBs, 2 OCs: 1 OB, and 1 OC: 2 OBs. Tartrate-resistant acid phosphatase (TRAP) staining was used to detect the differentiation of the OCs. The results showed that collagen was present on day 1, whereas calcium was detected as early as day 3. Based on the result of TRAP staining, 1 OC: 2 OBs was taken as the most appropriate ratio. No macrophage colony-stimulating factor and receptor activator of the nuclear factor-κB ligand were added because they were provided by the OBs. In conclusion, these optimization processes are vital as they ensure the exact time point and ratio of the OB/OC co-culture in order to produce a reliable and reproducible co-culture system.
    Matched MeSH terms: Cell Communication
  16. Yeo ETY, Wong KWL, See ML, Wong KY, Gan SY, Chan EWL
    J Ethnopharmacol, 2018 May 10;217:187-194.
    PMID: 29462698 DOI: 10.1016/j.jep.2018.02.025
    ETHNOPHARMACOLOGICAL RELEVANCE: Piper sarmentosum Roxb. (PS), belonging to Piperaceae family, is an edible plant with medicinal properties. It is traditionally used by the Malays to treat headache and boost memory. Pharmacological studies revealed that PS exhibits anti-inflammatory, anti-oxidant, anti-acetylcholinesterase, and anti-depressant-like effects. In view of this, the present study aimed to investigate the anti-inflammatory actions of PS and its potential neuroprotective effects against beta-amyloid (Aβ)-induced microglia-mediated neurotoxicity.

    MATERIALS AND METHODS: The inhibitory effects of hexane (LHXN), dichloromethane (LDCM), ethyl acetate (LEA) and methanol (LMEOH) extracts from leaves of PS on Aβ-induced production and mRNA expression of pro-inflammatory mediators in BV-2 microglial cells were assessed using colorimetric assay with Griess reagent, ELISA kit and real-time RT-PCR respectively. Subsequently, MTT reduction assay was used to evaluate the neuroprotective effects of PS leaf extracts against Aβ-induced microglia-mediated neurotoxicity in SH-SY5Y neuroblastoma cells. The levels of tau proteins phosphorylated at threonine 231 (pT231) and total tau proteins (T-tau) were determined using ELISA kits.

    RESULTS: Polar extracts of PS leaves (LEA and LMEOH) reduced the Aβ-induced secretion of pro-inflammatory cytokines (IL-1β and TNF-α) in BV-2 cells by downregulating the mRNA expressions of pro-inflammatory cytokines. The inhibition of nitric oxide (NO) production could be due to the free radical scavenging activity of the extracts. In addition, conditioned media from Aβ-induced BV-2 cells pre-treated with LEA and LMEOH protected SH-SY5Y cells against microglia-mediated neurotoxicity. Further mechanistic study suggested that the neuroprotective effects were associated with the downregulation of phosphorylated tau proteins.

    CONCLUSIONS: The present study suggests that polar extracts of PS leaves confer neuroprotection against Aβ-induced microglia-mediated neurotoxicity in SH-SY5Y cells by attenuating tau hyperphosphorylation through their anti-inflammatory actions and could be a potential therapeutic agent for Alzheimer's disease.

    Matched MeSH terms: Cell Communication/drug effects
  17. Sundararajan V, Sarkar FH, Ramasamy TS
    Cell Oncol (Dordr), 2018 06;41(3):223-252.
    PMID: 29667069 DOI: 10.1007/s13402-018-0378-4
    BACKGROUND: Recent advances in cancer biology have highlighted the relevance of exosomes and nanovesicles as carriers of genetic and biological messages between cancer cells and their immediate and/or distant environments. It has been found that these molecular cues may play significant roles in cancer progression and metastasis. Cancer cells secrete exosomes containing diverse molecules that can be transferred to recipient cells and/or vice versa to induce a plethora of biological processes, including angiogenesis, metastasis formation, therapeutic resistance, epithelial-mesenchymal transition and epigenetic/stemness (re)programming. While exosomes interact with cells within the tumour microenvironment to promote tumour growth, these vesicles can also facilitate the process of distant metastasis by mediating the formation of pre-metastatic niches. Next to their tumour promoting effects, exosomes have been found to serve as potential tools for cancer diagnosis and therapy. The ease of isolating exosomes and their content from different body fluids has led to the identification of diagnostic and prognostic biomarker signatures, as well as to predictive biomarker signatures for therapeutic responses. Exosomes can also be used as cargos to deliver therapeutic anti-cancer drugs, and they can be engineered to serve as vaccines for immunotherapy. Additionally, it has been found that inhibition of exosome secretion, and thus the transfer of oncogenic molecules, holds promise for inhibiting tumour growth. Here we provide recent information on the diverse roles of exosomes in various cellular and systemic processes governing cancer progression, and discuss novel strategies to halt this progression using exosome-based targeted therapies and methods to inhibit exosome secretion and the transfer of pro-tumorigenic molecules.

    CONCLUSIONS: This review highlights the important role of exosomes in cancer progression and its implications for (non-invasive) diagnostics and the development of novel therapeutic strategies, as well as its current and future applications in clinical trials.

    Matched MeSH terms: Cell Communication
  18. Raizulnasuha Ab Rashid, Nurhikmah Azam, Norhayati Dollah, Wan Nordiana W Abd Rahman
    MyJurnal
    The purpose of the study was to determine the effect of out-of-field photon beams radiotherapy to the cancer cell survival. In this study, HeLa and T24 cancer cells were irradiated with 6 MV and 10 MV photon beams in two different conditions, one with intercellular communication with the in-field cell and one without the communication. Cells survival was determined by clonogenic assay. In the presence of intercellular communication, the cell death was increased which indicate the presence of radiation induced bystander effects (RIBE). The effects were also dependent on the cell types and photon energy where the HeLa cells exhibit less survival compares to T24 cells and the effects were prominent at higher photon energy. This study demonstrates that the out-of-field cells in conjunction with RIBE plays important roles in the cells response towards megavoltage photon beam radiation therapy.
    Matched MeSH terms: Cell Communication
  19. Kobayashi A, Autsavapromporn N, Ahmad TAFT, Oikawa M, Homma-Takeda S, Furusawa Y, et al.
    Radiat Prot Dosimetry, 2019 May 01;183(1-2):142-146.
    PMID: 30535060 DOI: 10.1093/rpd/ncy249
    Bi-directional signaling involved in radiation-induced bystander effect (RIBE) between irradiated carcinoma cells and their surrounding non-irradiated normal cells is relevant to radiation cancer therapy. Using the SPICE-NIRS microbeam, we delivered 500 protons to A549-GFP lung carcinoma cells, stably expressing H2B-GFP, which were co-cultured with normal WI-38 cells. The level of γ-H2AX, a marker for DNA double-strand breaks (DSB), was subsequently measured up to 24-h post-irradiation in both targeted and bystander cells. As a result, inhibition of gap junction intercellular communication (GJIC) attenuated DSB repair in targeted A549-GFP cells, and suppressed RIBE in bystander WI-38 cells but not in distant A549-GFP cells. This suggests that GJIC plays a two-way role through propagating DNA damage effect between carcinoma to normal cells and reversing the bystander signaling, also called 'rescue effect' from bystander cells to irradiated cells, to enhance the DSB repair in targeted cells.
    Matched MeSH terms: Cell Communication/radiation effects*
  20. Mutha NVR, Mohammed WK, Krasnogor N, Tan GYA, Wee WY, Li Y, et al.
    Sci Rep, 2019 05 21;9(1):7664.
    PMID: 31113978 DOI: 10.1038/s41598-019-43979-w
    Many oral bacteria form macroscopic clumps known as coaggregates when mixed with a different species. It is thought that these cell-cell interactions are critical for the formation of mixed-species biofilms such as dental plaque. Here, we assessed the impact of coaggregation between two key initial colonizers of dental plaque, Streptococcus gordonii and Veillonella parvula, on gene expression in each partner. These species were shown to coaggregate in buffer or human saliva. To monitor gene regulation, coaggregates were formed in human saliva and, after 30 minutes, whole-transcriptomes were extracted for sequencing and Dual RNA-Seq analysis. In total, 272 genes were regulated in V. parvula, including 39 genes in oxidoreductase processes. In S. gordonii, there was a high degree of inter-sample variation. Nevertheless, 69 genes were identified as potentially regulated by coaggregation, including two phosphotransferase system transporters and several other genes involved in carbohydrate metabolism. Overall, these data indicate that responses of V. parvula to coaggregation with S. gordonii are dominated by oxidative stress-related processes, whereas S. gordonii responses are more focussed on carbohydrate metabolism. We hypothesize that these responses may reflect changes in the local microenvironment in biofilms when S. gordonii or V. parvula immigrate into the system.
    Matched MeSH terms: Cell Communication
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links