Displaying publications 1 - 20 of 105 in total

Abstract:
Sort:
  1. Francis AO, Kevin OS, Ahmad Zaini MA
    Int J Phytoremediation, 2023;25(12):1625-1635.
    PMID: 36823750 DOI: 10.1080/15226514.2023.2179013
    This study evaluated the characteristics of zinc chloride modified vitex doniana seed activated carbon (VDZnCl2) for the removal of methylene blue. VDZnCl2 was characterized for textural properties, surface morphology and surface chemistry. Batch adsorption of methylene blue by VDZnCl2 was evaluated for the effects of concentration, contact time, adsorbent dosage, and solution pH. The surface area increased from 14 to 933 m2/g with porous texture to facilitate adsorption. The SEM micrograph showed varieties of pores with widened cavities. The FTIR spectra showed the characteristics of O-H and C=C groups commonly found in carbonaceous materials. The maximum methylene blue adsorption was recorded as 238 mg/g at concentration range of 1-800 mg/L and VDZnCl2 dosage of 50 mg. Sips isotherm fitted well with the equilibrium data, suggesting that the adsorption by VDZnCl2 was a physical process onto its heterogeneous surface, while the applicability of pseudo-first-order kinetics implies that external diffusion was the rate controlling mechanism. The performance put up by VDZnCl2 suggested that it is a potential adsorbent substitute for dye wastewater treatment.
    Matched MeSH terms: Charcoal/chemistry
  2. Choi D, Oh JI, Lee J, Park YK, Lam SS, Kwon EE
    Environ Int, 2019 11;132:105037.
    PMID: 31437646 DOI: 10.1016/j.envint.2019.105037
    In an effort to seek a new technical platform for disposal of drinking water treatment sludge (DWTS: alum sludge), pyrolysis of DWTS was mainly investigated in this study. To establish a more sustainable thermolytic platform for DWTS, this study particularly employed CO2 as reactive gas medium. Thus, this study laid great emphasis on elucidating the mechanistic roles of CO2 during the thermolysis of DWTS. A series of the TGA tests of DWTS in CO2 in reference to N2 revealed no occurrence of the heterogeneous reaction between CO2 and the sample surface of DWTS. As such, at the temperature regime before initiating the Boudouard reaction (i.e., ≥700 °C), the mass decay patterns of DWTS in N2 and CO2 were nearly identical. However, the gaseous effluents from lab-scale pyrolysis of DWTS in CO2 in reference to N2 were different. In sum, the homogeneous reactions between CO2 and volatile matters (VMs) evolved from the thermolysis of DWTS led to the enhanced generation of CO. Also, CO2 suppressed dehydrogenation of VMs. Such the genuine mechanistic roles of CO2 in the thermolysis of DWTS subsequently led to the compositional modifications of the chemical species in pyrolytic oil. Furthermore, the biochar composite was obtained as byproduct of pyrolysis of DWTS. Considering that the high content of Al2O3 and Fe-species in the biochar composite imparts a strong affinity for As(V), the practical use of the biochar composite as a sorptive material for arsenic (V) was evaluated at the fundamental levels. This work reported that adsorption of As(V) onto the biochar composite followed the pseudo-second order model and the Freundlich isotherm model.
    Matched MeSH terms: Charcoal/chemistry
  3. Thangalazhy-Gopakumar S, Al-Nadheri WM, Jegarajan D, Sahu JN, Mubarak NM, Nizamuddin S
    Bioresour Technol, 2015 Feb;178:65-9.
    PMID: 25278112 DOI: 10.1016/j.biortech.2014.09.068
    In this study, pyrolysis technique was utilized for converting palm oil sludge to value added materials: bio-oil (liquid fuel) and bio-char (soil amendment). The bio-oil yield obtained was 27.4±1.7 wt.% having a heating value of 22.2±3.7 MJ/kg and a negligible ash content of 0.23±0.01 wt.%. The pH of bio-oil was in alkaline region. The bio-char yielded 49.9±0.3 wt.%, which was further investigated for sorption efficiency by adsorbing metal (Cd(2+) ions) from water. The removal efficiency of Cd(2+) was 89.4±2%, which was almost similar to the removal efficiency of a commercial activated carbon. The adsorption isotherm was well described by Langmuir model. Therefore, pyrolysis is proved as an efficient tool for palm oil sludge management, where the waste was converted into valuable products.
    Matched MeSH terms: Charcoal/chemistry*
  4. Mohammed RR, Chong MF
    J Environ Manage, 2014 Jan;132:237-49.
    PMID: 24321284 DOI: 10.1016/j.jenvman.2013.11.031
    Palm Oil Mill Effluent (POME) treatment has always been a topic of research in Malaysia. This effluent that is extremely rich in organic content needs to be properly treated to minimize environmental hazards before it is released into watercourses. The main aim of this work is to evaluate the potential of applying natural, chemically and thermally modified banana peel as sorbent for the treatment of biologically treated POME. Characteristics of these sorbents were analyzed with BET surface area and SEM. Batch adsorption studies were carried out to remove color, total suspended solids (TSS), chemical oxygen demand (COD), tannin and lignin, and biological oxygen demand (BOD) onto natural banana peel (NBP), methylated banana peel (MBP), and banana peel activated carbon (BPAC) respectively. The variables of pH, adsorbent dosage, and contact time were investigated in this study. Maximum percentage removal of color, TSS, COD, BOD, and tannin and lignin (95.96%, 100%, 100%, 97.41%, and 76.74% respectively) on BPAC were obtained at optimized pH of 2, contact time of 30 h and adsorbent dosage of 30 g/100 ml. The isotherm data were well described by the Redlich-Peterson isotherm model with correlation coefficient of more than 0.99. Kinetic of adsorption was examined by Langergren pseudo first order, pseudo second order, and second order. The pseudo second order was identified to be the governing mechanism with high correlation coefficient of more than 0.99.
    Matched MeSH terms: Charcoal/chemistry
  5. Wan Z, Hameed BH
    Bioresour Technol, 2011 Feb;102(3):2659-64.
    PMID: 21109428 DOI: 10.1016/j.biortech.2010.10.119
    In this study, methyl ester (ME) was produced by transesterification of palm oil (CPO) (cooking grade) using activated carbon supported calcium oxide as a solid base catalyst (CaO/AC). Response surface methodology (RSM) based on central composite design (CCD) was used to optimize the effect of reaction time, molar ratio of methanol to oil, reaction temperature and catalyst amount on the transesterification process. The optimum condition for CPO transesterification to methyl ester was obtained at 5.5 wt.% catalyst amount, 190°C temperature, 15:1 methanol to oil molar ratio and 1 h 21 min reaction time. At the optimum condition, the ME content was 80.98%, which is well within the predicted value of the model. Catalyst regeneration studies indicate that the catalyst performance is sustained after two cycles.
    Matched MeSH terms: Charcoal/chemistry*
  6. Anyika C, Abdul Majid Z, Ibrahim Z, Zakaria MP, Yahya A
    Environ Sci Pollut Res Int, 2015 Mar;22(5):3314-41.
    PMID: 25345923 DOI: 10.1007/s11356-014-3719-5
    Amending polycyclic aromatic hydrocarbon (PAH)-contaminated soils with biochar may be cheaper and environmentally friendly than other forms of organic materials. This has led to numerous studies on the use of biochar to either bind or stimulate the microbial degradation of organic compounds in soils. However, very little or no attention have been paid to the fact that biochars can give simultaneous impact on PAH fate processes, such as volatilization, sorption and biodegradation. In this review, we raised and considered the following questions: How does biochar affect microbes and microbial activities in the soil? What are the effects of adding biochar on sorption of PAHs? What are the effects of adding biochar on degradation of PAHs? What are the factors that we can manipulate in the laboratory to enhance the capability of biochars to degrade PAHs? A triphasic concept of how biochar can give simultaneous impact on PAH fate processes in soils was proposed, which involves rapid PAH sorption into biochar, subsequent desorption and modification of soil physicochemical properties by biochar, which in turn stimulates microbial degradation of the desorbed PAHs. It is anticipated that biochar can give simultaneous impact on PAH fate processes in soils.
    Matched MeSH terms: Charcoal/chemistry*
  7. Alayan HM, Alsaadi MA, Das R, Abo-Hamad A, Ibrahim RK, AlOmar MK, et al.
    Water Sci Technol, 2018 Mar;77(5-6):1714-1723.
    PMID: 29595174 DOI: 10.2166/wst.2018.057
    In this study, carbon species were grown on the surface of Ni-impregnated powder activated carbon to form a novel hybrid carbon nanomaterial by chemical vapor deposition. The carbon nanomaterial was obtained by the precipitation of the methane elemental carbon atoms on the surface of the Ni catalyst. The physiochemical properties of the hybrid material were characterized to illustrate the successful growth of carbon species on the carbon substrate. The response surface methodology was used for the evaluation of adsorption parameters effect such as pH, adsorbent dose and contact time on the percentage removal of MB dye from aqueous solution. The optimum conditions were found to be pH = 11, adsorbent dose = 15 mg and contact time of 120 min. The material we prepared showed excellent removal efficiency of 96% for initial MB concentration of 50 mg/L. The adsorption of MB was described accurately by the pseudo-second-order model with R2 of 0.998 and qe of 163.93 (mg/g). The adsorption system showed the best agreement with Langmuir model with R2 of 0.989 and maximum adsorption capacity (Qm) of 250 mg/g.
    Matched MeSH terms: Charcoal/chemistry
  8. Abdulsalam M, Che Man H, Isma Idris A, Zainal Abidin Z, Faezah Yunos K
    PMID: 30304814 DOI: 10.3390/ijerph15102200
    Palm oil mill effluent contains carcinogenic coloured compounds that are difficult to separate due to their aromatic structure. Though colour treatment using adsorption processes at lower pH (<4) have been reported effectual, due to its acidity the remediated effluent poses an environmental hazard as a result. Thus, the current study focused on achieving decolourization at neutral pH by enhancing the morphology of the coconut shell activated carbon (CSAC) using N₂ as activating-agent with microwave irradiation heating. The microwave pretreated and non-pretreated CSAC were characterized using scanned electron microscopy (SEM), energy dispersive X-ray (EDX) and Brunauer-Emmett-Teller (BET) analysis. A significant modification in the porous structure with a 66.62% increase in the specific surface area was achieved after the pretreatment. The adsorption experimental matrix was developed using the central composite design to investigate the colour adsorption performance under varied pH (6⁻7), dosage (2⁻6 g) and contact time (10⁻100 min). At optimum conditions of neutral pH (7), 3.208 g dosage and contact time of 35 min, the percentage of colour removal was 96.29% with negligible differences compared with the predicted value, 95.855%. The adsorption equilibrium capacity of 1430.1 ADMI × mL/g was attained at the initial colour concentration of 2025 ADMI at 27 °C. The experimental data fitted better with the Freundlich isotherm model with R² 0.9851.
    Matched MeSH terms: Charcoal/chemistry
  9. Jusoh A, Hartini WJ, Ali N, Endut A
    Bioresour Technol, 2011 May;102(9):5312-8.
    PMID: 21232934 DOI: 10.1016/j.biortech.2010.12.074
    In this batch study, the adsorption of malathion by using granular activated carbon with different parameters due to the particle size, dosage of carbons, as well as the initial concentration of malathion was investigated. Batch tests were carried out to determine the potential and the effectiveness of granular activated carbon (GAC) in removal of pesticide in agricultural run off. The granular activated carbon; coconut shell and palm shells were used and analyzed as the adsorbent material. The Langmuir and Freundlich adsorption isotherms models were applied to describe the characteristics of adsorption behavior. Equilibrium data fitted well with the Langmuir model and Freundlich model with maximum adsorption capacity of 909.1mg/g. The results indicate that the GAC could be used to effectively adsorb pesticide (malathion) from agricultural runoff.
    Matched MeSH terms: Charcoal/chemistry*
  10. Tan X, Zhu S, Show PL, Qi H, Ho SH
    J Hazard Mater, 2020 07 05;393:122435.
    PMID: 32151933 DOI: 10.1016/j.jhazmat.2020.122435
    Biochar (BC) has attracted much attention owing to its superior sorption capacity towards ionized organic contaminants. However, the mechanism of ionized organics sorption occurring within BC containing large amounts of minerals is still controversial. In this study, we demonstrate the physicochemical structure of high-salinity microalgal residue derived biochar (HSBC) and elucidate the corresponding sorption mechanisms for four ionized dyes along with determining the crucial role of involved minerals. The results indicate that sodium and calcium minerals mainly exist within HSBCs, and the pyrolysis temperature can dramatically regulate the phases and interfacial property of both carbon matrix and minerals. As a result, the HSBC shows a higher sorption potential, benefiting from abundant functional groups and high content of inorganic minerals. Using theoretical calculations, the activities of electron donor-acceptor interaction between HSBCs and different dyes are clearly illustrated, thereby identifying the critical role of Ca2+ in enhancing the removal of ionized dyes in HSBCs. In addition, Ca-containing minerals facilitate the sorption of ionized dyes in HSBCs by forming ternary complexes through metal-bridging mechanism. These results of mineral-induced dye sorption mechanisms help to better understand the sorption of ionized organics in high-salt containing BC and provide a new disposal strategy for hazardous microalgal residue, as well as provide a breakthrough in making the remediation of ionized organic contaminated microalgal residue derived absorbent feasible.
    Matched MeSH terms: Charcoal/chemistry*
  11. Osman WH, Abdullah SR, Mohamad AB, Kadhum AA, Rahman RA
    J Environ Manage, 2013 May 30;121:80-6.
    PMID: 23524399 DOI: 10.1016/j.jenvman.2013.02.005
    A lab-scale granular activated carbon sequencing batch biofilm reactor (GAC-SBBR), a combined adsorption and biological process, was developed to treat real wastewater from a recycled paper mill. In this study, one-consortia of mixed culture (4000-5000 mg/L) originating from recycled paper mill activated sludge from Kajang, Malaysia was acclimatized. The GAC-SBBR was fed with real wastewater taken from the same recycled paper mill, which had a high concentration of chemical oxygen demand (COD) and adsorbable organic halides (AOX). The operational duration of the GAC-SBBR was adjusted from 48 h to 24, 12 and finally 8 h to evaluate the effect of the hydraulic retention time (HRT) on the simultaneous removal of COD and AOX. The COD and AOX removals were in the range of 53-92% and 26-99%, respectively. From this study, it was observed that the longest HRT (48 h) yielded a high removal of COD and AOX, at 92% and 99%, respectively.
    Matched MeSH terms: Charcoal/chemistry
  12. Mousavi S, Ibrahim S, Aroua MK
    Bioresour Technol, 2012 Dec;125:256-66.
    PMID: 23026342 DOI: 10.1016/j.biortech.2012.08.075
    In this study, a twin-chamber upflow bio-electrochemical reactor packed with palm shell granular activated carbon as biocarrier and third electrode was used for sequential nitrification and denitrification of nitrogen-rich wastewater under different operating conditions. The experiments were performed at a constant pH value for the denitrification compartment. The effect of variables, namely, electric current (I) and hydraulic retention time (HRT), on the pH was considered in the nitrification chamber. The response surface methodology was used based on three levels to develop empirical models for the study on the effects of HRT and current values as independent operating variables on NH(4)(+)-N removal. The results showed that ammonium was reduced within the function of an extensive operational range of electric intensity (20-50 mA) and HRT (6-24h). The optimum condition for ammonium oxidation (90%) was determined with an I of 32 mA and HRT of 19.2h.
    Matched MeSH terms: Charcoal/chemistry*
  13. Dahlan I, Lee KT, Kamaruddin AH, Mohamed AR
    J Hazard Mater, 2009 Jul 30;166(2-3):1556-9.
    PMID: 19147280 DOI: 10.1016/j.jhazmat.2008.12.028
    In this work, the removal of SO(2) and NO from simulated flue gas from combustion process was investigated in a fixed-bed reactor using rice husk ash (RHA)/CaO-based sorbent. Various metal precursors were used in order to select the best metal impregnated over RHA/CaO sorbents. The results showed that RHA/CaO sorbents impregnated with CeO(2) had the highest sorption capacity among other impregnated metal oxides for the simultaneous removal of SO(2) and NO. Infrared spectroscopic results indicated the formation of both sulfate (SO(4)(2-)) and nitrate (NO(3)(-)) species due to the catalytic role played by CeO(2). Apart from that, the catalytic activity of the RHA/CaO/CeO(2) sorbent was found to be closely related to its physical properties (specific surface area, total pore volume and average pore diameter).
    Matched MeSH terms: Charcoal/chemistry*
  14. Sumathi S, Bhatia S, Lee KT, Mohamed AR
    J Hazard Mater, 2010 Apr 15;176(1-3):1093-6.
    PMID: 20018447 DOI: 10.1016/j.jhazmat.2009.11.037
    This work examines the impregnated carbon-based sorbents for simultaneous removal of SO(2) and NOx from simulated flue gas. The carbon-based sorbents were prepared using palm shell activated carbon (PSAC) impregnated with several metal oxides (Ni, V, Fe and Ce). The removal of SO(2) and NOx from the simulated flue gas was investigated in a fixed-bed reactor. The results showed that PSAC impregnated with CeO(2) (PSAC-Ce) reported the highest sorption capacity among other impregnated metal oxides for the simultaneous removal of SO(2) and NOx. PSAC-Ce showed the longest breakthrough time of 165 and 115 min for SO(2) and NOx, respectively. The properties of the pure and impregnated PSAC were analyzed by BET, FTIR and XRF. The physical-chemical features of the PSAC-Ce sorbent indicated a catalytic activity in both the sorption of SO(2) and NOx. The formation of both sulfate (SO(4)(2-)) and nitrate (NO(3-)) species on spent PSAC-Ce further prove the catalytic role played by CeO(2).
    Matched MeSH terms: Charcoal/chemistry*
  15. Wang C, Lin X, Zhang X, Show PL
    Environ Pollut, 2024 May 01;348:123860.
    PMID: 38537803 DOI: 10.1016/j.envpol.2024.123860
    Algae, comprising microalgae and macroalgae, have emerged as a promising feedstock for the production of functional biochar. Recently, the application of algal biochar in environmental remediation gains increasing attention. This review summarizes research advancements in the synthesis and application of algal biochar, a versatile and sustainable material for environmental remediation ranging from wastewater treatment to soil improvement. Algal biochar can be prepared by pyrolysis, microwave-assisted pyrolysis, and hydrothermal carbonization. Physical and chemical modifications have proven to be effective for improving biochar properties. Algal biochar is promising for removing diverse pollutants including heavy metals, organic pollutants, and microplastics. The role in soil improvement signifies a sustainable approach to enhancing soil structure, nutrient retention, and microbial activity. Research gaps are identified based on current understanding, necessitating further exploration into variations in biochar characteristics, the performance improvement, large-scale applications, and the long-term evaluation for environmental application. This review provides a better understanding of algal biochar as a sustainable and effective tool in environmental remediation.
    Matched MeSH terms: Charcoal/chemistry
  16. Obayomi KS, Lau SY, Zahir A, Meunier L, Zhang J, Dada AO, et al.
    Chemosphere, 2023 Feb;313:137533.
    PMID: 36528163 DOI: 10.1016/j.chemosphere.2022.137533
    In this present study, silver (Ag) and titanium dioxide (TiO2) nanoparticles were successfully deposited on coconut shell-derived activated carbon (CSAC), to synthesize a novel nanocomposite (CSAC@AgNPs@TiO2NPs) for the adsorption of Methylene Blue (MB) dye from aqueous solution. The fabricated CSAC@AgNPs@TiO2NPs nanocomposite was analyzed by Scanning Electron Microscope (SEM), X-ray Diffraction (XRD), Fourier-Transform Infrared Spectroscopy (FTIR), Transmission Electron Microscope (TEM) equipped with Energy Dispersive X-ray spectroscopy (EDS) detector, X-ray Photoelectron Spectroscope (XPS), and Brunauer-Emmett-Teller (BET). The successful deposition of AgNPs and TiO2NPs on CSAC surface was revealed by the TEM/EDX, SEM, and XPS analysis. The mesopore structure of CSAC@AgNPs@TiO2NPs has a BET surface area of 301 m2/g. The batch adsorption studies were conducted and the influence of different parameters, i.e., adsorbent dose, adsorption time, initial dye concentration, pH and temperature were investigated. The nonlinear isotherm and kinetic modelling demonstrated that adsorption data were best fitted by Sips isotherm and pseudo-second-order models, respectively. The maximum adsorption capacity of MB onto CSAC@AgNPs@TiO2NPs by the Sips model was 184 mg/g. Thermodynamic results revealed that the adsorption was endothermic, spontaneous and physical in nature. CSAC@AgNPs@TiO2NPs revealed that MB absorption by CSAC@AgNPs@TiO2NPs was spontaneous and endothermic. The uptake capacity of MB was influenced significantly by the presence of competing ions including, NO3-, HCO3, Ca2+, and Na+. Repeated tests indicated that the CSAC@AgNPs@TiO2NPs can be regenerated and reused six times before being discarded. The primary separation mechanism between MB dye and CSAC@AgNPs@TiO2NPs was the electrostatic interaction. Thus, CSAC@AgNPs@TiO2NPs was an outstanding material, which displayed good applicability in real water with ≥ 97% removal of MB dye.
    Matched MeSH terms: Charcoal/chemistry
  17. Johari K, Alias AS, Saman N, Song ST, Mat H
    Waste Manag Res, 2015 Jan;33(1):81-8.
    PMID: 25492720 DOI: 10.1177/0734242X14562660
    The preparation of chars and activated carbon as low-cost elemental mercury adsorbents was carried out through the carbonisation of coconut husk (pith and fibre) and the activation of chars with potassium hydroxide (KOH), respectively. The synthesised adsorbents were characterised by using scanning electron microscopy, Fourier transform infrared spectroscopy and nitrogen adsorption/desorption analysis. The elemental mercury removal performance was measured using a conventional flow type packed-bed adsorber. The physical and chemical properties of the adsorbents changed as a result of the carbonisation and activation process, hence affecting on the extent of elemental mercury adsorption. The highest elemental mercury (Hg°) adsorption capacity was obtained for the CP-CHAR (3142.57 µg g(-1)), which significantly outperformed the pristine and activated carbon adsorbents, as well as higher than some adsorbents reported in the literature.
    Matched MeSH terms: Charcoal/chemistry*
  18. Aziz SQ, Aziz HA, Yusoff MS, Mohajeri S
    Environ Monit Assess, 2012 Oct;184(10):6147-58.
    PMID: 22068314 DOI: 10.1007/s10661-011-2409-8
    In this research, two types of sequencing batch reactors (SBRs) with 8 h of cycle times, namely non-powdered activated carbon (NPAC-SBR) and powdered activated carbon (PAC-SBR), were used for the treatment of raw leachates at Kulim and Pulau Burung landfill sites. To test the performance of SBRs, phenols, total iron, zinc, ammonia, nitrite, nitrate, color, suspended solids, chemical oxygen demand, biochemical oxygen demand, and total dissolved salts removal efficiencies and sludge volume index (SVI) were studied at both sites. The rates of phenols removal, for instance in NPAC-SBRs and PAC-SBRs at Kulim, were 25% and 55%, respectively, whereas those at Pulau Buring were 94.81% and 97.75%, respectively. PAC as adsorbent in PAC-SBRs enhanced the removal efficiencies of the aforementioned pollutants from leachates at both sites. In addition, PAC as adsorbent decreased the SVI values at Kulim (59.7 mL/g) and Pulau Burung (91.4 mL/g) leachates and improved the nitrification and denitrification processes.
    Matched MeSH terms: Charcoal/chemistry*
  19. Alam MZ, Muyibi SA, Mansor MF, Wahid R
    J Environ Sci (China), 2006;18(3):446-52.
    PMID: 17294638
    The study was attempted to produce activated carbons from palm oil mill effluent (POME) sludge. The adsorption capacity of the activated carbons produced was evaluated in aqueous solution of phenol. Two types of activation were followed, namely, thermal activation at 300, 500 and 800 degrees C, and physical activation at 15 degrees C (boiling treatment). A control (raw POME sludge) was used to compare the adsorption capacity of the activated carbons produced. The results indicated that the activation temperature of 800 degrees C showed maximum absorption capacity by the activated carbon (POME 800) in aqueous solution of phenol. Batch adsorption studies showed an equilibrium time of 6 h for the activated carbon of POME 800. It was observed that the adsorption capacity was higher at lower values of pH (2-3) and higher value of initial concentration of phenol (200-300 mg/L). The equilibrium data were fitted by the Langmuir and Freundlich adsorption isotherms. The adsorption of phenol onto the activated carbon POME 800 was studied in terms of pseudo- first and second order kinetics to predict the rate constant and equilibrium capacity with the effect of initial phenol concentrations. The rate of adsorption was found to be better correlation for the pseudo-second order kinetics compared to the first order kinetics.
    Matched MeSH terms: Charcoal/chemistry*
  20. Choong CE, Ibrahim S, Yoon Y, Jang M
    Ecotoxicol Environ Saf, 2018 Feb;148:142-151.
    PMID: 29040822 DOI: 10.1016/j.ecoenv.2017.10.025
    In this work, palm shell waste powder activated carbon coated by magnesium silicate (PPAC-MS) were synthesized by the impregnation of magnesium silicate (MgSiO3) using economical material (silicon dioxide powder) via mild hydrothermal approach for the first time. As an effective adsorbent, PPAC-MS simultaneously removes BPA and Pb(II) in single and binary mode. Surprisingly, PPAC-MS exhibited a homogeneous thin plate mesh-like structure, as well as meso- and macropores with a high surface area of 772.1m2g-1. Due to its specific morphological characteristics, PPAC-MS had adsorption capacities of Pb(II) as high as 419.9mgg-1 and 408.8mgg-1 in single mode and binary mode based on Freudliuch isotherm model while those for BPA by PPAC-MS were 168.4mgg-1 and 254.7mgg-1 for single mode and binary modes corresponding to Langmuir isotherm model. Experiment results also indicated that the synergistic removal of BPA occurred because the precipitation process of Pb(II) leads to the co-precipitation of BPA with Pb(OH)2 compound. PPAC-MS showed a good reusability for 5 regeneration cycles using Mg(II) solution followed by thermal treatment. Overall, PPAC-MS has a high potential in the treatment process for wastewater containing both toxic heavy metals and emerging pollutants due to its high sorption capacities and reusability.
    Matched MeSH terms: Charcoal/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links