Displaying publications 1 - 20 of 96 in total

Abstract:
Sort:
  1. Azizan A, Ahamad Bustamam MS, Maulidiani M, Shaari K, Ismail IS, Nagao N, et al.
    Mar Drugs, 2018 May 07;16(5).
    PMID: 29735927 DOI: 10.3390/md16050154
    Microalgae are promising candidate resources from marine ecology for health-improving effects. Metabolite profiling of the microalgal diatom, Chaetoceros calcitrans was conducted by using robust metabolomics tools, namely ¹H nuclear magnetic resonance (NMR) spectroscopy coupled with multivariate data analysis (MVDA). The unsupervised data analysis, using principal component analysis (PCA), resolved the five types of extracts made by solvents ranging from polar to non-polar into five different clusters. Collectively, with various extraction solvents, 11 amino acids, cholesterol, 6 fatty acids, 2 sugars, 1 osmolyte, 6 carotenoids and 2 chlorophyll pigments were identified. The fatty acids and both carotenoid pigments as well as chlorophyll, were observed in the extracts made from medium polar (acetone, chloroform) and non-polar (hexane) solvents. It is suggested that the compounds were the characteristic markers that influenced the separation between the clusters. Based on partial least square (PLS) analysis, fucoxanthin, astaxanthin, violaxanthin, zeaxanthin, canthaxanthin, and lutein displayed strong correlation to 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging and nitric oxide (NO) inhibitory activity. This metabolomics study showed that solvent extractions are one of the main bottlenecks for the maximum recovery of bioactive microalgal compounds and could be a better source of natural antioxidants due to a high value of metabolites.
    Matched MeSH terms: Chlorophyll/metabolism
  2. Rupani PF, Embrandiri A, Ibrahim MH, Ghole V, Lee CT, Abbaspour M
    Environ Sci Pollut Res Int, 2018 Dec;25(36):35805-35810.
    PMID: 29663297 DOI: 10.1007/s11356-018-1875-8
    Several treatment technologies are available for the treatment of palm oil mill wastes. Vermicomposting is widely recognized as efficient, eco-friendly methods for converting organic waste materials to valuable products. This study evaluates the effect of different vermicompost extracts obtained from palm oil mill effluent (POME) and palm-pressed fiber (PPF) mixtures on the germination, growth, relative toxicity, and photosynthetic pigments of mung beans (Vigna radiata) plant. POME contains valuable nutrients and can be used as a liquid fertilizer for fertigation. Mung bean seeds were sown in petri dishes irrigated with different dilutions of vermicomposted POME-PPF extracts, namely 50, 60, and 70% at varying dilutions. Results showed that at lower dilutions, the vermicompost extracts showed favorable effects on seed germination, seedling growth, and total chlorophyll content in mung bean seedlings, but at higher dilutions, they showed inhibitory effects. The carotenoid contents also decreased with increased dilutions of POME-PPF. This study recommends that the extracts could serve as a good source of fertilizer for the germination and growth enhancement of mung bean seedlings at the recommended dilutions.
    Matched MeSH terms: Chlorophyll
  3. Alam MA, Juraimi AS, Rafii MY, Abdul Hamid A
    Biomed Res Int, 2015;2015:105695.
    PMID: 25802833 DOI: 10.1155/2015/105695
    13 selected purslane accessions were subjected to five salinity levels 0, 8, 16, 24, and 32 dS m(-1). Salinity effect was evaluated on the basis of biomass yield reduction, physiological attributes, and stem-root anatomical changes. Aggravated salinity stress caused significant (P < 0.05) reduction in all measured parameters and the highest salinity showed more detrimental effect compared to control as well as lower salinity levels. The fresh and dry matter production was found to increase in Ac1, Ac9, and Ac13 from lower to higher salinity levels but others were badly affected. Considering salinity effect on purslane physiology, increase in chlorophyll content was seen in Ac2, Ac4, Ac6, and Ac8 at 16 dS m(-1) salinity, whereas Ac4, Ac9, and Ac12 showed increased photosynthesis at the same salinity levels compared to control. Anatomically, stem cortical tissues of Ac5, Ac9, and Ac12 were unaffected at control and 8 dS m(-1) salinity but root cortical tissues did not show any significant damage except a bit enlargement in Ac12 and Ac13. A dendrogram was constructed by UPGMA based on biomass yield and physiological traits where all 13 accessions were grouped into 5 clusters proving greater diversity among them. The 3-dimensional principal component analysis (PCA) has also confirmed the output of grouping from cluster analysis. Overall, salinity stressed among all 13 purslane accessions considering biomass production, physiological growth, and anatomical development Ac9 was the best salt-tolerant purslane accession and Ac13 was the most affected accession.
    Matched MeSH terms: Chlorophyll/physiology
  4. Roslan MAM, Zulkifli NN, Sobri ZM, Zuan ATK, Cheak SC, Abdul Rahman NA
    PLoS One, 2020;15(7):e0232860.
    PMID: 32645001 DOI: 10.1371/journal.pone.0232860
    Limited information is available that seed biopriming with plant growth-promoting Enterobacter spp. play a prominent role to enhance vegetative growth of plants. Contrary to Enterobacter cloacae, Enterobacter hormaechei is a less-studied counterpart despite its vast potential in plant growth-promotion mainly through the inorganic phosphorus (P) and potassium (K) solubilization abilities. To this end, 18 locally isolated bacterial pure cultures were screened and three strains showed high P- and K-solubilizing capabilities. Light microscopy, biochemical tests and 16S rRNA gene sequencing revealed that strains 15a1 and 40a were closely related to Enterobacter hormaechei while strain 38 was closely related to Enterobacter cloacae (Accession number: MN294583; MN294585; MN294584). All Enterobacter spp. shared common plant growth-promoting traits, namely nitrogen (N2) fixation, indole-3-acetic acid production and siderophore production. The strains 38 and 40a were able to produce gibberellic acid, while only strain 38 was able to secrete exopolysaccharide on agar. Under in vitro germination assay of okra (Abelmoschus esculentus) seeds, Enterobacter spp. significantly improved overall germination parameters and vigor index (19.6%) of seedlings. The efficacy of root colonization of Enterobacter spp. on the pre-treated seedling root tips was confirmed using Scanning Electron Microscopy (SEM). The pot experiment of bioprimed seeds of okra seedling showed significant improvement of the plant growth (> 28%) which corresponded to the increase of P and K uptakes (> 89%) as compared to the uninoculated control plants. The leaf surface area and the SPAD chlorophyll index of bioprimed plants were increased by up to 29% and 9% respectively. This report revealed that the under-explored species of P- and K-solubilizing Enterobacter hormaechei sp. with multiple plant beneficial traits presents a great potential sustainable approach for enhancement of soil fertility and P and K uptakes of plants.
    Matched MeSH terms: Chlorophyll
  5. Shu MH, Appleton D, Zandi K, AbuBakar S
    PMID: 23497105 DOI: 10.1186/1472-6882-13-61
    Gracilaria changii (Xia et Abbott) Abbott, Zhang et Xia, a red algae commonly found in the coastal areas of Malaysia is traditionally used for foods and for the treatment of various ailments including inflammation and gastric ailments. The aim of the study was to investigate anti-inflammatory, gastroprotective and anti-ulcerogenic activities of a mass spectrometry standardized methanolic extract of Gracilaria changii.
    Matched MeSH terms: Chlorophyll/analysis; Chlorophyll/pharmacology; Chlorophyll/therapeutic use
  6. Zainudin PMD Hussain, Azmi Man, Ahmad Sofiman Othman
    Trop Life Sci Res, 2010;21(2):-.
    MyJurnal
    Weedy rice (WR) is found in many direct-seeded rice fields. WR possesses morphological characteristics that are similar to cultivated rice varieties in the early stage of growth, making them more difficult to control than other weeds. A comparative morphological study was conducted by collecting WR accessions from four sites within the Pulau Pinang rice growing areas. The objective of the study was to characterise WR accessions of the Pulau Pinang rice granary by comparing their morphological characteristics to those of commercially grown rice in the area. Their morphometric relations were established by comparing 17 morphological characteristics of the WR accessions and the commercial varieties. A total of 36 WR morphotypes were identified from these 4 sites based on 17 characteristics, which included grain shattering habit and germination rate. The Principal Component Analysis (PCA) showed that 45.88% of the variation observed among the WR accessions and commercial varieties were within the first 3 axes. PB6, PP2 and SGA5 WR accessions had a higher number of tillers and longer panicle lengths, culm heights and leaf lengths compared to the commercial rice. The grain
    sizes of the commercial varieties were slightly longer, and the chlorophyll contents at 60–70 days after sowing (DAS) were higher than those of the WR accessions. Results from this study are useful for predicting potential WR accession growth, which might improve WR management and agriculture practices that control WR in the future.
    Matched MeSH terms: Chlorophyll
  7. Hasan M, Mokhtar AS, Mahmud K, Berahim Z, Rosli AM, Hamdan H, et al.
    Sci Rep, 2022 Nov 15;12(1):19602.
    PMID: 36379972 DOI: 10.1038/s41598-022-24144-2
    WeedLock is a broad-spectrum plant-based bioherbicide that is currently on the market as a ready-to-use formulation. In this study, we investigated the physiological and biochemical effects of WeedLock (672.75 L ha-1) on Ageratum conyzoides L., Eleusine indica (L.) Gaertn, Zea mays L., and Amaranthus gangeticus L. at four different time points. WeedLock caused significant reductions in chlorophyll pigment content and disrupted photosynthetic processes in all test plants. The greatest inhibition in photosynthesis was recorded in A. conyzoides at 24 h post-treatment with a 74.88% inhibition. Plants treated with WeedLock showed increased malondialdehyde (MDA) and proline production, which is indicative of phytotoxic stress. Remarkably, MDA contents of all treated plants increased by more than 100% in comparison to untreated. The activity of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) was elevated following treatment with WeedLock. Significant increases were observed in the SOD activity of A. conyzoides ranging from 69.66 to 118.24% from 6 to 72 h post-treatment. Our findings confirm that WeedLock disrupts the normal physiological and biochemical processes in plants following exposure and that its mode of action is associated with ROS (reactive oxygen species) production, similar to that of PPO (protoporphyrinogen oxidase) inhibitors, although specific site-of-action of this novel bioherbicide warrants further investigation.
    Matched MeSH terms: Chlorophyll/pharmacology
  8. Daryabor F, Ooi SH, Abu Samah A, Akbari A
    PLoS One, 2016;11(9):e0162170.
    PMID: 27622552 DOI: 10.1371/journal.pone.0162170
    A three-dimensional Regional Ocean Modelling System is used to study the tidal characteristics and their dynamics in the Sunda Shelf of the southern South China Sea. In this model, the outer domain is set with a 25 km resolution and the inner one, with a 9 km resolution. Calculations are performed on the inner domain. The model is forced at the sea surface by climatological monthly mean wind stress, freshwater (evaporation minus precipitation), and heat fluxes. Momentum and tracers (such as temperature and salinity) are prescribed in addition to the tidal heights and currents extracted from the Oregon State University TOPEX/Poseidon Global Inverse Solution (TPXO7.2) at the open boundaries. The results are validated against observed tidal amplitudes and phases at 19 locations. Results show that the mean average power energy spectrum (in unit m2/s/cph) for diurnal tides at the southern end of the East Coast of Peninsular Malaysia is approximately 43% greater than that in the East Malaysia region located in northern Borneo. In contrast, for the region of northern Borneo the semidiurnal power energy spectrum is approximately 25% greater than that in the East Coast of Peninsular Malaysia. This implies that diurnal tides are dominant along the East Coast of Peninsular Malaysia while both diurnal and semidiurnal tides dominate almost equally in coastal East Malaysia. Furthermore, the diurnal tidal energy flux is found to be 60% greater than that of the semidiurnal tides in the southern South China Sea. Based on these model analyses, the significant tidal mixing frontal areas are located primarily off Sarawak coast as indicated by high chlorophyll-a concentrations in the area.
    Matched MeSH terms: Chlorophyll
  9. Hossain AS, Alenazi MMA, Ahmed ASA, Alrudayni HA, Haouala F, Al-Hashimi A, et al.
    Cell Mol Biol (Noisy-le-grand), 2023 Dec 10;69(13):53-58.
    PMID: 38158689 DOI: 10.14715/cmb/2023.69.13.8
    Vegetables are rich in vitamins, minerals and dietary fiber that keep a significant role in the functioning of the human body to refrain human health benefits. The experiment was carried out to investigate the effect of different concentrations of IAA on the seedless pod, chlorophyll, vitamin and mineral content of okra as human health benefits. The innovative seed soaking method of application using 0, 25, 50, 100 & 200 mg/l of IAA concentrations was used in okra before germination and cultured in vitro and in vivo. The lower concentrations (25 and 50 mg/l) of IAA significantly increased the pod setting compared to the higher concentration (100 and 200 mg/l). The higher concentration (100 and 200 mg/l) had lower fruit settings than the lower concentration (25 &50) had higher fruit settings. The higher pod size was obtained in the concentration of 100 & 200 mg/l of IAA (34.18 cm²) as compared to the control and other concentrations. In addition, the highest soluble solid content was obtained by 100 and 200 mg/l of IAA concentration as compared to the other concentrations. The maximum vitamin C was found in the concentration of 100 mg/l of IAA as compared to the control and other concentrations. Moreover, higher mineral contents like K, Ca, Mg, Na and Fe were found in 100 & 200 mg/l of IAA. The higher concentrations (100 and 200 mg/l) of IAA greatly increased the seedless okra percentage as compared to the lower concentration. It seemed that 100 and 200 mg/l concentration IAA was a better concentration for mineral content and seedless okra production as compared to the other concentrations.
    Matched MeSH terms: Chlorophyll
  10. Zainol Z, Akhir MF, Johari A, Ali A
    Data Brief, 2021 Apr;35:106866.
    PMID: 33816725 DOI: 10.1016/j.dib.2021.106866
    This article contains water quality data collected in a shallow and narrow Setiu Lagoon during the southwest monsoon, wet period of northeast monsoon and dry period of northeast monsoon. The surface water quality parameters, which include the temperature, salinity, chlorophyll-a and nutrients (ammonia, nitrate, phosphate, and silicate) were sampled twice per day (high and low tides) at a total of eight stations. Hourly current speed and direction was obtained from mooring of two units of current meters. Compared to the Malaysia Marine Water Quality Criteria and Standard (MWQCS), nutrients in Setiu Lagoon were in Class 2. Although limited, this dataset can provide insights on the changes of water quality condition in Setiu Lagoon under the presence of anthropogenic pressures.
    Matched MeSH terms: Chlorophyll
  11. Zia-ur-Rehman M, Sabir M, Shahjahan, Ahmed HR, Muhammad Rizwan, Ali S
    Sains Malaysiana, 2016;45:339-346.
    Among abiotic stresses, salinity is the main abiotic stress limiting crop growth and yield worldwide. Improving agri-food production in salt-prone areas is the key to meet the increasing food demands in near future. A greenhouse experiment was conducted to investigate the effect of different soil conditioners, gypsum (GYP), citric acid (CA), ethylene diamine tetraacetic acid (EDTA) and polyvinyl alcohol (PVA), on growth and yield of wheat (Triticum aestivum L.) grown in salinesodic soil. Gypsum was applied at a rate of 100% soil gypsum requirement while other amendments were applied each at a rate of 5 g kg-1 of soil. The results showed that EDTA treatment increased pH and electrical conductivity (ECe) of soil while pH significantly decreased when treated with citric acid. Soil sodium adsorption ratio (SAR) and exchangeable sodium percentage (ESP) decreased in all treatments following the order: CT > PVA > EDTA > CA > GYP. Addition of CA positively affected growth parameters as compared to other soil conditioners including plant height, number of tillers per plant, number of spikes per plant, plant dry weight and grain yield while EDTA negatively affected these parameters. Addition of CA also significantly increased photosynthetic rate, stomatal conductance, transpiration rate and chlorophyll contents while EDTA decreased these parameters. We conclude that increase in plant growth and yield with CA might be due to the effect of CA on soil properties which positively affected plant physiological parameters.
    Matched MeSH terms: Chlorophyll
  12. Idris MS, Lee Siang H, Amin RM
    Data Brief, 2020 Feb;28:104982.
    PMID: 31890817 DOI: 10.1016/j.dib.2019.104982
    The biophysical data presented in this article were collected in the east coast of Peninsular Malaysia from May to November 2009. These monthly surface data were obtained from 32 stations along the coastal-offshore transect and were analyzed to understand the spatial and temporal distributions of biophysical parameters during different monsoon seasons. The data presented here include sea surface temperature (SST), sea surface salinity (SSS), Secchi disk depth (SDD), Chlorophyll-a (Chl-a), suspended particulate matter (SPM), mineral suspended solid (MSS) and chromophoric dissolved organic matter (CDOM).
    Matched MeSH terms: Chlorophyll
  13. Mohammad Moneruzzaman Khandaker, Normaniza Osman, Abm Sharif Hossain, Amru Nasrulhaq Boyce
    Sains Malaysiana, 2012;41:553-560.
    A study was carried out to investigate the effects of different girdling techniques on the growth, development and quality of red wax apple fruits (Syzygium samarangense). Selected horticultural parameters were monitored at one week interval during the growth period from December 2008 to October 2010, using I, C, V shaped, 50%, and 100% girdling. Girdling was applied 2 weeks before flowering. The results showed that the C-shaped girdling technique produced the best results with regard to the fruit setting and chlorophyll content in comparison to the control and the other girdling
    techniques employed. Furthermore, C-shaped girdling enhanced faster fruit growth producing the best final fruit length and diameter. In addition to significantly increased yield, juice percentage, leaf dry matter, biomass and TSS content of fruits. It was also observed that 50% girdling decreased fruit dropping. V-shaped girdling also increased the number of bud and reduced bud dropping compared to control. I-shaped girdle fruits produced the highest amount of K+ content in fruit juice compared to other treatments. The color development of the fruit peel in 100% girdling was also the highest among the treatments. From this study, it can be concluded that C-shaped girdling applied two weeks before flowering produced better fruit growth, yield and quality of red wax apple fruits under field conditions.
    Matched MeSH terms: Chlorophyll
  14. Azma Hanim Ismail, Anis Amalina Mohd Adnan
    Trop Life Sci Res, 2016;27(11):31-38.
    MyJurnal
    The distribution and abundance of zooplankton species of Harapan and Aman
    Lakes were investigated in relation to physical parameters and chlorophyll-a content. Both
    lakes were characterised by the occurrence of algal bloom problem. The composition of
    zooplankton was collected at monthly intervals from November 2013 to February 2014.
    The total number of taxa in Harapan and Aman Lakes were 23 and 27, respectively.
    Rotifera was the highest abundance group represent 64% of the total species recorded
    followed by Copepoda (29%) and Cladocera (7%). Three dominant zooplankton that been
    recorded in both the lakes are Brachionus forficula, Brachionus nilsoni, and Trichocerca
    sp. High abundance of these species indicates that the lakes are eutrophic water bodies.
    Overall, zooplankton species distribution and abundance in the study sites are influenced
    by various environmental factors such as water transparency and chlorophyll-a content.
    Matched MeSH terms: Chlorophyll
  15. Abdul Rahim A, Idris MH, Kamal AH, Wong SK, Arshad A
    Pak J Biol Sci, 2012 Jul 01;15(13):629-34.
    PMID: 24218932
    The Condition Index (CI) is a method to measure overall health of fish and that has been applied to estimate the effect that different environmental factors have on clam meat quality. The CI of local mangrove clam Polymesoda expansa in Kelulit, Miri Sarawak was determined from October 2010 to November 2011. Condition index that is generally used to characterize the physiological activity of organisms, varied from 1.8% in December 2010 to 3.4% in October 2011, with low values observed during the spawning period. The clam attained their best condition in quality of flesh weight during July-October. In present study, the CI showed a clear relationship with the reproductive cycle of P. expansa. However, no significant correlation (p > 0.05) was found between CI and the different physicochemical parameter of seawater. The data presented is necessary for developing sustainable management strategies and broodstock selection for the species which is crucial in aquaculture development.
    Matched MeSH terms: Chlorophyll/metabolism
  16. Sahebi M, Hanafi MM, Rafii MY, Azizi P, Abiri R, Kalhori N, et al.
    Biomed Res Int, 2017;2017:9064129.
    PMID: 28191468 DOI: 10.1155/2017/9064129
    Silicon (Si) is one of the most prevalent elements in the soil. It is beneficial for plant growth and development, and it contributes to plant defense against different stresses. The Lsi1 gene encodes a Si transporter that was identified in a mutant Japonica rice variety. This gene was not identified in fourteen Malaysian rice varieties during screening. Then, a mutant version of Lsi1 was substituted for the native version in the three most common Malaysian rice varieties, MR219, MR220, and MR276, to evaluate the function of the transgene. Real-time PCR was used to explore the differential expression of Lsi1 in the three transgenic rice varieties. Silicon concentrations in the roots and leaves of transgenic plants were significantly higher than in wild-type plants. Transgenic varieties showed significant increases in the activities of the enzymes SOD, POD, APX, and CAT; photosynthesis; and chlorophyll content; however, the highest chlorophyll A and B levels were observed in transgenic MR276. Transgenic varieties have shown a stronger root and leaf structure, as well as hairier roots, compared to the wild-type plants. This suggests that Lsi1 plays a key role in rice, increasing the absorption and accumulation of Si, then alters antioxidant activities, and improves morphological properties.
    Matched MeSH terms: Chlorophyll/metabolism
  17. Bhagooli R, Mattan-Moorgawa S, Kaullysing D, Louis YD, Gopeechund A, Ramah S, et al.
    Mar Pollut Bull, 2021 Apr;165:112059.
    PMID: 33677415 DOI: 10.1016/j.marpolbul.2021.112059
    Chlorophyll a fluorescence is increasingly being used as a rapid, non-invasive, sensitive and convenient indicator of photosynthetic performance in marine autotrophs. This review presents the methodology, applications and limitations of chlorophyll fluorescence in marine studies. The various chlorophyll fluorescence tools such as Pulse-Amplitude-Modulated (PAM) and Fast Repetition Rate (FRR) fluorometry used in marine scientific studies are discussed. Various commonly employed chlorophyll fluorescence parameters are elaborated. The application of chlorophyll fluorescence in measuring natural variations, stress, stress tolerance and acclimation/adaptation to changing environment in primary producers such as microalgae, macroalgae, seagrasses and mangroves, and marine symbiotic invertebrates, namely symbiotic sponges, hard corals and sea anemones, kleptoplastic sea slugs and giant clams is critically assessed. Stressors include environmental, biological, physical and chemical ones. The strengths, limitations and future perspectives of the use of chlorophyll fluorescence technique as an assessment tool in symbiotic marine organisms and seaplants are discussed.
    Matched MeSH terms: Chlorophyll*
  18. Tee YK, Balasundram SK, Ding P, M Hanif AH, Bariah K
    J Sci Food Agric, 2019 Mar 15;99(4):1700-1708.
    PMID: 30206959 DOI: 10.1002/jsfa.9359
    BACKGROUND: A series of fluorescence indices (anthocyanin, flavonol, chlorophyll and nitrogen balance) were deployed to detect the pigments and colourless flavonoids in cacao pods of three commercial cacao (Theobroma cacao L.) genotypes (QH1003, KKM22 and MCBC1) using a fast and non-destructive multiparametric fluorescence sensor. The aim was to determine optimum harvest periods (either 4 or 5 months after pod emergence) of commercial cacao based on fluorescence indices of cacao development and bean quality.

    RESULTS: As pod developed, cacao exhibited a rise with the peak of flavonol occurring at months 4 and 5 after pod maturity was initiated while nitrogen balance showed a decreasing trend during maturity. Cacao pods contained high chlorophyll as they developed but chlorophyll content declined significantly on pods that ripened at month 5.

    CONCLUSION: Cacao pods harvested at months 4 and 5 can be considered as commercially-ready as the beans have developed good quality and comply with the Malaysian standard on cacao bean specification. Thus, cacao pods can be harvested earlier when they reach maturity at month 4 after pod emergence to avoid germinated beans and over fermentation in ripe pods harvested at month 5. © 2018 Society of Chemical Industry.

    Matched MeSH terms: Chlorophyll
  19. Zakaria NI, Ismail MR, Awang Y, Megat Wahab PE, Berahim Z
    Biomed Res Int, 2020;2020:2706937.
    PMID: 32090071 DOI: 10.1155/2020/2706937
    Chilli (Capsicum annum L.) plant is a high economic value vegetable in Malaysia, cultivated in soilless culture containers. In soilless culture, the adoption of small container sizes to optimize the volume of the growing substrate could potentially reduce the production cost, but will lead to a reduction of plant growth and yield. By understanding the physiological mechanism of the growth reduction, several potential measures could be adopted to improve yield under restricted root conditions. The mechanism of growth reduction of plants subjected to root restriction remains unclear. This study was conducted to determine the physiological mechanism of growth reduction of root-restricted chilli plants grown in polyvinyl-chloride (PVC) column of two different volumes, 2392 cm3(root-restricted) and 9570 cm3(control) in soilless culture. Root restriction affected plant growth, physiological process, and yield of chilli plants. Root restriction reduced the photosynthesis rate and photochemical activity of PSII, and increased relative chlorophyll content. Limited root growth in root restriction caused an accumulation of high levels of sucrose in the stem and suggested a transition of the stem as a major sink organ for photoassimilate. Growth reduction in root restriction was not related to limited carbohydrate production, but due to the low sink demand from the roots. Reduction of the total yield per plant about, 23% in root restriction was concomitant, with a slightly increased harvest index which reflected an increased photoassimilate partitioning to the fruit production and suggested more efficient fruits production in the given small plant size of root restriction.
    Matched MeSH terms: Chlorophyll/metabolism
  20. Majid NA, Phang IC, Darnis DS
    Environ Sci Pollut Res Int, 2017 Oct;24(29):22827-22838.
    PMID: 28150147 DOI: 10.1007/s11356-017-8484-9
    Identification of Pelargonium radula as bioindicator for mercury (Hg) detection confers a new hope for monitoring the safety of drinking water consumption. Hg, like other non-essential metals, inflicts the deterioration of biological functions in human and other creatures. In the present study, effects of Hg on the physiology and biochemical content of P. radula were undertaken to understand the occurrence of the morphological changes observed. Young leaves of P. radula were treated with different concentrations of Hg-containing solution (0.5, 1.0 and 2.0 ppb) along with controls for 4 h, prior to further analysis. Elevated Hg concentration in treatment solution significantly prompted an increased accumulation of Hg in the leaf tissues. Meanwhile, total protein, chlorophyll and low molecular mass thiol contents (cysteine, glutathione and oxidized glutathione) decreased as Hg accumulation increased. However, phytochelatin 2 productions were induced in the treated leaves, in comparison to the control. Based on these findings, it is postulated that as low as 0.5 ppb of Hg interferes with the metabolic processes of plant cells, which was reflected from the morphological changes exhibited on P. radula leaves-the colour of the Hg-treated leaves changed from green to yellowish-brown, became chlorosis and wilted. Changes in the tested characteristics of plant are closely related to the Hg-induced morphological changes on P. radula leaves, a potential bioindicator for detecting Hg in drinking water.
    Matched MeSH terms: Chlorophyll/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links