Displaying publications 1 - 20 of 143 in total

Abstract:
Sort:
  1. Daneshvar C, Davis TM, Cox-Singh J, Rafa'ee MZ, Zakaria SK, Divis PC, et al.
    Clin Infect Dis, 2009 Sep 15;49(6):852-60.
    PMID: 19635025 DOI: 10.1086/605439
    BACKGROUND: Plasmodium knowlesi is increasingly recognized as a cause of human malaria in Southeast Asia but there are no detailed prospective clinical studies of naturally acquired infections.

    METHODS: In a systematic study of the presentation and course of patients with acute P. knowlesi infection, clinical and laboratory data were collected from previously untreated, nonpregnant adults admitted to the hospital with polymerase chain reaction-confirmed acute malaria at Kapit Hospital (Sarawak, Malaysia) from July 2006 through February 2008.

    RESULTS: Of 152 patients recruited, 107 (70%) had P. knowlesi infection, 24 (16%) had Plasmodium falciparum infection, and 21 (14%) had Plasmodium vivax. Patients with P. knowlesi infection presented with a nonspecific febrile illness, had a baseline median parasitemia value at hospital admission of 1387 parasites/microL (interquartile range, 6-222,570 parasites/microL), and all were thrombocytopenic at hospital admission or on the following day. Most (93.5%) of the patients with P. knowlesi infection had uncomplicated malaria that responded to chloroquine and primaquine treatment. Based on World Health Organization criteria for falciparum malaria, 7 patients with P. knowlesi infection (6.5%) had severe infections at hospital admission. The most frequent complication was respiratory distress, which was present at hospital admission in 4 patients and developed after admission in an additional 3 patients. P. knowlesi parasitemia at hospital admission was an independent determinant of respiratory distress, as were serum creatinine level, serum bilirubin, and platelet count at admission (p < .002 for each). Two patients with knowlesi malaria died, representing a case fatality rate of 1.8% (95% confidence interval, 0.2%-6.6%).

    CONCLUSIONS: Knowlesi malaria causes a wide spectrum of disease. Most cases are uncomplicated and respond promptly to treatment, but approximately 1 in 10 patients develop potentially fatal complications.

    Matched MeSH terms: Chloroquine/therapeutic use
  2. Chan KL, Choo CY, Abdullah NR
    Planta Med, 2005 Oct;71(10):967-9.
    PMID: 16254833 DOI: 10.1055/s-2005-864188
    Among the quassinoids isolated from Eurycoma longifolia Jack, eurycomanone was identified as the most potent and toxic inhibitor of the chloroquine-resistant Gombak A isolate of Plasmodium falciparum. Several diacylated derivatives of eurycomanone, 1,15-di-O-isovaleryleurycomanone, 1,15-di-O-(3,3-dimethylacryloyl)- eurycomanone and 1,15-di-O-benzoyleurycomanone were synthesized by direct acylation with the respective acid chlorides. The monoacylated 15-O-isovaleryleurycomanone was synthesized by selective protection of the other hydroxy groups of eurycomanone with trimethylsilyl trifluoromethanesulphonate to enable the exclusive acylation of its C-15 hydroxy group. This was followed by the removal of the protecting groups with citric acid. The diacylated eurycomanones exhibited lower antiplasmodial activity against the Gombak A isolates and lower toxicity in the brine shrimp assay when compared to eurycomanone. In contrast, the monoacylated derivative displayed comparable antiplasmodial potency to eurycomanone, but its toxicity was reduced. Thus, preliminary studies of the synthesized acylated eurycomanones have shown that acylation only at the C-15 hydroxy group may be worthy of further antimalarial investigation.
    Matched MeSH terms: Chloroquine
  3. Murugan K, Suresh U, Panneerselvam C, Rajaganesh R, Roni M, Aziz AT, et al.
    Environ Sci Pollut Res Int, 2018 Apr;25(11):10456-10470.
    PMID: 28913784 DOI: 10.1007/s11356-017-0074-3
    The development of novel mosquito control tools is a key prerequisite to build effective and reliable Integrated Vector Management strategies. Here, we proposed a novel method using cigarette butts for the synthesis of Ag nanostructures toxic to young instars of the malaria vector Anopheles stephensi, chloroquine (CQ)-resistant malaria parasites Plasmodium falciparum and microbial pathogens. The non-target impact of these nanomaterials in the aquatic environment was evaluated testing them at sub-lethal doses on the predatory copepod Mesocyclops aspericornis. Cigarette butt-synthesized Ag nanostructures were characterized by UV-vis and FTIR spectroscopy, as well as by EDX, SEM and XRD analyses. Low doses of cigarette butt extracts (with and without tobacco) showed larvicidal and pupicidal toxicity on An. stephensi. The LC50 of cigarette butt-synthesized Ag nanostructures ranged from 4.505 ppm (I instar larvae) to 8.070 ppm (pupae) using smoked cigarette butts with tobacco, and from 3.571 (I instar larvae) to 6.143 ppm (pupae) using unsmoked cigarette butts without tobacco. Smoke toxicity experiments conducted against adults showed that unsmoked cigarette butts-based coils led to mortality comparable to permethrin-based positive control (84.2 and 91.2%, respectively). A single treatment with cigarette butts extracts and Ag nanostructures significantly reduced egg hatchability of An. stephensi. Furthermore, the antiplasmodial activity of cigarette butt extracts (with and without tobacco) and synthesized Ag nanostructures was evaluated against CQ-resistant (CQ-r) and CQ-sensitive (CQ-s) strains of P. falciparum. The lowest IC50 values were achieved by cigarette butt extracts without tobacco, they were 54.63 μg/ml (CQ-s) and 63.26 μg/ml (CQ-r); while Ag nanostructure IC50 values were 72.13 μg/ml (CQ-s) and 77.33 μg/ml (CQ-r). In MIC assays, low doses of the Ag nanostructures inhibited the growth of Bacillus subtilis, Klebsiella pneumoniae and Salmonella typhi. Finally, the predation efficiency of copepod M. aspericornis towards larvae of An. stephensi did not decrease in a nanoparticle-contaminated environment, if compared to control predation assays. Overall, the present research would suggest that an abundant hazardous waste, such as cigarette butts, can be turned to an important resource for nanosynthesis of highly effective antiplasmodials and insecticides.
    Matched MeSH terms: Chloroquine
  4. Tindall SM, Vallières C, Lakhani DH, Islahudin F, Ting KN, Avery SV
    Sci Rep, 2018 02 06;8(1):2464.
    PMID: 29410428 DOI: 10.1038/s41598-018-20816-0
    Antimalarial drug resistance hampers effective malaria treatment. Critical SNPs in a particular, putative amino acid transporter were recently linked to chloroquine (CQ) resistance in malaria parasites. Here, we show that this conserved protein (PF3D7_0629500 in Plasmodium falciparum; AAT1 in P. chabaudi) is a structural homologue of the yeast amino acid transporter Tat2p, which is known to mediate quinine uptake and toxicity. Heterologous expression of PF3D7_0629500 in yeast produced CQ hypersensitivity, coincident with increased CQ uptake. PF3D7_0629500-expressing cultures were also sensitized to related antimalarials; amodiaquine, mefloquine and particularly quinine. Drug sensitivity was reversed by introducing a SNP linked to CQ resistance in the parasite. Like Tat2p, PF3D7_0629500-dependent quinine hypersensitivity was suppressible with tryptophan, consistent with a common transport mechanism. A four-fold increase in quinine uptake by PF3D7_0629500 expressing cells was abolished by the resistance SNP. The parasite protein localised primarily to the yeast plasma membrane. Its expression varied between cells and this heterogeneity was used to show that high-expressing cell subpopulations were the most drug sensitive. The results reveal that the PF3D7_0629500 protein can determine the level of sensitivity to several major quinine-related antimalarials through an amino acid-inhibitable drug transport function. The potential clinical relevance is discussed.
    Matched MeSH terms: Chloroquine/pharmacology
  5. Barrett JP, Behrens RH
    J Travel Med, 1996 Mar 01;3(1):60-61.
    PMID: 9815425
    Chloroquine-resistant Plasmodium vivax was originally reported in Papua, New Guinea by Reickman in 1989.1 In the same year, in Colombia, South America, Arias and Corredor2 reported relapses of 11 patients suffering from vivax malaria, following a chloroquine-primaquine regimen. Garavelli and Corti3 suggested chloroquine-resistant Plasmodium vivax may be present in Brazil following these therapeutic relapses. Further therapeutic failures in returned travelers from South America were reported by Moore et al (1994).4 We report vivax malaria in a group of expeditioners visiting Guyana who, whereas compliant with antimalarial chemoprophylaxis, developed clinical malaria, adding evidence to the presence of chloroquine-resistant Plasmodium vivax in South America. Raleigh International is a youth development charity that undertakes environmental and community projects around the world. These are usually in remote locations. Nine expeditions in countries such as Chile, Belize, Zimbabwe, Uganda, and Malaysia are organized annually. A project manager and a medical officer are placed at each site, along with approximately 10 venturers (age 17-25.) Participants are of all nationalities, but, at present, they are predominantly British.
    Matched MeSH terms: Chloroquine
  6. Shankar PR, Palaian S, Gulam SM
    J Pharm Bioallied Sci, 2020 10 06;13(1):4-10.
    PMID: 34084043 DOI: 10.4103/jpbs.JPBS_404_20
    The corona virus disease-19 (COVID-19) pandemic has affected the entire world causing huge economic losses and considerable morbidity and mortality. Considering the explosive growth of the pandemic repurposing existing medicines may be cost-effective and may be approved for use in COVID-19 faster. Researchers and medical practitioners worldwide have explored the use of chloroquine and hydroxychloroquine, in few occasions combined with the macrolide antibiotic azithromycin, for COVID-19 treatment. These two drugs are economic and easily available, and hence gained attention as a potential option for COVID-19 management. As per the available evidence, the outcomes of treatments with these medications are conflicting from both the efficacy and safety (predominantly cardiac related) perspectives. Currently, multiple studies are underway to test the safety and efficacy of these medications and more results are expected in the near future. The retina, the endocrine system (with risk of hypoglycemia), the musculoskeletal system, the hematological system, and the neurological system may also be affected. The use of these drugs is contraindicated in patients with arrhythmias, known hypersensitivity, and in patients on amiodarone. In addition to the published literature, personal communication with doctors treating COVID-19 patients seems to suggest the drugs may be effective in reducing symptoms and hastening clinical recovery. The literature evidence is still equivocal and further results are awaited. There has been recent controversy including retraction of articles published in prestigious journals about these medicines. Their low cost, long history of use, and easy availability are positive factors with regard to use of these drugs in COVID-19.
    Matched MeSH terms: Chloroquine; Hydroxychloroquine
  7. Atroosh WM, Al-Mekhlafi HM, Mahdy MA, Surin J
    Malar J, 2012;11:251.
    PMID: 22853645 DOI: 10.1186/1475-2875-11-251
    Malaria is still a public health problem in Malaysia with chloroquine (CQ) being the first-line drug in the treatment policy of uncomplicated malaria. There is a scarcity in information about the magnitude of Plasmodium falciparum CQ resistance. This study aims to investigate the presence of single point mutations in the P. falciparum chloroquine-resistance transporter gene (pfcrt) at codons 76, 271, 326, 356 and 371 and in P. falciparum multi-drug resistance-1 gene (pfmdr1) at codons 86 and 1246, as molecular markers of CQ resistance.
    Matched MeSH terms: Chloroquine/pharmacology*
  8. Sabbatani S, Fiorino S, Manfredi R
    Infez Med, 2012 Mar;20(1):5-11.
    PMID: 22475654
    Epidemic foci of Plasmodium knowlesi malaria have been identified during the past ten years in Malaysia, in particular in the States of Sarawak and Sabah (Malaysia Borneo), and in the Pahang region (peninsular Malaysia). Based on a review of the available recent international literature, the authors underline the importance of molecular biology examinations, polymerase chain reactions (PCR), performed with primers specific for P. knowlesi, since the current microscopic examination (haemoscope) may fail to distinguish P. knowlesi from Plasmodium malariae, due to the very similar appearance of the two parasites. P. knowlesi has been described as the causal agent of life-threatening and lethal forms of malaria: its clinical picture is more severe when compared with that of P. malariae, since the disease is characterized by greater parasitaemia, as opposed to that documented in the course of P. malariae disease. The most effective carrier is Anopheles leucosphyrus: this mosquito is attracted by both humans and monkeys. Among primates, the natural hosts of P. knowlesi are Macaca fascicularis and Macaca nemestina, while Saimiri scirea and Macaca mulatta, which cannot become infected in nature, may be useful in experimental models. When underlining the potentially severe evolution, we note the key role played by prompt disease recognition, which is expected to be more straightforward in patients monitored in endemic countries at high risk, but should be carefully implemented for subjects being admitted to hospital in Western countries suffering from the typical signs and symptoms of malaria, after travelling in South-East Asia where they were engaged in excursions in the tropical forest (trekking, and similar outdoor activities). In these cases, the diagnosis should be prompt, and suitable treatment should follow. According to data in the literature, in non-severe cases chloroquine proves very effective against P. knowlesi, achieving the disappearance of signs and symptoms in 96% of cases after only 24 hours after treatment start. In the light of the emerging epidemiological data, P. knowlesi should be added to Plasmodium vivax, Plasmodium ovale, P. malariae, and Plasmodium falciparum, as the fifth aetiological agent of malaria. During the next few years, it will become mandatory to plan an appropriate surveillance program of the epidemiological evolution, paying also great attention to the clinical features of patients affected by P. knowlesi malaria, which are expected to worsen according to the time elapsed; some studies seem to point out greater severity according to increased parasitaemia, paralleling the increased interhuman infectious passages of the plasmodium.
    Matched MeSH terms: Chloroquine/therapeutic use
  9. Antinori S, Galimberti L, Milazzo L, Corbellino M
    Acta Trop, 2013 Feb;125(2):191-201.
    PMID: 23088834 DOI: 10.1016/j.actatropica.2012.10.008
    Plasmodium knowlesi was initially identified in the 30s as a natural Plasmodium of Macaca fascicularis monkey also capable of experimentally infecting humans. It gained a relative notoriety in the mid-30s as an alternative to Plasmodium vivax in the treatment of the general paralysis of the insane (neurosyphilis). In 1965 the first natural human infection was described in a US military surveyor coming back from the Pahang jungle of the Malaysian peninsula. P. knowlesi was again brought to the attention of the medical community when in 2004, Balbir Singh and his co-workers reported that about 58% of malaria cases observed in the Kapit district of the Malaysian Borneo were actually caused by P. knowlesi. In the following years several reports showed that P. knowlesi is much more widespread than initially thought with cases reported across Southeast Asia. This infection should also be considered in the differential diagnosis of any febrile travellers coming back from a recent travel to forested areas of Southeast Asia. P. knowlesi can cause severe malaria with a rate of 6-9% and with a case fatality rate of 3%. Respiratory distress, acute renal failure, shock and hyperbilirubinemia are the most frequently observed complications of severe P. knowlesi malaria. Chloroquine is considered the treatment of choice of uncomplicated malaria caused by P. knowlesi.
    Matched MeSH terms: Chloroquine/pharmacology
  10. Norahmad NA, Abdullah NR, Yaccob N, Jelip J, Dony JF, Ruslan KF, et al.
    PMID: 22299399
    Chloroquine (CQ) remains the first line drug for the prevention and treatment of malaria in Malaysia in spite of the fact that resistance to CQ has been observed in Malaysia since the 1960s. CQ-resistance is associated with various mutations in pfcrt, which encodes a putative transporter located in the digestive vacuolar membrane of P. falciparum. Substitution of lysine (K) to threonine (T) at amino acid 76 (K76T) in pfcrt is the primary genetic marker conferring resistance to CQ. To determine the presence of T76 mutation in pfcrt from selected areas of Kalabakan, Malaysia 619 blood samples were screened for P. falciparum, out of which 31 were positive. Blood samples were collected on 3 MM Whatman filter papers and DNA was extracted using QIAmp DNA mini kit. RFLP-PCR for the detection of the CQ-resistant T76 and sensitive K76 genotype was carried out. Twenty-five samples were shown to have the point mutation in pfcrt whereas the remaining samples were classified as CQ-sensitive (wild-type). In view of the fact that CQ is the first line anti-malarial drug in Malaysia, this finding could be an important indication that treatment with CQ may no longer be effective in the future.
    Matched MeSH terms: Chloroquine/pharmacology
  11. Daneshvar C, Davis TM, Cox-Singh J, Rafa'ee MZ, Zakaria SK, Divis PC, et al.
    Malar J, 2010;9:238.
    PMID: 20723228 DOI: 10.1186/1475-2875-9-238
    Plasmodium knowlesi is a cause of symptomatic and potentially fatal infections in humans. There are no studies assessing the detailed parasitological response to treatment of knowlesi malaria infections in man and whether antimalarial resistance occurs.
    Matched MeSH terms: Chloroquine/therapeutic use*
  12. Bamaga OA, Mahdy MA, Lim YA
    Acta Trop, 2015 Sep;149:59-63.
    PMID: 26001972 DOI: 10.1016/j.actatropica.2015.05.013
    Malaria is still a major public health problem in Yemen. More than 95% of the malaria cases are due to Plasmodium ‎falciparum‎. Recently in Yemen, the antimalarial treatment policy was changed from chloroquine (CQ) to artemisinin combination therapy (ACTs). However, CQ is still available and prescribed in the Yemeni market. The persistence of CQ resistance will be prolonged if the shift to ACT and the simultaneous withdrawal of CQ are not rigorously implemented. The aim of the current survey is to detect chloroquine-resistant mutations in P. falciparum chloroquine-resistance transporter (pfcrt) and P. falciparum multi-drug resistance-1 (pfmdr1) genes. These data will be important for future monitoring and assessment of antimalarial drug policy in Yemen. Blood specimens were collected from 735 individuals from different districts of the Hadhramout province, Yemen by house-to-house visit. Mutation-specific nested polymerase chain reaction (PCR) and restriction fragment length polymorphism (PCR-RFLP) methods were used to investigate the mutations in the pfmdr1(codons 86 and 1246) and pfcrt (codons 76, 271, 326, 356 and 371) genes. The overall prevalence of pfcrt mutations at codons 76, 271, 326 and 371 were 50.4%, 58.7%, 54.3% and 44.9%, respectively. All isolates had wild-type pfcrt 356 allele. The majority of pfmdr1 86 alleles (83.3%) and all pfmdr1 1246 alleles were wild type. There was no association between pfcrt mutations and symptomatology, gender and age groups. In conclusion, point mutations in codons 76, 271, 326 and 371 of pfcrt of P. falciparum are high suggesting a sustained high CQ resistance even after 4 years of shifting to ACTs. These findings warrant complete withdrawal of CQ use from the Yemeni market for P. falciparum and careful usage of CQ for treating Plasmodium vivax.
    Matched MeSH terms: Chloroquine*
  13. Singh B, Kim Sung L, Matusop A, Radhakrishnan A, Shamsul SS, Cox-Singh J, et al.
    Lancet, 2004 Mar 27;363(9414):1017-24.
    PMID: 15051281
    About a fifth of malaria cases in 1999 for the Kapit division of Malaysian Borneo had routinely been identified by microscopy as Plasmodium malariae, although these infections appeared atypical and a nested PCR assay failed to identify P malariae DNA. We aimed to investigate whether such infections could be attributable to a variant form of P malariae or a newly emergent Plasmodium species.
    Matched MeSH terms: Chloroquine/therapeutic use
  14. Nurul Aiezzah Z, Noor E, Hasidah MS
    Trop Biomed, 2010 Dec;27(3):624-31.
    PMID: 21399604 MyJurnal
    Malaria, caused by the Plasmodium parasite is still a health problem worldwide due to resistance of the pathogen to current anti-malarials. The search for new anti-malarial agents has become more crucial with the emergence of chloroquine-resistant Plasmodium falciparum strains. Protein kinases such as mitogen-activated protein kinase (MAPK), MAPK kinase, cyclin-dependent kinase (CDK) and glycogen synthase kinase- 3(GSK-3) of parasitic protozoa are potential drug targets. GSK-3 is an enzyme that plays a vital role in multiple cellular processes, and has been linked to pathogenesis of several diseases such as type II diabetes and Alzheimer's disease. In the present study, the antiplasmodial property of LiCl, a known GSK-3 inhibitor, was evaluated in vivo for its antimalarial effect against mice infected with Plasmodium berghei. Infected ICR mice were intraperitoneally administered with LiCl for four consecutive days before (prophylactic test) and after (suppressive test) inoculation of P. berghei-parasitised erythrocytes. Results from the suppressive test (post-infection LiCl treatment) showed inhibition of erythrocytic parasitemia development by 62.06%, 85.67% and 85.18% as compared to nontreated controls for the 100 mg/kg, 300 mg/kg and 600 mg/kg dosages respectively. Both 300 mg/kg and 600 mg/kg LiCl showed similar significant (P<0.05) suppressive values to that obtained with chloroquine-treated mice (86% suppression). The prophylactic test indicated a significantly (P<0.05) high protective effect on mice pre-treated with LiCl with suppression levels relatively comparable to chloroquine (84.07% and 86.26% suppression for the 300 mg/kg and 600 mg/kg LiCl dosages respectively versus 92.86% suppression by chloroquine). In both the suppressive and prophylactic tests, LiCl-treated animals survived longer than their non-treated counterparts. Mortality of the non-treated mice was 100% within 6 to 7 days of parasite inoculation whereas mice administered with LiCl survived beyond 9 days. Healthy non-infected mice administered with 600 mg/ kg LiCl for four consecutive days also showed decreased mortality compared to animals receiving lower doses of LiCl; three of the seven mice intraperitoneally injected with the former dose of LiCl did not survive more than 24 h after administration of LiCl whereas animals given the lower LiCl doses survived beyond four days of LiCl administration. To date, no direct evidence of anti-malarial activity in vivo or in vitro has been reported for LiCl. Evidence of anti-plasmodial activity of lithium in a mouse infection model is presented in this study.
    Matched MeSH terms: Chloroquine/administration & dosage
  15. Mungthin M, Watanatanasup E, Sitthichot N, Suwandittakul N, Khositnithikul R, Ward SA
    Am J Trop Med Hyg, 2017 03;96(3):624-629.
    PMID: 28044042 DOI: 10.4269/ajtmh.16-0668
    Piperaquine combined with dihydroartemisinin is one of the artemisinin derivative combination therapies, which can replace artesunate-mefloquine in treating uncomplicated falciparum malaria in Thailand. The aim of this study was to determine the in vitro sensitivity of Thai Plasmodium falciparum isolates against piperaquine and the influence of the pfmdr1 gene on in vitro response. One hundred and thirty-seven standard laboratory and adapted Thai isolates of P. falciparum were assessed for in vitro piperaquine sensitivity. Polymorphisms of the pfmdr1 gene were determined by polymerase chain reaction methods. The mean and standard deviation of the piperaquine IC50 in Thai isolates of P. falciparum were 16.7 ± 6.3 nM. The parasites exhibiting chloroquine IC50 of ≥ 100 nM were significantly less sensitive to piperaquine compared with the parasite with chloroquine IC50 of < 100 nM. No significant association between the pfmdr1 copy number and piperaquine IC50 values was found. In contrast, the parasites containing the pfmdr1 86Y allele exhibited significantly reduced piperaquine sensitivity. Before nationwide implementation of dihydroartemisinin-piperaquine as the first-line treatment in Thailand, in vitro and in vivo evaluations of this combination should be performed especially in areas where parasites containing the pfmdr1 86Y allele are predominant such as the Thai-Malaysian border.
    Matched MeSH terms: Chloroquine/pharmacology
  16. Odedra A, Webb L, Marquart L, Britton LJ, Chalon S, Moehrle JJ, et al.
    Am J Trop Med Hyg, 2020 11;103(5):1910-1917.
    PMID: 32815508 DOI: 10.4269/ajtmh.20-0491
    Liver transaminase elevations after treatment in malaria volunteer infection studies (VISs) have raised safety concerns. We investigated transaminase elevations from two human Plasmodium vivax VISs where subjects were treated with chloroquine (n = 24) or artefenomel (n = 8) and compared them with studies in Thailand (n = 41) and Malaysia (n = 76). In the VISs, alanine transaminase (ALT) increased to ≥ 2.5 × upper limit of normal (ULN) in 11/32 (34%) volunteers, peaking 5-8 days post-treatment. Transaminase elevations were asymptomatic, were not associated with elevated bilirubin, and resolved by day 42. The risk of an ALT ≥ 2.5 × ULN increased more than 4-fold (odds ratio [OR] 4.28; 95% CI: 1.26-14.59; P = 0.02) for every log10 increase in the parasite clearance burden (PCB), defined as the log-fold reduction in parasitemia 24 hours post-treatment. Although an elevated ALT ≥ 2.5 × ULN was more common after artefenomel than after chloroquine (5/8 [63%] versus 6/24 [25%]; OR 5.0; 95% CI: 0.91-27.47; P = 0.06), this risk disappeared when corrected for PCB. Peak ALT also correlated with peak C-reactive protein (R = 0.44; P = 0.012). Elevations in ALT (≥ 2.5 × ULN) were less common in malaria-endemic settings, occurring in 1/41 (2.5%) Thai patients treated with artefenomel, and in none of 76 Malaysians treated with chloroquine or artemisinin combination therapy. Post-treatment transaminase elevations are common in experimental P. vivax infection but do not appear to impact on participant safety. Although the mechanism of these changes remains uncertain, host inflammatory response to parasite clearance may be contributory.
    Matched MeSH terms: Chloroquine/therapeutic use
  17. Alareqi LMQ, Mahdy MAK, Lau YL, Fong MY, Abdul-Ghani R, Mahmud R
    Acta Trop, 2016 Oct;162:174-179.
    PMID: 27343362 DOI: 10.1016/j.actatropica.2016.06.016
    Since 2005, artesunate (AS) plus sulfadoxine/pyrimethamine (SP) combination has been adopted as the first-line treatment for uncomplicated malaria in Yemen in response to the high level of Plasmodium falciparum resistance to chloroquine (CQ). Therefore, the aim of the present study was to determine the frequency distribution of molecular markers associated with resistance to CQ and AS plus SP combination among P. falciparum isolates from a malaria-endemic area in Taiz governorate, Yemen. Fifty P. falciparum isolates were collected during a cross-sectional study in Mawza district, Taiz, in the period from October 2013 to April 2014. The isolates were investigated for drug resistance-associated molecular markers in five genes, including P. falciparum CQ resistance transporter (pfcrt) 76T and P. falciparum multidrug resistance 1 (pfmdr1) 86Y as markers of resistance to CQ, mutations in the Kelch 13 (K13) propeller domain for resistance to AS, and P. falciparum dihydrofolate reductase (pfdhfr) and P. falciparum dihydropteroate synthase (pfdhps) genes for resistance to SP. Nested polymerase chain reaction was used to amplify target genes in DNA extracts of the isolates followed by restriction fragment length polymorphism for detecting 76T and 86Y mutations in pfcrt and pfmdr1, respectively, and by DNA sequencing for detecting mutations in K13, pfdhfr and pfdhps. All the investigated isolates from Mawza district were harboring the pfcrt 76T mutant and the pfmdr1 N86 wild-type alleles. The pfdhfr 51I/108N double mutant allele was found in 2.2% (1/45) of the isolates; however, no mutations were detected at codons 436, 437, 540, 581 and 613 of pfdhps. All P. falciparum isolates that were successfully sequenced (n=47) showed the K13 Y493, R539, I543 and C580 wild-type alleles. In conclusion, the pfcrt 76T mutant allele is fixed in the study area about six years after the official withdrawal of CQ, possibly indicating its over-the-counter availability and continued use as a self-medication in the study area. However, the almost predominant wild-type alleles of the genes associated with resistance to AS and SP among P. falciparum isolates in the present study indicates the sustained efficacy of the currently adopted first-line treatment of AS plus SP in the study area.
    Matched MeSH terms: Chloroquine/pharmacology
  18. Lewis AN, Ponnampalam JT
    Ann Trop Med Parasitol, 1975 Mar;69(1):1-12.
    PMID: 1092276
    A trial of suppression of malaria by administration of combined sulphadoxine-pyrimethamine tablets every 28 days was undertaken in West Malaysia during 1972. One thousand subjects were followed over a 10-month period, including control groups on placebo and on weekly chloroquine. Subjects were examined monthly for parasitaemia, drug reactions, leucopenia, teratogenicity and haemolysis among the subjects deficient in glucose-6-phosphate dehydrogenase. Rates of new infections in the placebo group were 8.0% with Plasmodium falciparum and 6.2% with P. vivax; in the group receiving weekly chloroquine, 5.1% P. falciparum and 0.3% P. vivax; and in the group receiving monthly sulphadoxine-pyrimethamine, 0.3% P. Falciparum and 1.0% P. vivax. The effective rate of cure of new infections with P. falciparum by a single suppressive dose of combined sulphadoxine-pyrimethamine given the following month was 88.7%. No serious side effects were observed.
    Matched MeSH terms: Chloroquine/administration & dosage
  19. Chan KL, Choo CY, Abdullah NR, Ismail Z
    J Ethnopharmacol, 2004 Jun;92(2-3):223-7.
    PMID: 15138004 DOI: 10.1016/j.jep.2004.02.025
    The roots of Eurycoma longifolia Jack have been used as traditional medicine to treat malaria. A systematic bioactivity-guided fractionation of this plant was conducted involving the determination of the effect of its various extracts and their chemical constituents on the lactate dehydrogenase activity of in vitro chloroquine-resistant Gombak A isolate and chloroquine-sensitive D10 strain of Plasmodium falciparum parasites. Their antiplasmodial activity was also compared with their known in vitro cytotoxicity against KB cells. Four quassinoids, eurycomanone (1), 13,21-dihydroeurycomanone (3), 13 alpha(21)-epoxyeurycomanone (4), eurycomalactone (6) and an alkaloid, 9-methoxycanthin-6-one (7), displayed higher antiplasmodial activity against Gombak A isolate but were less active against the D10 strain when compared with chloroquine. Amongst the compounds tested, 1 and 3 showed higher selectivity indices obtained for the cytotoxicity to antiplasmodial activity ratio than 14,15 beta-dihydroxyklaineanone (2), eurycomanol (5), 6 and 7.
    Matched MeSH terms: Chloroquine/pharmacology
  20. Zahari A, Cheah FK, Mohamad J, Sulaiman SN, Litaudon M, Leong KH, et al.
    Planta Med, 2014 May;80(7):599-603.
    PMID: 24723007 DOI: 10.1055/s-0034-1368349
    The crude extract of the bark of Dehaasia longipedicellata exhibited antiplasmodial activity against the growth of Plasmodium falciparum K1 isolate (resistant strain). Phytochemical studies of the extract led to the isolation of six alkaloids: two morphinandienones, (+)-sebiferine (1) and (-)-milonine (2); two aporphines, (-)-boldine (3) and (-)-norboldine (4); one benzlyisoquinoline, (-)-reticuline (5); and one bisbenzylisoquinoline, (-)-O-O-dimethylgrisabine (6). Their structures were determined on the basis of 1D and 2D NMR, IR, UV, and LCMS spectroscopic techniques and upon comparison with literature values. Antiplasmodial activity was determined for all of the isolated compounds. They showed potent to moderate activity with IC50 values ranging from 0.031 to 30.40 µM. (-)-O-O-dimethylgrisabine (6) and (-)-milonine (2) were the two most potent compounds, with IC50 values of 0.031 and 0.097 µM, respectively, that were comparable to the standard, chloroquine (0.090 µM). The compounds were also assessed for their antioxidant activities with di(phenyl)-(2,4,6-trinitrophenyl)iminoazanium (IC50 = 18.40-107.31 µg/mL), reducing power (27.40-87.40 %), and metal chelating (IC50 = 64.30 to 257.22 µg/mL) having good to low activity. (-)-O-O-dimethylgrisabine (6) exhibited a potent antioxidant activity of 44.3 % reducing power, while di(phenyl)-(2,4,6-trinitrophenyl)iminoazanium and metal chelating activities had IC50 values of 18.38 and 64.30 µg/mL, respectively. Thus it may be considered as a good reductant with the ability to chelate metal and prevent pro-oxidant activity. In addition to the antiplasmodial and antioxidant activities, the isolated compounds were also tested for their cytotoxicity against a few cancer and normal cell lines. (-)-Norboldine (4) exhibited potent cytotoxicity towards pancreatic cancer cell line BxPC-3 with an IC50 value of 27.060 ± 1.037 µM, and all alkaloids showed no toxicity towards the normal pancreatic cell line (hTERT-HPNE).
    Matched MeSH terms: Chloroquine/pharmacology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links