Displaying publications 1 - 20 of 165 in total

Abstract:
Sort:
  1. Abbasi MA, Rehman A, Siddiqui SZ, Hadi N, Mumtaz A, Shah SAA, et al.
    Pak J Pharm Sci, 2019 Jan;32(1):61-68.
    PMID: 30772791
    In the current research work, a series of new N-(alkyl/aralkyl)-N-(2,3-dihydro-1,4-benzodioxan-6-yl)-4-chlorobenzenesulfonamides has been synthesized by reacting 1,4-benzozzdioxan-6-amine (1) with 4-chlorobenzenesulfonyl chloride (2) to yield N-(2,3-dihydro-1,4-benzodioxan-6-yl)-4-chlorobenzenesulfonamide (3) which was further reacted with different alkyl/aralkyl halides (4a-n) to afford the target compounds (5a-n). Structures of the synthesized compounds were confirmed by IR, 1H-NMR, EI-MS spectral techniques and CHN analysis data. The results of enzyme inhibition showed that the molecules, N-2-phenethyl-N-(2,3-dihydro-1,4-benzodioxin-6-yl)-4-chlorobenzenesulfonamide (5j) and N-(1-butyl)-N-(2,3-dihydro-1,4-benzodioxin-6-yl)-4-chlorobenzenesulfonamide (5d), exhibited moderate inhibitory potential against acetylcholinesterase with IC50 values 26.25±0.11 μM and 58.13±0.15 μM respectively, whereas, compounds N-benzyl-N-(2,3-dihydro-1,4-benzodioxin-6-yl)-4-chlorobenzenesulfonamide (5i) and N-(pentane-2-yl)-N-(2,3-dihydro-1,4-benzodioxin-6-yl)-4-chlorobenzenesulfonamide (5f) showed moderate inhibition against α-glucosidase enzyme as evident from IC50 values 74.52±0.07 and 83.52±0.08 μM respectively, relative to standards Eserine having IC50 value of 0.04±0.0001 μM for cholinesterases and Acarbose having IC50 value 38.25±0.12 μM for α-glucosidase, respectively.
    Matched MeSH terms: Cholinesterase Inhibitors/chemical synthesis*; Cholinesterase Inhibitors/pharmacology*
  2. Abbasi MA, Hassan M, Aziz-Ur-Rehman, Siddiqui SZ, Shah SAA, Raza H, et al.
    PeerJ, 2018;6:e4962.
    PMID: 29967717 DOI: 10.7717/peerj.4962
    The present study comprises the synthesis of a new series of sulfonamides derived from 4-methoxyphenethylamine (1). The synthesis was initiated by the reaction of 1 with 4-methylbenzenesulfonyl chloride (2) in aqueous sodium carbonate solution at pH 9 to yield N-(4-methoxyphenethyl)-4-methylbenzensulfonamide (3).This parent molecule 3 was subsequently treated with various alkyl/aralkyl halides, (4a-j), using N,N-dimethylformamide (DMF) as solvent and LiH as activator to produce a series of new N-(4-methoxyphenethyl)-N-(substituted)-4-methylbenzenesulfonamides (5a-j). The structural characterization of these derivatives was carried out by spectroscopic techniques like IR, 1H-NMR, and 13C-NMR. The elemental analysis data was also coherent with spectral data of these molecules. The inhibitory effects on acetylcholinesterase and DPPH were evaluated and it was observed that N-(4-Methoxyphenethyl)-4-methyl-N-(2-propyl)benzensulfonamide (5c) showed acetylcholinesterase inhibitory activity 0.075 ± 0.001 (IC50 0.075 ± 0.001 µM) comparable to Neostigmine methylsulfate (IC50 2.038 ± 0.039 µM).The docking studies of synthesized ligands 5a-j were also carried out against acetylcholinesterase (PDBID 4PQE) to compare the binding affinities with IC50 values. The kinetic mechanism analyzed by Lineweaver-Burk plots demonstrated that compound (5c) inhibits the acetylcholinesterase competitively to form an enzyme inhibitor complex. The inhibition constants Ki calculated from Dixon plots for compound (5c) is 2.5 µM. It was also found from kinetic analysis that derivative 5c irreversible enzyme inhibitor complex. It is proposed on the basis of our investigation that title compound 5c may serve as lead structure for the design of more potent acetylcholinesterase inhibitors.
    Matched MeSH terms: Cholinesterase Inhibitors
  3. Abbasi MA, Hassan M, Ur-Rehman A, Siddiqui SZ, Hussain G, Shah SAA, et al.
    Comput Biol Chem, 2018 Dec;77:72-86.
    PMID: 30245349 DOI: 10.1016/j.compbiolchem.2018.09.007
    The heterocyclic compounds have been extensively reported for their bioactivity potential. The current research work reports the synthesis of some new multi-functional derivatives of 2-furoic piperazide (1; 1-(2-furoyl)piperazine). The synthesis was initiated by reacting the starting compound 1 with 3,5-dichloro-2-hydroxybenzenesulfonyl chloride (2) in a basic, polar and protic medium to obtain the parent sulfonamide 3 which was then treated with different electrophiles, 4a-g, in a polar and aprotic medium to acquire the designed molecules, 5a-g. These convergent derivatives were evaluated for their inhibitory potential against α-glucosidase, acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes. Acarbose was used as a reference standard for α-glucosidase inhibition while eserine for AChE and BChE inhibition. Some of the synthesized compounds were identified as promising inhibitors of these three enzymes and their bioactivity potentials were also supported by molecular docking study. The most active compounds among the synthetic analogues might be helpful in drug discovery and development for the treatment of type 2 diabetes and Alzhiemer's diseases.
    Matched MeSH terms: Cholinesterase Inhibitors/chemical synthesis; Cholinesterase Inhibitors/pharmacology*; Cholinesterase Inhibitors/chemistry
  4. Abbasi MA, Anwar A, Rehman A, Siddiqui SZ, Rubab K, Shah SAA, et al.
    Pak J Pharm Sci, 2017 Sep;30(5):1715-1724.
    PMID: 29084694
    Heterocyclic molecules have been frequently investigated to possess various biological activities during the last few decades. The present work elaborates the synthesis and enzymatic inhibition potentials of a series of sulfonamides. A series of 1-arylsulfonyl-4-Phenylpiperazine (3a-n) geared up by the reaction of 1-phenylpiperazine (1) and different (un)substituted alkyl/arylsulfonyl chlorides (2a-n), under defined pH control using water as a reaction medium. The synthesized molecules were characterized by 1H-NMR, 13C-NMR, IR and EI-MS spectral data. The enzyme inhibition study was carried on α-glucosidase, lipoxygenase (LOX), acetyl cholinesterase (AChE) and butyryl cholinesterase (BChE) enzymes supported by docking simulation studies and the IC50 values rendered a few of the synthesized molecules as moderate inhibitors of these enzymes where, the compound 3e exhibited comparatively better potency against α-glucosidase enzyme. The synthesized compounds showed weak or no inhibition against LOX, AChE and BChE enzymes.
    Matched MeSH terms: Cholinesterase Inhibitors/chemical synthesis; Cholinesterase Inhibitors/pharmacology
  5. Abd Razik BM, Osman H, Basiri A, Salhin A, Kia Y, Ezzat MO, et al.
    Bioorg Chem, 2014 Dec;57:162-168.
    PMID: 25462993 DOI: 10.1016/j.bioorg.2014.10.005
    Novel aromatic embedded Schiff bases have been synthesized in ionic liquid [bmim]Br and evaluated in vitro for their acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes inhibitory activities. Among the newly synthesized compounds, 5f, 5h and 7j displayed higher AChE enzyme inhibitory activities than standard drug, galanthamine, with IC50 values of 1.88, 2.05 and 2.03μM, respectively. Interestingly, all the compounds except for compound 5c displayed higher BChE inhibitories than standard with IC50 values ranging from 3.49 to 19.86μM. Molecular docking analysis for 5f and 7j possessing the most potent AChE and BChE inhibitory activities, disclosed their binding interaction templates to the active site of AChE and BChE enzymes, respectively.
    Matched MeSH terms: Cholinesterase Inhibitors/chemical synthesis; Cholinesterase Inhibitors/pharmacology*; Cholinesterase Inhibitors/chemistry*
  6. Abdalla Ali A, Mhamad SA, Hasan AH, Ahmad I, Abdullah SA, Jamil S, et al.
    J Biomol Struct Dyn, 2024 Apr;42(7):3604-3615.
    PMID: 37293930 DOI: 10.1080/07391102.2023.2220032
    Acetylcholinesterase inhibitors (AChEIs) have become a significant target in the search for an efficient treatment of Alzheimer's disease. Chalcone-based compounds display a strong potency to hinder AChE. So, this study focused on the synthesis of a series of new chalcone derivatives with anti-cholinesterase potential and their structures were characterized based on spectroscopic methods including IR, 1H NMR, 13C NMR and HRMS. Chalcone derivatives were screened against AChE. Most of them exhibited potent inhibitory activity against AChE. Compound 11i showed the most potent activity toward acetylcholinesterase compared to the positive compound, Galantamine. Docking studies into the active site of the acetylcholinesterase enzyme ravealed the significant docking score of the synthesized compounds with docking score of -7.959 to -9.277 kcal/mol when compared to the co-crystallized ligand, Donepezil (-10.567 kcal/mol). The interaction's stability was further assessed using a conventional atomistic 100 ns dynamics simulation study, which revealed the conformational stability of representative compound 11i in the cavity of the acetylcholinesterase enzyme.Communicated by Ramaswamy H. Sarma.
    Matched MeSH terms: Cholinesterase Inhibitors/chemistry
  7. Abdul Manap AS, Madhavan P, Vijayabalan S, Chia A, Fukui K
    PeerJ, 2020;8:e10003.
    PMID: 33062432 DOI: 10.7717/peerj.10003
    Previously, we reported the synergistic effects of curcumin and piperine in cell cultures as potential anti-cholinesterase and anti-amyloidogenic agents. Due to limited findings on the enrolment of these compounds on epigenetic events in AD, we aimed at elucidating the expression profiles of Aβ42-induced SH-SY5Y cells using microarray profiling. In this study, an optimized concentration of 35 µM of curcumin and piperine in combination was used to treat Aβ42 fibril and high-throughput microarray profiling was performed on the extracted RNA. This was then compared to curcumin and piperine used singularly at 49.11 µM and 25 µM, respectively. Our results demonstrated that in the curcumin treated group, from the top 10 upregulated and top 10 downregulated significantly differentially expressed genes (p 
    Matched MeSH terms: Cholinesterase Inhibitors
  8. Abdul Wahab SM, Sivasothy Y, Liew SY, Litaudon M, Mohamad J, Awang K
    Bioorg Med Chem Lett, 2016 08 01;26(15):3785-92.
    PMID: 27236720 DOI: 10.1016/j.bmcl.2016.05.046
    A new acylphenol, malabaricone E (1) together with the known malabaricones A-C (2-4), maingayones A and B (5 and 6) and maingayic acid B (7) were isolated from the ethyl acetate extract of the fruits of Myristica cinnamomea King. Their structures were determined by 1D and 2D NMR techniques and LCMS-IT-TOF analysis. Compounds 3 (1.84±0.19 and 1.76±0.21μM, respectively) and 4 (1.94±0.27 and 2.80±0.49μM, respectively) were identified as dual inhibitors, with almost equal acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes inhibiting potentials. The Lineweaver-Burk plots of compounds 3 and 4 indicated that they were mixed-mode inhibitors. Based on the molecular docking studies, compounds 3 and 4 interacted with the peripheral anionic site (PAS), the catalytic triad and the oxyanion hole of the AChE. As for the BChE, while compound 3 interacted with the PAS, the catalytic triad and the oxyanion hole, compound 4 only interacted with the catalytic triad and the oxyanion hole.
    Matched MeSH terms: Cholinesterase Inhibitors/isolation & purification; Cholinesterase Inhibitors/pharmacology*; Cholinesterase Inhibitors/chemistry
  9. Abed SA, Sirat HM, Taher M
    Pak J Pharm Sci, 2016 Nov;29(6):2071-2078.
    PMID: 28375126
    The leaves of Gynotroches axillaris were chemically and biologically studied. Sequential extraction of the leaves using petroleum ether, chloroform, and methanol afforded three extracts. Purification of pet. ether extract yielded, squalene and β-amyrin palmitate as the major compounds, together with palmitic acid and myristic acid as the minor components. The methanol extract yielded two flavonoids, quercitrin and epicatechin. The isolated compounds were characterized by MS, IR and NMR (1D and 2D). Anti-acetyl cholinesterase screening using TLC bio-autography assay showed that palmitic acid and myristic acid were the strongest inhibition with detection limit 1.14 and 1.28 μ/g/ 5 μL respectively. Antibacterial against Gram-positive and negative and antifungal activities exhibited that β-amyrin palmitate was the strongest (450-225 μ/mL) against all the tested microbes. The tyrosinase inhibition assay of extracts and the pure compounds were screened against tyrosinase enzyme. The inhibition percentage (I%) of methanol extract against tyrosinase enzyme was stronger than the other extracts with value 68.4%. Quercitrin (59%) was found to be the highest in the tyrosinase inhibition activity amongst the pure compounds. To the best of our knowledge, this is first report on the phytochemicals, tyrosinase inhibition, anti-acetycholinesterase and antimicrobial activities of the leaves of G. axillaris.
    Matched MeSH terms: Cholinesterase Inhibitors/isolation & purification; Cholinesterase Inhibitors/pharmacology*; Cholinesterase Inhibitors/chemistry
  10. Adalat B, Rahim F, Taha M, Alshamrani FJ, Anouar EH, Uddin N, et al.
    Molecules, 2020 Oct 20;25(20).
    PMID: 33092223 DOI: 10.3390/molecules25204828
    We synthesized 10 analogs of benzimidazole-based thiosemicarbazide 1 (a-j) and 13 benzimidazole-based Schiff bases 2 (a-m), and characterized by various spectroscopic techniques and evaluated in vitro for acetylcholinesterase (AchE) and butyrylcholinesterase (BchE) inhibition activities. All the synthesized analogs showed varying degrees of acetylcholinesterase and butyrylcholinesterase inhibitory potentials in comparison to the standard drug (IC50 = 0.016 and 4.5 µM. Amongst these analogs 1 (a-j), compounds 1b, 1c, and 1g having IC50 values 1.30, 0.60, and 2.40 µM, respectively, showed good acetylcholinesterase inhibition when compared with the standard. These compounds also showed moderate butyrylcholinesterase inhibition having IC50 values of 2.40, 1.50, and 2.40 µM, respectively. The rest of the compounds of this series also showed moderate to weak inhibition. While amongst the second series of analogs 2 (a-m), compounds 2c, 2e, and 2h having IC50 values of 1.50, 0.60, and 0.90 µM, respectively, showed moderate acetylcholinesterase inhibition when compared to donepezil. Structure Aactivity Relation of both synthesized series has been carried out. The binding interactions between the synthesized analogs and the enzymes were identified through molecular docking simulations.
    Matched MeSH terms: Cholinesterase Inhibitors/chemical synthesis; Cholinesterase Inhibitors/pharmacology*; Cholinesterase Inhibitors/chemistry
  11. Ado MA, Abas F, Ismail IS, Ghazali HM, Shaari K
    J Sci Food Agric, 2015 Feb;95(3):635-42.
    PMID: 25048579 DOI: 10.1002/jsfa.6832
    The aim of the current study was (i) to evaluate the bioactive potential of the leaf methanolic extract of Cynometra cauliflora L., along with its respective hexane, dichloromethane, ethyl acetate (EtOAc), n-butanol (n-BuOH) and aqueous fractions, in inhibiting the enzymes α-glucosidase, acetylcholinesterase (AChE) and tyrosinase as well as evaluating their antioxidant activities. (ii) In addition, in view of the limited published information regarding the metabolite profile of C. cauliflora, we further characterized the profiles of the EtOAc and n-BuOH fractions using liquid chromatography-diode array detection-electrospray ionization-tandem mass spectrometry.
    Matched MeSH terms: Cholinesterase Inhibitors/analysis; Cholinesterase Inhibitors/pharmacology
  12. Ado MA, Maulidiani M, Ismail IS, Ghazali HM, Shaari K, Abas F
    Nat Prod Res, 2021 Sep;35(17):2992-2996.
    PMID: 31631709 DOI: 10.1080/14786419.2019.1679138
    Phytochemical investigation on the soluble fractions of n-hexane and dichloromethane of methanolic leaves extract of the Callicarpa maingayi K. & G. led to the isolation of three triterpenoids [euscaphic acid (1), arjunic acid (2), and ursolic acid (3)] together with two flavones [apigenin (4) and acacetin (5)], two phytosterols [stigmasterol 3-O-β-glycopyranoside (6) and sitosterol 3-O-β-glycopyranoside (7)], and a fatty acid [n-hexacosanoic acid (8)]. Six (6) compounds (1, 2, 3, 4, 5, and 8) are reported for the first time from this species. Their structures were elucidated and identified by extensive NMR techniques, GC-MS and comparison with the previously reported literature. Compound 3 was found to displayed good inhibition against acetylcholinesterase with an IC50 value of 21.5 ± 0.022 μM, while 1 and 2 exhibited pronounced α-glucosidase inhibitory activity with IC50 values of 22.4 ± 0.016 μM and 24.9 ± 0.012 μM, respectively.
    Matched MeSH terms: Cholinesterase Inhibitors/isolation & purification; Cholinesterase Inhibitors/pharmacology*
  13. Agatonovic-Kustrin S, Kettle C, Morton DW
    Biomed Pharmacother, 2018 Oct;106:553-565.
    PMID: 29990843 DOI: 10.1016/j.biopha.2018.06.147
    An increase in dementia numbers and global trends in population aging across the world prompts the need for new medications to treat the complex biological dysfunctions, such as neurodegeneration associated with dementia. Alzheimer's disease (AD) is the most common form of dementia. Cholinergic signaling, which is important in cognition, is slowly lost in AD, so the first line therapy is to treat symptoms with acetylcholinesterase inhibitors to increase levels of acetylcholine. Out of five available FDA-approved AD medications, donepezil, galantamine and rivastigmine are cholinesterase inhibitors while memantine, a N-methyl d-aspartate (NMDA) receptor antagonist, blocks the effects of high glutamate levels. The fifth medication consists of a combination of donepezil and memantine. Although these medications can reduce and temporarily slow down the symptoms of AD, they cannot stop the damage to the brain from progressing. For a superior therapeutic effect, multi-target drugs are required. Thus, a Multi-Target-Directed Ligand (MTDL) strategy has received more attention by scientists who are attempting to develop hybrid molecules that simultaneously modulate multiple biological targets. This review highlights recent examples of the MTDL approach and fragment based strategy in the rational design of new potential AD medications.
    Matched MeSH terms: Cholinesterase Inhibitors/metabolism; Cholinesterase Inhibitors/pharmacology*; Cholinesterase Inhibitors/chemistry
  14. Agbo EN, Gildenhuys S, Choong YS, Mphahlele MJ, More GK
    Bioorg Chem, 2020 08;101:103997.
    PMID: 32554280 DOI: 10.1016/j.bioorg.2020.103997
    A series of furocoumarin-stilbene hybrids has been synthesized and evaluated in vitro for inhibitory effect against acetylcholinesterase (AChE), butyrylcholinestarase (BChE), β-secretase, cyclooxygenase-2 (COX-2), and lipoxygenase-5 (LOX-5) activities including free radical-scavenging properties. Among these hybrids, 8-(3,5-dimethoxyphenyl)-4-(3,5-dimethoxystyryl)furochromen-2-one 4h exhibited significant anticholinesterase activity and inhibitory effect against β-secretase, COX-2 and LOX-5 activities. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity and an in vitro cell-based antioxidant activity assay involving lipopolysaccharide induced reactive oxygen species production revealed that 4h has capability of scavenging free radicals. Molecular docking into AChE, BChE, β-secretase, COX-2 and LOX-5 active sites has also been performed.
    Matched MeSH terms: Cholinesterase Inhibitors/pharmacology
  15. Ahmad H, Ahmad S, Shah SAA, Khan HU, Khan FA, Ali M, et al.
    J Asian Nat Prod Res, 2018 Feb;20(2):172-181.
    PMID: 28463565 DOI: 10.1080/10286020.2017.1319820
    New lycoctonine-type dual cholinesterase inhibitor, swatinine-C (1), along with three known norditerpenoid alkaloids, hohenackerine (2), aconorine (5) and lappaconitine (6) and two synthetically known but phytochemically new benzene derivatives, methyl 2-acetamidobenzoate (3) and methyl 4-[2-(methoxycarbonyl)anilino]-4-oxobutanoate (4), was isolated from the roots of A. laeve. Structures of new and known compounds (1-6) were established on the basis of latest spectroscopic techniques and by close comparison with the data available in literature. In vitro, compounds (1-6) were tested against AChE and BChE inhibitory activities. Compounds 1 and 2 showed competitive inhibition against AChE (IC50 = 3.7 μM, 4.53 μM) and BChE (IC50 = 12.23 μM, 9.94 μM), respectively. Compounds 5 and 6 showed promising noncompetitive type of inhibitory profile against AChE (IC50 = 2.51 and 6.13 μM) only. Compounds 3 and 4 showed weak inhibitory profile against both AChE and BChE.
    Matched MeSH terms: Cholinesterase Inhibitors/isolation & purification*; Cholinesterase Inhibitors/pharmacology*; Cholinesterase Inhibitors/chemistry
  16. Ahmad H, Ahmad S, Shah SAA, Latif A, Ali M, Khan FA, et al.
    Bioorg Med Chem, 2017 07 01;25(13):3368-3376.
    PMID: 28457693 DOI: 10.1016/j.bmc.2017.04.022
    Extensive chromatographic separations performed on the basic (pH=8-10) chloroform soluble fraction of Aconitum heterophyllum resulted in the isolation of three new diterpenoid alkaloids, 6β-Methoxy, 9β-dihydroxylheteratisine (1), 1α,11,13β-trihydroxylhetisine (2), 6,15β-dihydroxylhetisine (3), and the known compounds iso-atisine (4), heteratisine (5), hetisinone (6), 19-epi-isoatisine (7), and atidine (8). Structures of the isolated compounds were established by means of mass and NMR spectroscopy as well as single crystal X-ray crystallography. Compounds 1-8 were screened for their antioxidant and enzyme inhibition activities followed by in silico studies to find out the possible inhibitory mechanism of the tested compounds. This work is the first report demonstrating significant antioxidant and anticholinesterase potentials of diterpenoid alkaloids isolated from a natural source.
    Matched MeSH terms: Cholinesterase Inhibitors/isolation & purification; Cholinesterase Inhibitors/pharmacology*; Cholinesterase Inhibitors/chemistry
  17. Ahmad H, Ahmad S, Ali M, Latif A, Shah SAA, Naz H, et al.
    Bioorg Chem, 2018 08;78:427-435.
    PMID: 29698893 DOI: 10.1016/j.bioorg.2018.04.008
    Three new norditerpenoids alkaloids, 1β-hydroxy,14β-acetyl condelphine (1), jadwarine-A (2), jadwarine-B (3) along with two known alkaloids isotalatizidine hydrate (4) and dihydropentagynine (5) were isolated from medicinal plant Delphinium denudatum. The structures of natural products 1-5 were established on the basis of HR-EIMS, 1H and 13C NMR (1D & 2D) spectroscopic data as well as by comparison from literature data. The structures of compound 1 and 4 were also confirmed by single crystal X-ray diffraction studies. In-vitro AChE and BChE enzyme inhibitory activities of compounds 1-5 and molecular docking studies were performed to investigate the possible molecular inhibitory mechanism of the isolated natural products. Compound 2, 4 and 5 showed competitive inhibitory effects by inhibiting AChE and BChE, respectively, while 1 and 3 showed non-competitive inhibition. This work is the first report that provides a supporting evidence about the use of constituents of Delphinium denudatum in cerebral dementia and Alzheimer diseases.
    Matched MeSH terms: Cholinesterase Inhibitors/isolation & purification; Cholinesterase Inhibitors/pharmacology*; Cholinesterase Inhibitors/chemistry
  18. Ahmad R, Baharum SN, Bunawan H, Lee M, Mohd Noor N, Rohani ER, et al.
    Molecules, 2014 Nov 20;19(11):19220-42.
    PMID: 25420073 DOI: 10.3390/molecules191119220
    The aim of this research was to identify the volatile metabolites produced in different organs (leaves, stem and roots) of Polygonum minus, an important essential oil producing crop in Malaysia. Two methods of extraction have been applied: Solid Phase Microextraction (SPME) and hydrodistillation coupled with Gas Chromatography-Mass Spectrometry (GC-MS). Approximately, 77 metabolites have been identified and aliphatic compounds contribute significantly towards the aroma and flavour of this plant. Two main aliphatic compounds: decanal and dodecanal were found to be the major contributor. Terpenoid metabolites were identified abundantly in leaves but not in the stem and root of this plant. Further studies on antioxidant, total phenolic content, anticholinesterase and antimicrobial activities were determined in the essential oil and five different extracts. The plant showed the highest DPPH radical scavenging activity in polar (ethanol) extract for all the tissues tested. For anti-acetylcholinesterase activity, leaf in aqueous extract and methanol extract showed the best acetylcholinesterase inhibitory activities. However, in microbial activity, the non-polar extracts (n-hexane) showed high antimicrobial activity against Methicillin-resistant Staphylococcus aureus (MRSA) compared to polar extracts. This study could provide the first step in the phytochemical profiles of volatile compounds and explore the additional value of pharmacology properties of this essential oil producing crop Polygonum minus.
    Matched MeSH terms: Cholinesterase Inhibitors/pharmacology
  19. Ahmed F, Ghalib RM, Sasikala P, Ahmed KK
    Pharmacogn Rev, 2013 Jul;7(14):121-30.
    PMID: 24347920 DOI: 10.4103/0973-7847.120511
    Alzheimer's disease (AD) is a progressive neurodegenerative disease, wherein a progressive loss of cholinergic synapses occurs in hippocampus and neocortex. Decreased concentration of the neurotransmitter, acetylcholine (ACh), appears to be critical element in the development of dementia, and the most appropriate therapeutic approach to treat AD and other form of dementia is to restore acetylcholine levels by inhibiting both major form of cholinesterase: Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Consequently, researches have focused their attention towards finding cholinesterase inhibitors from natural products. A large number of such inhibitors have been isolated from medicinal plants. This review presents a comprehensive account of the advances in field of cholinesterase inhibitor phytoconstituents. The structures of some important phytoconstituents (collected through www.Chemspider.com) are also presented and the scope for future research is discussed.
    Matched MeSH terms: Cholinesterase Inhibitors
  20. Ahmed Z, Aziz S, Hanif M, Mohiuddin SG, Ali Khan SH, Ahmed R, et al.
    J Pharm Bioallied Sci, 2020 04 10;12(2):192-200.
    PMID: 32742119 DOI: 10.4103/jpbs.JPBS_222_19
    Background: This study aimed to evaluate the phytochemicals screening of Erythrina suberosa (Roxb) bark and to analyze the enzymatic activities of its various organic fractions.

    Materials and Methods: Crude methanolic fraction of E. suberosa (Roxb) bark and its respective fractions were screened for the presence of different phytochemicals with different reagents. On the basis of increasing order of polarity, different organic solvents were used to obtain different fractions. Enzymatic studies were performed on crude methanolic extract of the plant. All the assays were performed under standard in vitro conditions.

    Results: The phytochemical analysis shows the presence of alkaloids, phenols, triterpenoids, phytosterols, and flavonoids. Phenolic compounds and flavonoids are the major constituents of the plant. In anticholinesterase assay, the percent inhibition of standard drug (eserine) was 91.27 ± 1.17 and the half maximal inhibitory concentration (IC50) was 0.04 ± 0.0001. For α-glucosidase inhibition, the IC50 value for Dichloromethane fraction was 8.45 ± 0.13, for Methanol fraction it was 64.24 ± 0.15, and for aqueous fraction it was 42.62 ± 0.17 as compared with standard IC50 that is 37.42 (acarbose). Furthermore, results show that all fractions have potential against anti-urease enzyme, but DCM fraction of crude aqueous extract has significant IC50 value (45.26 ± 0.13) than other fractions.

    Conclusion: Keeping in view all the results, it is evident that the plant can be used in future for formulating effective drugs against many ailments. Secondary metabolites and their derivatives possess different biological activities, for example, .g. flavonoids in cancer, asthma, and Alzheimer. Furthermore, the extracts of this plant can be used in their crude form, which is an addition to the complementary and alternative treatment strategies.

    Matched MeSH terms: Cholinesterase Inhibitors
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links