Displaying publications 1 - 20 of 34 in total

Abstract:
Sort:
  1. Chew LT, Bradley DA, Mohd AY, Jamil MM
    Appl Radiat Isot, 2000 9 26;53(4-5):633-8.
    PMID: 11003500
    Inductively Coupled Argon Plasma Atomic Emission Spectroscopy (ICP-AES) has been used to determine Pb, Zn and Cu levels in 47 exfoliated human teeth (all of which required extraction for orthodontic reasons). Lead concentrations for the group were 1.7 microg (g tooth mass)(-1) to 40.5 microg (g tooth mass)(-1). with a median of 9.8 microg (g tooth mass)(-1). A median lead level in excess of the group value was found for the teeth of six lorry drivers who were included in the study. A more significant enhancement was found for the seven subjects whose age was in excess of 60 years. The median values for Zn and Cu were 123.0 and 0.6 microg (g tooth mass)(-1) respectively. Present values for tooth-Zn are lower than published data for other ethnic groups.
    Matched MeSH terms: Copper/analysis
  2. Shuhaimi-Othman M, Mushrifah I, Lim EC, Ahmad A
    Environ Monit Assess, 2008 Aug;143(1-3):345-54.
    PMID: 17987397
    Water from 15 sampling stations in Tasik Chini (Chini Lake), Peninsular Malaysia were sampled for 12 months from September 2004 until August 2005 and analyzed for 11 metals including iron (Fe), aluminum (Al), manganese (Mn), barium (Ba), zinc (Zn), lead (Pb), copper (Cu), cadmium (Cd), nickel (Ni), chromium (Cr) and cobalt (Co). Results showed that the mean (min-max) metal concentrations (in micrograms per liter) in Tasik Chini waters for the 12 months sampling based on 15 sampling stations (in descending order) for Fe, Al, Mn, Ba, Zn, Pb, Cu and Cd were 794.84 (309.33-1609.07), 194.53 (62.37-665.93), 29.16 (16.68-79.85), 22.07 (15.64-29.71), 5.12 (2.224-6.553), 2.36 (1.165-4.240), 0.832 (0.362-1.443) and 0.421 (0.254-0.696) respectively. Concentration for three metals i.e. Ni, Cr and Co were too low and not detected by the graphite furnace Atomic Absorption Spectrophotometry (AAS). Comparison with various water quality standards showed that the mean metals concentration in surface water of Tasik Chini were low and within the range of natural background except for Fe and Al. In general, metal concentrations in Tasik Chini water varied temporally and spatially. The main factors influencing these metal concentrations in the water were the raining season and mining activities. Stations located at Tanjung Jerangking and Melai areas were the most effected due to those factors.
    Matched MeSH terms: Copper/analysis
  3. Mokhtar MB, Praveena SM, Aris AZ, Yong OC, Lim AP
    Mar Pollut Bull, 2012 Nov;64(11):2556-63.
    PMID: 22901962 DOI: 10.1016/j.marpolbul.2012.07.030
    This study was designed as the first to assess the trace metal (Cd, Cu, Fe, Mn, Ni and Zn) in coral skeleton in relation to metal availabilities and sampling locations in Sabah. The study also aims to determine the differential abilities of Scleractinian coral species as a bioindicator of environmental conditions. Skeletons of Scleractinian coral (Hydnophora microconos, Favia speciosa and Porites lobata) showed concentrations of Fe, Mn and Ni relatively higher than Cd and Zn in the skeletons. Statistical analyses outputs showed significant relationships between trace metal concentrations in coral species and those in seawater and sediment. The highest bioaccumulation factors among three Scleractinian coral species investigated was for Zn followed by Mn, Ni, Fe, Cd and Cu can provide a sign about pollution levels. However, metal tolerance, coral structure and morphology as well as multispecies monitoring are factors that need to be a focus in future studies.
    Matched MeSH terms: Copper/analysis
  4. Padrilah SN, Ahmad SA, Yasid NA, Sabullah MK, Daud HM, Khalid A, et al.
    Environ Sci Pollut Res Int, 2017 Oct;24(28):22510-22523.
    PMID: 28804856 DOI: 10.1007/s11356-017-9923-3
    The release of pollutants, especially heavy metals, into the aquatic environment is known to have detrimental effects on such an environment and on living organisms including humans when those pollutants are allowed to enter the food chain. The aim of this study is to analyse the damage to Clarias gariepinus' liver caused by exposure to different concentrations of copper. In the present study, samples of C. gariepinus were exposed to sub-lethal copper sulphate (CuSO4) concentrations (from 0.2 to 20.0 mg/L) for 96 h. Physiological and behavioural alterations were observed with respect to their swimming pattern, mucus secretion and skin colour. Mortality was also observed at high concentrations of copper. Histopathological alterations of the liver were analysed under light, transmission and scanning electron microscopies. The liver of the untreated group showed normal tissue structures, while histopathological abnormalities were observed in the treated fish under light and electron microscopes with increased copper concentrations. Histopathological abnormalities include necrosis, melanomacrophage, hepatic fibrosis and congested blood vessels. In addition, the enzyme activity of liver cholinesterase (ChE) was also found to be affected by copper sulphate, as 100% of cholinesterase activity was inhibited at 20.0 mg/L. Thus, liver enzyme activity and histopathological changes are proven to be alternative sources for biomarkers of metal toxicity.
    Matched MeSH terms: Copper/analysis
  5. Noordin MM, Zhang SS, Rahman SO, Haron J
    Vet Hum Toxicol, 2000 Oct;42(5):276-9.
    PMID: 11003117
    Samples of Brachiaria decumbens collected from 5 farms representing the Peninsular Malaysia were subjected to selected trace mineral and phytate analyses to explain the pathogenesis of B decumbens intoxication. Concentrations of Cu, Zn, Fe and Mo were comparable to other grasses while that of phytate was low. The molar ratios of Cu:Zn, Cu:Mo, and Cu:Fe warrant that Cu deficiency is involved in the toxicity of B decumbens. This might aggravate the development of photosensitization of unpigmented or lightly pigmented areas of affected animals. The Zn:phytate ratio could predispose to Zn deficiency during intoxication.
    Matched MeSH terms: Copper/analysis
  6. Sakai N, Alsaad Z, Thuong NT, Shiota K, Yoneda M, Ali Mohd M
    Chemosphere, 2017 Oct;184:857-865.
    PMID: 28646768 DOI: 10.1016/j.chemosphere.2017.06.070
    Arsenic and 5 heavy metals (nickel, copper, zinc, cadmium and lead) were quantitated in surface water (n = 18) and soil/ore samples (n = 45) collected from 5 land uses (oil palm converted from forest, oil palm in peat swamp, bare land, quarry and forest) in the Selangor River basin by inductively coupled plasma mass spectrometry (ICP-MS). Geographic information system (GIS) was used as a spatial analytical tool to classify 4 land uses (forest, agriculture/peat, urban and bare land) from a satellite image taken by Landsat 8. Source profiling of the 6 elements was conducted to identify their occurrence, their distribution and the pollution source associated with the land use. The concentrations of arsenic, cadmium and lead were also analyzed in maternal blood (n = 99) and cord blood (n = 87) specimens from 136 pregnant women collected at the University of Malaya Medical Center for elucidating maternal exposure as well as maternal-to-fetal transfer. The source profiling identified that nickel and zinc were discharged from sewage and/or industrial effluents, and that lead was discharged from mining sites. Arsenic showed a site-specific pollution in tin-tungsten deposit areas, and the pollution source could be associated with arsenopyrite. The maternal blood levels of arsenic (0.82 ± 0.61 μg/dL), cadmium (0.15 ± 0.2 μg/dL) and lead (2.6 ± 2.1 μg/dL) were not significantly high compared to their acute toxicity levels, but could have attributable risks of chronic toxicity. Those in cord blood were significantly decreased in cadmium (0.06 ± 0.07 μg/dL) and lead (0.99 ± 1.2 μg/dL) but were equivalent in arsenic (0.82 ± 1.1 μg/dL) because of the different kinetics of maternal-to-fetal transfer.
    Matched MeSH terms: Copper/analysis
  7. Ibrahim I, Lim HN, Huang NM, Jiang ZT, Altarawneh M
    J Hazard Mater, 2020 06 05;391:122248.
    PMID: 32062348 DOI: 10.1016/j.jhazmat.2020.122248
    Nowadays, increasing the risk for copper leaching into the drinking water in homes, hotels and schools has become unresolved issues all around the countries such as Canada, the United States, and Malaysia. The leaching of copper in tap water is due to a combination of acidic water, damaged pipes, and corroded plumbing fixtures. To remedy this global problem, a triple interconnected structure of CdS/Au/GQDs was designed as a photo-to-electron conversion medium for a real time and selective visible-light-prompt photoelectrochemical (PEC) sensor for Cu2+ ions in real water samples. The synergistic interaction of the CdS/Au/GQDs enabled the smooth transportation of charge carriers to the charge collector and provided a channel to inhibit the charge recombination reaction. Thus, a detection limit of 2.27 nM was obtained, which is 10,000 fold lower than that of WHO's Guidelines for Drinking-water Quality (∼30 μM). The photocurrent reduction was negligible after 30 days of storage under ambient conditions, suggesting the high stability of photoelectrode. Moreover, the real-time monitoring of Cu2+ ions in real samples was performed with satisfactory results, confirming the capability of the investigated photoelectrode as the most practical detector for trace amounts of Cu2+ ions.
    Matched MeSH terms: Copper/analysis*
  8. Hussein AS, Ghasheer HF, Ramli NM, Schroth RJ, Abu-Hassan MI
    Eur J Paediatr Dent, 2013 Jun;14(2):113-8.
    PMID: 23758460
    AIM: To assess the salivary levels of Copper (Cu), Zinc (Zn), Manganese (Mn) and Iron (Fe) obtained from children of different ethnic backgrounds in Shah Alam, Malaysia and investigate the possible relationships with caries.

    MATERIALS AND METHODS: One hundred and twenty primary school children were included. They were divided into caries and caries-free groups. Unstimulated whole saliva was collected from each participant using spitting method. The salivary elements were measured using an Atomic Absorption Spectrophotometer. Descriptive statistics, bivariate and Pearson's correlation analysis were performed.

    RESULTS: Salivary Cu and Zn levels were significantly higher in children with dental caries compared to those caries-free (p < 0.05). Moreover, these elements had a positive correlation with dental caries (Cu: r=0.698, p<0.001; Zn: r=0.181, p<0.05). No significant variations in Mn and Fe were observed between caries and caries-free group (p>0.05). Additionally, there were significant differences in salivary Zn and Fe among different age groups (p<0.05) and highly significant differences in salivary Cu, Mn and Fe among different ethnic groups (p<0.001). However, all elements exhibited no significant differences between males and females.

    CONCLUSION: The salivary Cu and Zn levels showed significant differences between caries and caries-free groups. The findings also revealed significant variations in the levels of salivary Cu, Mn and Fe among different ethnic groups and salivary Zn and Fe among different age groups.

    Matched MeSH terms: Copper/analysis
  9. Lee LY, Morad N, Ismail N, Talebi A, Rafatullah M
    Int J Mol Sci, 2020 Sep 18;21(18).
    PMID: 32962106 DOI: 10.3390/ijms21186860
    This study investigates the separation of two heavy metals, Cd(II) and Cu(II), from the mixed synthetic feed using a liquid-liquid extraction. The current study uses tri-octyl methylammonium chloride (Aliquat 336) as the extractant (with tributyl phosphate (TBP) as a phase modifier), diluted in toluene, in order to investigate the selective extraction of Cd(II) over Cu(II) ions. We investigate the use of ethylenediaminetetraacetic acid (EDTA) as a masking agent for Cu(II), when added in aqueous feed, for the selective extraction of Cd(II). Five factors that influence the selective extraction of Cd(II) over Cu(II) (the equilibrium pH (pHeq), Aliquat 336 concentration (Aliquat 336), TBP concentration (TBP), EDTA concentration (EDTA), and organic to aqueous ratio (O:A)) were analyzed. Results from a 25-1 fractional factorial design show that Aliquat 336 significantly influenced Cd(II) extraction, whereas EDTA was statistically significant for the antagonistic effect on the E% of Cu(II) in the same system. Moreover, results from optimization experiment showed that the optimum conditions are Aliquat 336 concentration of 99.64 mM and EDTA concentration of 48.86 mM-where 95.89% of Cd(II) was extracted with the least extracted Cu(II) of 0.59%. A second-order model was fitted for optimization of Cd(II) extraction with a R2 value of 0.998, and ANOVA results revealed that the model adequately fitted the data at a 5% significance level. Interaction between Aliquat 336 and Cd(II) has been proven via FTIR qualitative analysis, whereas the addition of TBP does not affect the extraction mechanism.
    Matched MeSH terms: Copper/analysis*
  10. Ng SM, Wong DS, Phung JH, Chin SF, Chua HS
    Talanta, 2013 Nov 15;116:514-9.
    PMID: 24148438 DOI: 10.1016/j.talanta.2013.07.031
    Quantum dots are fluorescent semiconductor nanoparticles that can be utilised for sensing applications. This paper evaluates the ability to leverage their analytical potential using an integrated fluorescent sensing probe that is portable, cost effective and simple to handle. ZnO quantum dots were prepared using the simple sol-gel hydrolysis method at ambient conditions and found to be significantly and specifically quenched by copper (II) ions. This ZnO quantum dots system has been incorporated into an in-house developed miniature fluorescent probe for the detection of copper (II) ions in aqueous medium. The probe was developed using a low power handheld black light as excitation source and three photo-detectors as sensor. The sensing chamber placed between the light source and detectors was made of 4-sided clear quartz windows. The chamber was housed within a dark compartment to avoid stray light interference. The probe was operated using a microcontroller (Arduino Uno Revision 3) that has been programmed with the analytical response and the working algorithm of the electronics. The probe was sourced with a 12 V rechargeable battery pack and the analytical readouts were given directly using a LCD display panel. Analytical optimisations of the ZnO quantum dots system and the probe have been performed and further described. The probe was found to have a linear response range up to 0.45 mM (R(2)=0.9930) towards copper (II) ion with a limit of detection of 7.68×10(-7) M. The probe has high repeatable and reliable performance.
    Matched MeSH terms: Copper/analysis*
  11. Hannon JC, Kerry JP, Cruz-Romero M, Azlin-Hasim S, Morris M, Cummins E
    Food Chem Toxicol, 2016 Sep;95:128-36.
    PMID: 27402098 DOI: 10.1016/j.fct.2016.07.004
    To examine the human exposure to a novel silver and copper nanoparticle (AgNP and CuNP)/polystyrene-polyethylene oxide block copolymer (PS-b-PEO) food packaging coating, the migration of Ag and Cu into 3% acetic acid (3% HAc) food simulant was assessed at 60 °C for 10 days. Significantly lower migration was observed for Ag (0.46 mg/kg food) compared to Cu (0.82 mg/kg food) measured by inductively coupled plasma - atomic emission spectrometry (ICP-AES). In addition, no distinct population of AgNPs or CuNPs were observed in 3% HAc by nanoparticle tracking analysis (NTA) and transmission electron microscopy (TEM). The predicted human exposure to Ag and Cu was used to calculate a margin of exposure (MOE) for ionic species of Ag and Cu, which indicated the safe use of the food packaging in a hypothetical scenario (e.g. as fruit juice packaging). While migration exceeded regulatory limits, the calculated MOE suggests current migration limits may be conservative for specific nano-packaging applications.
    Matched MeSH terms: Copper/analysis*
  12. Cao X, Yu ZX, Xie M, Pan K, Tan QG
    Environ Sci Technol, 2023 Jan 17;57(2):1060-1070.
    PMID: 36595456 DOI: 10.1021/acs.est.2c06447
    In coastal waters, particulate metals constitute a substantial fraction of the total metals; however, the prevalent water quality criteria are primarily based on dissolved metals, seemingly neglecting the contribution of particulate metals. Here we developed a method to quantify the toxicity risk of particulate metals, and proposed a way to calculate modifying factors (MFs) for setting site-specific criteria in turbid waters. Specifically, we used a side-by-side experimental design to study copper (Cu) bioaccumulation and toxicity in an estuarine clam, Potamocorbula laevis, under the exposure to "dissolved only" and "dissolved + particulate" 65Cu. A toxicokinetic-toxicodynamic model (TK-TD) was used to quantify the processes of Cu uptake, ingestion, assimilation, egestion, and elimination, and to relate mortality risk to tissue Cu. We find that particulate Cu contributes 40-67% of the Cu bioaccumulation when the suspended particulate matter (SPM) ranges from 12 to 229 mg L-1. The Cu-bearing SPM also increases the sensitivity of organisms to internalized Cu by decreasing the internal threshold concentration (CIT) from 141 to 76.8 μg g-1. MFs were derived based on the TK-TD model to consider the contribution of particulate Cu (in the studied SPM range) for increasing Cu bioaccumulation (MF = 1.3-2.2) and toxicity (MF = 2.3-3.9). Water quality criteria derived from dissolved metal exposure need to be lowered by dividing by an MF to provide adequate protection. Overall, the method we developed provides a scientifically sound framework to manage the risks of metals in turbid waters.
    Matched MeSH terms: Copper/analysis
  13. Irshad MA, Sattar S, Al-Huqail AA, Alghanem SMS, Nawaz R, Ain NU, et al.
    Environ Sci Pollut Res Int, 2023 Nov;30(52):112575-112590.
    PMID: 37833594 DOI: 10.1007/s11356-023-30141-3
    Chromium (Cr) is one of the hazardous heavy metals that is naturally carcinogenic and causes various health problems. Metallic nanoparticles such as silver and copper nanoparticles (Ag NPs and Cu NPs) have gained great attention because of their unique chemical, physical, and biological attributes, serving diverse and significant role in various useful and sustainable applications. In the present study, both of these NPs were synthesized by green method in which Azadirachta indica plant extract was used. These nanoparticles were characterized by using advanced instrumental techniques such as Fourier transmission infrared (FTIR), X-ray diffraction (XRD), scanning electron microscope attached with energy-dispersive spectroscopy (SEM-EDS), and elemental mapping. These environmentally friendly nanoparticles were utilized for the batch removal of Cr from the wastewater. For analysis of adsorption behaviour, a range of kinetic isotherm models (Freundlich, Temkin, Dubinin, and Langmuir) and kinetic models (pseudo-first-order and pseudo-second-order) were used for the Cu-NPs and Ag-NPs. Cu NPs exhibited the highest Cr removal efficiency (96%) within a contact time of 10-15 min, closely followed by Ag NPs which achieved a removal efficiency of 94% under the similar conditions. These optimal outcomes were observed at a sorbent dose of 0.5 g/L for Ag NPs and 0.7 g/L for Cu NPs. After effectively capturing Cr using these nanoparticles, the sorbates were examined through SEM-EDX analysis to observe how much Cr metal was attached to the nanoparticles, potentially for future use. The analysis found that Ag-NPs captured 18% of Cr, while Cu-NPs captured 12% from the aqueous solution. More precise experimental conditions are needed for higher Cr removal from wastewater and determination of the best conditions for industrial-level Cr reuse. Although nanomaterial exhibit high efficiency and selectivity for Cr removal and recovery from wastewater, more research is necessary to optimize their synthesis and performance for industrial-scale applications and develop efficient methods for Cr removal and recovery.
    Matched MeSH terms: Copper/analysis
  14. Peng Y, Fornara DA, Wu Q, Heděnec P, Yuan J, Yuan C, et al.
    Sci Total Environ, 2023 Jan 20;857(Pt 3):159686.
    PMID: 36302428 DOI: 10.1016/j.scitotenv.2022.159686
    Plant litter decomposition is not only the major source of soil carbon and macronutrients, but also an important process for the biogeochemical cycling of trace elements such as iron (Fe), manganese (Mn), zinc (Zn), and copper (Cu). The concentrations of plant litter trace elements can influence litter decomposition and element cycling across the plant and soil systems. Yet, a global perspective of the patterns and driving factors of trace elements in plant litter is missing. To bridge this knowledge gap, we quantitatively assessed the concentrations of four common trace elements, namely Fe, Mn, Zn, and Cu, of freshly fallen plant litter with 1411 observations extracted from 175 publications across the globe. Results showed that (1) the median of the average concentrations of litter Fe, Mn, Zn, and Cu were 0.200, 0.555, 0.032, and 0.006 g/kg, respectively, across litter types; (2) litter concentrations of Fe, Zn, and Cu were generally stable regardless of variations in multiple biotic and abiotic factors (e.g., plant taxonomy, climate, and soil properties); and (3) litter Mn concentration was more sensitive to environmental conditions and influenced by multiple factors, but mycorrhizal association and soil pH and nitrogen concentration were the most important ones. Overall, our study provides a clear global picture of plant litter Fe, Mn, Zn, and Cu concentrations and their driving factors, which is important for improving our understanding on their biogeochemical cycling along with litter decomposition processes.
    Matched MeSH terms: Copper/analysis
  15. Bashir MJ, Aziz HA, Yusoff MS, Huqe AA, Mohajeri S
    Water Sci Technol, 2010;61(3):641-9.
    PMID: 20150700 DOI: 10.2166/wst.2010.867
    Landfill leachate is one of the major contamination sources. In this study, the ability of synthetic ion exchange resins which carry different mobile ion for removing color, chemical oxygen demand (COD), and ammonia nitrogen (NH(3)-N) from stabilized leachate was investigated. The synthetic resin INDION 225 Na as a cationic exchanger and INDION FFIP MB as an anionic exchanger were used in this study. INDION 225 Na was used in hydrogen form (H(+)) and in sodium form (Na(+)), while INDION FFIP MB resin was used in hydroxide form (OH(-)) and in calcium form (Cl(-)) form. The results indicated better removal of color, COD and NH(3)-N by using INDION 225 Na in H(+) as compared with Na(+) form, while no performance differences were observed by using INDION FFIP MB in OH(-) or Cl(-) form. Applying cationic resin followed by anionic resin achieved 97, 88 and 94, percent removal of color, COD and NH(3)-N. The residual amounts were 160 Pt-Co, 290 mg/L and 110 mg/L of color, COD and NH(3)-N respectively.
    Matched MeSH terms: Copper/analysis
  16. Shukor MY, Bakar NA, Othman AR, Yunus I, Shamaan NA, Syed MA
    J Environ Biol, 2009 Jan;30(1):39-44.
    PMID: 20112861
    In this work the development of an inhibitive assay for copper using the molybdenum-reducing enzyme assay is presented. The enzyme is assayed using 12-molybdophosphoric acid at pH 5.0 as an electron acceptor substrate and NADH as the electron donor substrate. The enzyme converts the yellowish solution into a deep blue solution. The assay is based on the ability of copper to inhibit the molybdenum-reducing enzyme from the molybdate-reducing Serratia sp. Strain DRY5. Other heavy metals tested did not inhibit the enzyme at 10 mg l(-1). The best model with high regression coefficient to measure copper inhibition is one-phase binding. The calculated IC50 (concentration causing 50% inhibition) is 0.099 mg l(-1) and the regression coefficient is 0.98. The comparative LC50, EC50 and IC50 data for copper in different toxicity tests show that the IC50 value for copper in this study is lower than those for immobilized urease, bromelain, Rainbow trout, R. meliloti, Baker's Yeast dehydrogenase activity Spirillum volutans, P. fluorescens, Aeromonas hydrophilia and synthetic activated sludge assays. However the IC50 value is higher than those for Ulva pertusa and papain assays, but within the reported range for Daphnia magna and Microtox assays.
    Matched MeSH terms: Copper/analysis*
  17. Shabanda IS, Koki IB, Low KH, Zain SM, Khor SM, Abu Bakar NK
    Environ Sci Pollut Res Int, 2019 Dec;26(36):37193-37211.
    PMID: 31745807 DOI: 10.1007/s11356-019-06718-2
    Human health is threatened by significant emissions of heavy metals into the urban environment due to various activities. Various studies describing health risk analyses on soil and dust have been conducted previously. However, there are limited studies that have been carried out regarding the potential health risk assessment of heavy metals in urban road dust of < 63-μm diameter, via incidental ingestion, dermal contact, and inhalation exposure routes by children and adults in developing countries. Therefore, this study evaluated the health risks of heavy metal exposure via ingestion, dermal contact, and inhalation of urban dust particles in Petaling Jaya, Malaysia. Heavy metals such as lead (Pb), chromium (Cr), zinc (Zn), copper (Cu), and manganese (Mn) were measured using dust samples obtained from industrial, high-traffic, commercial, and residential areas by using inductively coupled plasma mass spectrometry (ICP-MS). The principal component and hierarchical cluster analysis showed the dominance of these metal concentrations at sites associated with anthropogenic activities. This was suggestive of industrial, traffic emissions, atmospheric depositions, and wind as the significant contributors towards urban dust contamination in the study sites. Further exploratory analysis underlined Cr, Pb, Cu, and Zn as the most representative metals in the dust samples. In accommodating the uncertainties associated with health risk calculations and simulating the reasonable maximum exposure of these metals, the related health risks were estimated at the 75th and 95th percentiles. Furthermore, assessing the exposure to carcinogenic and non-carcinogenic metals in the dust revealed that ingestion was the primary route of consumption. Children who ingested dust particles in Petaling Jaya could be more vulnerable to carcinogenic and non-carcinogenic risks, but the exposure for both children and adults showed no potential health effects. Therefore, this study serves as an important premise for a review and reformation of the existing environmental quality standards for human health safety.
    Matched MeSH terms: Copper/analysis
  18. Yap CK, Ismail A, Tan SG, Omar H
    Environ Int, 2002 Apr;28(1-2):117-26.
    PMID: 12046948
    Total concentrations and speciation of cadmium (Cd), copper (Cu), lead (Pb) and zinc (Zn) in surface sediment samples were correlated with the respective metal measured in the total soft tissue of the green-lipped mussel Perna viridis, collected from water off the west coast of Peninsular Malaysia. The aim of this study is to relate the possible differences in the accumulation patterns of the heavy metals in P. viridis to those in the surface sediment. The sequential extraction technique was employed to fractionate the sediment into 'freely leachable and exchangeable' (EFLE), 'acid-reducible,' 'oxidisable-organic' and 'resistant' fractions. The results showed that significant (P .05) was found between Zn in P viridis and all the sediment geochemical fractions of Zn and total Zn in the sediment. This indicated that Zn was possibly regulated from the soft tissue of P. viridis. The present results supported the use of P viridis as a suitable biomonitoring agent for Cd, Cu and Pb.
    Matched MeSH terms: Copper/analysis
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links