Displaying publications 1 - 20 of 31 in total

Abstract:
Sort:
  1. Lai JC, Lai HY, Nalamolu KR, Ng SF
    J Ethnopharmacol, 2016 08 02;189:277-89.
    PMID: 27208868 DOI: 10.1016/j.jep.2016.05.032
    ETHNOPHARMACOLOGICAL RELEVANCE: Blechnum orientale Linn. (B. orientale) is a fern traditionally used by the natives as a poultice to treat wounds, boils, ulcers, blisters, abscesses, and sores on the skin.

    AIM OF THE STUDY: To investigate the wound healing ability of a concentrated extract of B. orientale in a hydrogel formulation in healing diabetic ulcer wounds.

    MATERIALS AND METHODS: The water extract from the leaves of B. orientale was separated from the crude methanolic extract and subjected to flash column chromatography techniques to produce concentrated fractions. These fractions were tested for phytochemical composition, tannin content, antioxidative and antibacterial activity. The bioactive fraction was formulated into a sodium carboxymethylcellulose hydrogel. The extract-loaded hydrogels were then characterized and tested on excision ulcer wounds of streptozotocin-induced diabetic rats. Wound size was measured for 14 days. Histopathological studies were conducted on the healed wound tissues to observe for epithelisation, fibroblast proliferation and angiogenesis. All possible mean values were subjected to statistical analysis using One-way ANOVA and post-hoc with Tukey's T-test (P<0.05).

    RESULTS: One fraction exhibited strong antioxidative and antibacterial activity. The fraction was also highly saturated with tannins, particularly condensed tannins. Fraction W5-1 exhibited stronger antioxidant activity compared to three standards (α-Tocopherol, BHT and Trolox-C). Antibacterial activity was also present, and notably bactericidal towards Methicillin-resistant Staphylococcus aureus (MRSA) at 0.25mg/ml. The extract-loaded hydrogels exhibited shear-thinning properties, with high moisture retention ability. The bioactive fraction at 4% w/w was shown to be able to close diabetic wounds by Day 12 on average. Other groups, including controls, only exhibited wound closure by Day 14 (or not at all). Histopathological studies had also shown that extract-treated wounds exhibited re-epithelisation, higher fibroblast proliferation, collagen synthesis, and angiogenesis.

    CONCLUSION: The ethnopharmacological effects of using B. orientale as a topical treatment for external wounds was validated and was also significantly effective in treating diabetic ulcer wounds. Thus, B. orientale extract hydrogel may be presented as a potential treatment for diabetic ulcer wounds.

    Matched MeSH terms: Diabetes Mellitus, Experimental/chemically induced
  2. Mohamed J, Shing SW, Idris MH, Budin SB, Zainalabidin S
    Clinics (Sao Paulo), 2013 Oct;68(10):1358-63.
    PMID: 24212844 DOI: 10.6061/clinics/2013(10)11
    OBJECTIVES: The aim of this study was to investigate the protective effects of aqueous extracts of roselle (Hibiscus sabdariffa L. UKMR-2) against red blood cell (RBC) membrane oxidative stress in rats with streptozotocin-induced diabetes.

    METHODS: Forty male Sprague-Dawley rats weighing 230-250 g were randomly divided into four groups (n = 10 rats each): control group (N), roselle-treated control group, diabetic group, and roselle-treated diabetic group. Roselle was administered by force-feeding with aqueous extracts of roselle (100 mg/kg body weight) for 28 days.

    RESULTS: The results demonstrated that the malondialdehyde levels of the red blood cell membranes in the diabetic group were significantly higher than the levels in the roselle-treated control and roselle-treated diabetic groups. The protein carbonyl level was significantly higher in the roselle-treated diabetic group than in the roselle-treated control group but lower than that in the diabetic group. A significant increase in the red blood cell membrane superoxide dismutase enzyme was found in roselle-treated diabetic rats compared with roselle-treated control rats and diabetic rats. The total protein level of the red blood cell membrane, osmotic fragility, and red blood cell morphology were maintained.

    CONCLUSION: The present study demonstrates that aqueous extracts of roselle possess a protective effect against red blood cell membrane oxidative stress in rats with streptozotocin-induced diabetes. These data suggest that roselle can be used as a natural antioxidative supplement in the prevention of oxidative damage in diabetic patients.

    Matched MeSH terms: Diabetes Mellitus, Experimental/chemically induced
  3. Ruzaidi A, Amin I, Nawalyah AG, Hamid M, Faizul HA
    J Ethnopharmacol, 2005 Apr 8;98(1-2):55-60.
    PMID: 15763363
    The present study aims to investigate the effect of cocoa extract on serum glucose levels and lipid profiles in streptozotocin-diabetic rats. Cocoa extract (contained 285.6 mg total polyphenol per gram extract) was prepared from fermented and roasted (140 degrees C, 20 min) beans by extracting using 80% ethanol in the ratio of 1-10. The extract of three dosages (1, 2, and 3%) was fed to normal and diabetic rats for a period of 4 weeks. In hyperglycaemic group, cocoa extract (1 and 3%) diets were found to significantly lower (p<0.05) the serum glucose levels compared to the control. Furthermore, supplementation of 1 and 3% cocoa extract had significantly reduced (p<0.05) the level of total cholesterol in diabetic rats. In addition, 1, 2, and 3% cocoa extract diets had significantly lowered (p<0.05) the total triglycerides. Interestingly, this study found that serum HDL-cholesterol had increased significantly (p<0.05) in diabetic rats fed with 2% cocoa extract, while the LDL-cholesterol had decreased significantly (p<0.05) in the 1% treated group. These results indicate that cocoa extract may possess potential hypoglycaemic and hypocholestrolemic effects on serum glucose levels and lipid profiles, respectively. The results also found that the effect of cocoa extract was dose-dependent.
    Matched MeSH terms: Diabetes Mellitus, Experimental/chemically induced
  4. Armenia A, Munavvar AS, Abdullah NA, Helmi A, Johns EJ
    Br J Pharmacol, 2004 Jun;142(4):719-26.
    PMID: 15172958
    1. Diabetes and hypertension are both associated with an increased risk of renal disease and are associated with neuropathies, which can cause defective autonomic control of major organs including the kidney. This study aimed to examine the alpha(1)-adrenoceptor subtype(s) involved in mediating adrenergically induced renal vasoconstriction in a rat model of diabetes and hypertension. 2. Male spontaneously hypertensive rats (SHR), 220-280 g, were anaesthetized with sodium pentobarbitone 7-day poststreptozotocin (55 mg x kg(-1) i.p.) treatment. The reductions in renal blood flow (RBF) induced by increasing frequencies of electrical renal nerve stimulation (RNS), close intrarenal bolus doses of noradrenaline (NA), phenylephrine (PE) or methoxamine were determined before and after administration of nitrendipine (Nit), 5-methylurapidil (5-MeU), chloroethylclonidine (CEC) and BMY 7378. 3. In the nondiabetic SHR group, mean arterial pressure (MAP) was 146+/-6 mmHg, RBF was 28.0+/-1.4 ml x min(-1) x kg(-1) and blood glucose was 112.3+/-4.7 mg x dl(-1), and in the diabetic SHR Group, MAP was 144+/-3 mmHg, RBF 26.9+/-1.3 ml(-1) min x kg(-1) and blood glucose 316.2+/-10.5 mg x dl(-1). Nit, 5-MeU and BMY 7378 blunted all the adrenergically induced renal vasoconstrictor responses in SHR and diabetic SHR by 25-35% (all P<0.05), but in diabetic rats the responses induced by RNS and NA treated with 5-MeU were not changed. By contrast, during the administration of CEC, vasoconstrictor responses to all agonists were enhanced by 20-25% (all P<0.05) in both the SHR and diabetic SHR. 4. These findings suggest that alpha(1A) and alpha(1D)-adrenoceptor subtypes contribute in mediating the adrenergically induced constriction of the renal vasculature in both the SHR and diabetic SHR. There was also an indication of a greater contribution of presynaptic adrenoceptors, that is, alpha(1B)-, and/or alpha(2)-subtypes.
    Matched MeSH terms: Diabetes Mellitus, Experimental/chemically induced*
  5. Tan ST, Ismail A, Hamid M, Chong PP, Sun J
    J Food Biochem, 2019 05;43(5):e12843.
    PMID: 31353513 DOI: 10.1111/jfbc.12843
    Unhealthy eating habits and lack of physical activities are among the contributing factors for obesity and diabetes. It has been reported that consumption of naturally occurring phenolics could exert beneficial effects toward these diseases. Therefore, this study aims to evaluate the ability of phenolic-rich soy husk powder extract (SHPE) in modifying the physical and biochemical parameters for obesity and diabetes. Forty-nine Sprague Dawley rats were divided into seven groups, including three supplementary/treatment groups. Rats in supplementary/treatment groups were provided with either 4 mg/kg BW Rosiglitazone Maleate, 250 mg SHPE/kg BW, or 500 mg SHPE/kg BW. The effectiveness of SHPE in alleviating obesity-diabetes was evaluated by measuring body weight (physical parameter), blood glucose metabolisms (biochemical parameters), and PPARγ expression. Findings in the present study revealed that short-term SHPE and Rosiglitazone Maleate administration improved the physical and biochemical parameters of obese-diabetic rats. In addition, SHPE was also demonstrated to upregulate PPARγ expression in adipocytes. These findings suggest that soy husk could emerge as a potential hypoglycemic and anti-adipogenic nutraceutical in future. PRACTICAL APPLICATIONS: This was the first study to evaluate the potential effects of soy husk against the parameters of obese-diabetes in rats. In addition, promising effects derived from this study might explore the possibility of soy husk to be utilized as an antidiabetes nutraceutical.
    Matched MeSH terms: Diabetes Mellitus, Experimental/chemically induced
  6. Machha A, Achike FI, Mustafa AM, Mustafa MR
    Nitric Oxide, 2007 Jun;16(4):442-7.
    PMID: 17513143 DOI: 10.1016/j.niox.2007.04.001
    The present work examined the effect of chronic oral administration of quercetin, a flavonoid antioxidant, on blood glucose, vascular function and oxidative stress in STZ-induced diabetic rats. Male Wistar-Kyoto (WKY) rats were randomized into euglycemic, untreated diabetic, vehicle (1% w/v methylcellulose)-treated diabetic, which served as control, or quercetin (10mgkg(-1) body weight)-treated diabetic groups and treated orally for 6 weeks. Quercetin treatment reduced blood glucose level in diabetic rats. Impaired relaxations to endothelium-dependent vasodilator acetylcholine (ACh) and enhanced vasoconstriction responses to alpha(1)-adrenoceptor agonist phenylephrine (PE) in diabetic rat aortic rings were restored to euglycemic levels by quercetin treatment. Pretreatment with N(omega)-nitro-l-arginine methyl ester (l-NAME, 10microM) or methylene blue (10microM) completely blocked but indomethacin (10microM) did not affect relaxations to ACh in aortic rings from vehicle- or quercetin-treated diabetic rats. PE-induced vasoconstriction with an essentially similar magnitude in vehicle- or quercetin-treated diabetic rat aortic rings pretreated with l-NAME (10microM) plus indomethacin (10microM). Quercetin treatment reduced plasma malonaldehyde (MDA) plus 4-hydroxyalkenals (4-HNE) content as well as increased superoxide dismutase activity and total antioxidant capacity in diabetic rats. From the present study, it can be concluded that quercetin administration to diabetic rats restores vascular function, probably through enhancement in the bioavailability of endothelium-derived nitric oxide coupled to reduced blood glucose level and oxidative stress.
    Matched MeSH terms: Diabetes Mellitus, Experimental/chemically induced
  7. Roslan J, Giribabu N, Karim K, Salleh N
    Biomed Pharmacother, 2017 Feb;86:570-582.
    PMID: 28027533 DOI: 10.1016/j.biopha.2016.12.044
    Quercetin is known to possess beneficial effects in ameliorating diabetic complications, however the mechanisms underlying cardioprotective effect of this compound in diabetes is not fully revealed. In this study, quercetin effect on oxidative stress, inflammation and apoptosis in the heart in diabetes were investigated. Normal and streptozotocin-nicotinamide induced adult male diabetic rats received quercetin (10, 25 and 50mg/kg/bw) orally for 28days were anesthetized and hemodynamic parameters i.e. systolic blood pressure (SBP), diastolic blood pressure (DBP) and heart rate (HR) were measured. Blood was collected for analyses of fasting glucose (FBG), insulin and cardiac injury marker levels (troponin-C, CK-MB and LDH). Following sacrificed, heart was harvested and histopathological changes were observed. Heart was subjected for analyses of oxidative stress marker i.e. lipid peroxidation and activity and expression levels of anti-oxidative enzymes i.e. SOD, CAT and GPx. Levels of inflammation in the heart were determined by measuring nuclear factor (p65-NF-κB), tumor necrosis factor (TNF-α), interleukins (IL)-1β and IL-6 levels by using enzyme-linked immunoassay (ELISA). Distribution and expression levels of TNF-α and Ikk-β (inflammatory markers), caspase-3, caspase-9, Blc-2 and Bax (apoptosis markers) in the heart were identified by immunohistochemistry and Western blotting respectively.
    Matched MeSH terms: Diabetes Mellitus, Experimental/chemically induced
  8. Okechukwu PN, Ekeuku SO, Chan HK, Eluri K, Froemming GRA
    Curr Pharm Biotechnol, 2021;22(2):288-298.
    PMID: 32744968 DOI: 10.2174/1389201021666200730124208
    BACKGROUND: Diabetes Mellitus (DM) is characterized by hyperglycemia (high blood glucose levels) which is due to the destruction of insulin-producing β-cells in the islets of Langerhans in the pancreas. It is associated with oxidative and endoplasmic reticulum stress. The plant alkaloid Palmatine has been previously reported to possess antidiabetic and antioxidant properties as well as other protective properties against kidney and liver tissue damage.

    OBJECTIVE: Here, we investigated the ability of Palmatine to reduce the up-regulation of chaperone proteins Glucose Regulatory Protein 78 (GRP78), and Calreticulin (CALR) protein in a Streptozotocin (STZ)-induced diabetic rat model.

    METHODS: Streptozotocin (STZ) induced diabetes in Sprague Dawley rats treated with 2mg/kg of Palmatine for 12 weeks after the elevation of plasma glucose levels above 11mmol/L post-STZ administration. Proteins were extracted from the pancreas after treatment and Two-Dimensional gel electrophoresis (2-DE), PDQuest 2-D analysis software genomic solutions and mass spectrometer were used to analyze differentially expressed protein. Mass Spectrometry (MS/MS), Multidimensional Protein Identification Technology (MudPIT) was used for protein identification.

    RESULTS: There was an up-regulation of the expression of chaperone proteins CALR and GRP78 and down-regulation of the expression of antioxidant and protection proteins peroxidoxin 4 (Prdx4), protein disulfide isomerase (PDIA2/3), Glutathione-S-Transferase (GSTs), and Serum Albumin (ALB) in non-diabetic rats. Palmatine treatment down-regulated the expression of chaperone proteins CALR and GRP78 and up-regulated the expression of Prdx4, PDIA2/3, GST, and ALB.

    CONCLUSION: Palmatine may have activated antioxidant proteins, which protected the cells against reactive oxygen species and endoplasmic stress. The result is in consonance with our previous report on Palmatine.

    Matched MeSH terms: Diabetes Mellitus, Experimental/chemically induced
  9. Yusoff NA, Lim V, Al-Hindi B, Abdul Razak KN, Widyawati T, Anggraini DR, et al.
    Nutrients, 2017 Aug 23;9(9).
    PMID: 28832548 DOI: 10.3390/nu9090925
    BACKGROUND: An aqueous extract (AE) of vinegar made from Nypa fruticans Wurmb. can improve postprandial glucose levels in normoglycaemic rats. The aim of this study was to evaluate its antihyperglycaemic activity further using in vivo and in vitro approaches.

    METHODS: AE was administered to streptozotocin (STZ)-induced diabetic rats twice daily at three doses (1000, 500, and 250 mg/kg b.w.) for 12 days p.o. Several biochemical analyses and a histological study of the pancreas and liver were performed, accompanied by a cell culture assay.

    RESULTS: As compared to diabetic control (DC), AE at the doses of 500 and 1000 mg/kg b.w. caused significant reduction (p < 0.05) of blood glucose, total cholesterol and triglycerides levels, with positive improvement of serum insulin levels. Interestingly, immunohistochemical staining of the pancreas suggested no β-cell regeneration, despite significant increase in insulin production. AE-treated groups, however, showed overall restoration of the hepatic histoarchitecture of STZ-induced liver damage, suggesting a possible hepatoprotective effect. The pancreatic effect of AE was further studied through RIN-5F cell culture, which revealed a positive stimulatory effect on insulin release at a basal glucose concentration (1.1 mM).

    CONCLUSION: Nypa fruticans Wurmb. vinegar's aqueous extract exerts its antihyperglycaemic activity, at least in part, through insulin stimulatory and hepatoprotective effects.

    Matched MeSH terms: Diabetes Mellitus, Experimental/chemically induced
  10. Eleazu C, Ekeleme CE, Famurewa A, Mohamed M, Akunna G, David E, et al.
    PMID: 30659555 DOI: 10.2174/1871530319666190119101058
    BACKGROUND: Research studies that holistically investigated the effect of administration of Virgin Coconut Oil (VCO) on diabetic humans or animals are limited in literature.

    OBJECTIVE: To investigate the effect of administration of VCO on lipid profile, markers of hepatic and renal dysfunction, and hepatic and renal antioxidant activities of alloxan induced diabetic rats.

    METHODS: Twenty-four male albino rats were used, and they were divided into four groups of six rats each. Group 1 (Normal Control, NC) received distilled water (1 mL/kg); Group 2 (VCO Control) received VCO (5 mL/kg); Group 3 (Diabetic Control, DC) received distilled water (1 mL/kg); Group 4 (Test Group, TG) received 5 ml/kg of VCO.

    RESULTS: There were no significant differences in blood glucose, body weights, relative liver weights, relative kidney weights, hepatic and renal Superoxide Dismutase (SOD) activities, Malondialdehyde (MDA), albumin, aspartate Amino Transaminase (AST), alanine Amino Transaminase (ALT), Alkaline Phosphatase (ALP), urea, creatinine, uric acid, total cholesterol, triacylglycerol, Very Low Density Lipoprotein cholesterol (VLDL) and Low Density Lipoprotein cholesterol (LDL) concentrations; significant increases in renal Glutathione (GSH), hepatic catalase, Glutathione Peroxidase (GPx) and GSH but significant reduction in renal GPx and catalase activities of VCO control group compared with NC group. There were significant increases in blood glucose, relative liver and kidney weights, hepatic GPx, hepatic and renal MDA concentration, ALP, AST, ALT, urea, creatinine, uric acid, triacylglycerol, total cholesterol, LDL and VLDL concentrations; and significant decreases in body weight, hepatic SOD and GSH activities and albumin concentration but no significant difference in hepatic catalase activity of DC group compared with NC group. Administration of VCO to diabetic rats positively modulated these parameters compared with the diabetic control.

    CONCLUSION: The study showed the potentials of VCO in the management of hyperlipidemia, renal and hepatic dysfunctions imposed by hyperglycemia and by oxidative stress in diabetic rats.

    Matched MeSH terms: Diabetes Mellitus, Experimental/chemically induced
  11. Adam SH, Giribabu N, Bakar NMA, Salleh N
    Biomed Pharmacother, 2017 Dec;96:716-726.
    PMID: 29040959 DOI: 10.1016/j.biopha.2017.10.042
    Marontades pumilum is claimed to have beneficial effects in the treatment of diabetes mellitus (DM), however the underlying mechanisms were not fully identified. In this study, we hypothesized that M. pumilum could help to enhance cellular glucose uptake and reduces pancreatic complications, which contributed towards its beneficial effects in DM.

    METHODS: Two parameters were measured (i) rate of glucose uptake by 3T3-L1 adipocyte cells in-vitro (ii) degree of pancreatic destruction in streptozotocin-nicotinamide induced male diabetic rats receiving M. pumilum aqueous extract (M.P) (250 and 500mg/kg/day) as reflected by levels of pancreatic oxidative stress, inflammation and apoptosis. In the meantime, phyto-chemical compounds in M.P were also identified by using LC-MS.

    RESULTS: M.P was found able to enhance glucose uptake by 3T3-L1 adipocyte cells in-vitro while its administration to the male diabetic rats causes decreased in the fasting blood glucose (FBG), glycated haemoglobin (HbA1c), total cholesterol (TC), triglycerides (TG), low-density lipoprotein (LDL) levels but causes increased in insulin and high-density lipoprotein (HDL) levels, to near normal. Levels of oxidative stress in the pancreas as reflected by levels of lipid peroxidation product (LPO) decreased while levels of anti-oxidantive enzymes (SOD, CAT and GPx) in pancreas increased. Additionally, levels of inflammation as reflected by NF-κB p65, Ikkβ and TNF-α levels decreased while apoptosis levels as reflected by caspase-9 and Bax levels decreased. Anti-apoptosis marker, Bcl-2 levels in pancreas increased.

    CONCLUSIONS: The ability of M.P to enhance glucose uptake and reduces pancreatic complications could account for its beneficial effects in treating DM.

    Matched MeSH terms: Diabetes Mellitus, Experimental/chemically induced
  12. Ismail CAN, Suppian R, Abd Aziz CB, Haris K, Long I
    Diabetes Metab J, 2019 Apr;43(2):222-235.
    PMID: 30604591 DOI: 10.4093/dmj.2018.0020
    BACKGROUND: This study investigated the role of NR2B in a modulated pain process in the painful diabetic neuropathy (PDN) rat using various pain stimuli.

    METHODS: Thirty-two Sprague-Dawley male rats were randomly allocated into four groups (n=8): control, diabetes mellitus (DM) rats and diabetic rats treated with ifenprodil at a lower dose (0.5 μg/day) (I 0.5) or higher dose (1.0 μg/day) (I 1.0). DM was induced by a single injection of streptozotocin at 60 mg/kg on day 0 of experimentation. Diabetic status was assessed on day 3 of the experimentation. The responses on both tactile and thermal stimuli were assessed on day 0 (baseline), day 14 (pre-intervention), and day 22 (post-intervention). Ifenprodil was given intrathecally for 7 days from day 15 until day 21. On day 23, 5% formalin was injected into the rats' hind paw and the nociceptive responses were recorded for 1 hour. The rats were sacrificed 72 hours post-formalin injection and an analysis of the spinal NR2B expression was performed.

    RESULTS: DM rats showed a significant reduction in pain threshold in response to the tactile and thermal stimuli and higher nociceptive response during the formalin test accompanied by the higher expression of phosphorylated spinal NR2B in both sides of the spinal cord. Ifenprodil treatment for both doses showed anti-allodynic and anti-nociceptive effects with lower expression of phosphorylated and total spinal NR2B.

    CONCLUSION: We suggest that the pain process in the streptozotocin-induced diabetic rat that has been modulated is associated with the higher phosphorylation of the spinal NR2B expression in the development of PDN, which is similar to other models of neuropathic rats.

    Matched MeSH terms: Diabetes Mellitus, Experimental/chemically induced*
  13. Zakaria R, Rajikin MH, Yaacob NS, Nor NM
    Acta Histochem, 2009;111(1):52-60.
    PMID: 18676006 DOI: 10.1016/j.acthis.2008.04.002
    The aim of the present study was to analyze the immunolocalization of insulin-like growth factor (IGF)-1 and IGF-2 and their receptors in the oviduct and uterus of control and diabetic mice. Sexually mature female ICR mice aged 6-8 weeks were rendered diabetic by streptozotocin (200 mg/kg, administered intraperitoneally). Oviductal and uterine tissues were obtained from the superovulated control and diabetic mice at 48, 72 and 96 h post-human chorionic gonadotropin (hCG) treatment. Localization of IGF-1, IGF-2, IGF-1R and IGF-2R was determined by immunohistochemistry and a semi-quantitative scoring of immunolabelling was performed using a standardized 5-point system. The immunohistochemical scorings for both IGF-1 and IGF-1R were significantly decreased in the oviducts of diabetic mice at 96 h post-hCG treatment. The scores for IGF-2 were significantly increased in the oviducts of diabetic mice at 48 and 72 h post-hCG treatment, and for IGF-2R at 72 h post-hCG treatment. However, there was no significant difference in the scores of IGFs and their receptors in the uterus of control and diabetic mice. In conclusion, the oviductal immunolabelling for IGFs and their receptors was significantly altered by maternal diabetes, which may be of importance in the pathogenesis of preimplantation diabetic embryopathy.
    Matched MeSH terms: Diabetes Mellitus, Experimental/chemically induced
  14. Algariri K, Meng KY, Atangwho IJ, Asmawi MZ, Sadikun A, Murugaiyah V, et al.
    Asian Pac J Trop Biomed, 2013 May;3(5):358-66.
    PMID: 23646298 DOI: 10.1016/S2221-1691(13)60077-5
    To study the antidiabetic activity of Gynura procumbens (G. procumbens) used in the traditional management of diabetes in Southern Asia.
    Matched MeSH terms: Diabetes Mellitus, Experimental/chemically induced
  15. Teoh SL, Abd Latiff A, Das S
    Rom J Morphol Embryol, 2010;51(1):91-5.
    PMID: 20191126
    Momordica charantia (MC) or bitter gourd is widely known for its antidiabetic properties. The aim of the present study was to observe the protective effect of MC extract on the kidneys of streptozotocin-induced diabetic rats. Eighteen male Sprague-Dawley rats (n=18) weighing 200+/-50 g were taken for the study. The study comprised of three groups i.e. a non-diabetic, diabetic untreated and diabetic treated with MC extract, with each group comprising of six (n=6) rats. Diabetes was induced in the overnight fasted rats by intramuscular injection of streptozotocin (50 mg/kg body weight). The MC extract (50 mg/kg body weight) was administered via oral gavage. Both the kidneys were collected on the tenth day following treatment. Histological study using Verhoeff's van Gieson (VvG) and Periodic Acid-Schiff (PAS) stains were performed. The kidneys of the diabetic rats showed thickening of the basement membrane of the Bowman's capsule, edema and hypercellurarity of the proximal tubules, necrosis and hyaline deposits. These features were found to be reversed when the MC extract was administered to the experimental animals. The MC extract acted as an antioxidant thereby preventing the oxidative damage involved in the diabetic kidney. The administration of MC extract prevents oxidative damage in diabetic nephropathy.
    Matched MeSH terms: Diabetes Mellitus, Experimental/chemically induced
  16. Khan MA, Sattar MA, Abdullah NA, Abdulla MH, Salman IM, Kazi RN, et al.
    Kidney Blood Press Res, 2009;32(5):349-59.
    PMID: 19844130 DOI: 10.1159/000249149
    This study investigated the impact of hypertension combined with diabetic nephropathy on rat renal alpha(1)-adrenoceptor subtype composition.
    Matched MeSH terms: Diabetes Mellitus, Experimental/chemically induced
  17. Mojani MS, Sarmadi VH, Vellasamy S, Sandrasaigaran P, Rahmat A, Peng LS, et al.
    Cell Immunol, 2014 May-Jun;289(1-2):145-9.
    PMID: 24791700 DOI: 10.1016/j.cellimm.2014.04.004
    Type 2 diabetes is a chronic disease with growing public health concern globally. Finding remedies to assist this health issue requires recruiting appropriate animal model for experimental studies. This study was designated to evaluate metabolic and immunologic changes in streptozotocin-nicotinamide induced diabetic rats as a model of type 2 diabetes. Male rats were induced diabetes using nicotinamide (110 mg/kg) and streptozotocin (65 mg/kg). Following 42 days, biochemical and immunological tests showed that diabetic rats had higher levels of blood glucose, WBC, certain abnormalities in lipid profile and insufficient mitogenic responses of lymphocytes (p<0.05). However, the status of the total antioxidant, inflammatory biomarkers and other parameters of full blood count (except HCT) were not significantly altered. Phenotyping assay indicated insignificant lymphocyte subtype imbalances excluding a significant rise in the level of CD4+CD25+ marker (p<0.05). This model of diabetic animals may represent some but not all symptoms of human type 2 diabetes.
    Matched MeSH terms: Diabetes Mellitus, Experimental/chemically induced
  18. Taha M, Imran S, Salahuddin M, Iqbal N, Rahim F, Uddin N, et al.
    Bioorg Chem, 2021 05;110:104808.
    PMID: 33756236 DOI: 10.1016/j.bioorg.2021.104808
    We have synthesized new hybrid class of indole bearing sulfonamide scaffolds (1-17) as α-glucosidase inhibitors. All scaffolds were found to be active except scaffold 17 and exhibited IC50 values ranging from 1.60 to 51.20 µM in comparison with standard acarbose (IC50 = 42.45 µM). Among the synthesized hybrid class scaffolds 16 was the most potent analogue with IC50 value 1.60 μM, showing many folds better potency as compared to standard acarbose. Whereas, synthesized scaffolds 1-15 showed good α-glucosidase inhibitory potential. Based on α-glucosidase inhibitory effect, Scaffold 16 was chosen due to highest activity in vitro for further evaluation of antidiabetic activity in Streptozotocin induced diabetic rats. The Scaffold 16 exhibited significant antidiabetic activity. All analogues were characterized through 1H, 13CNMR and HR MS. Structure-activity relationship of synthesized analogues was established and confirmed through molecular docking study.
    Matched MeSH terms: Diabetes Mellitus, Experimental/chemically induced
  19. Ajay M, Mustafa MR
    Vascul. Pharmacol., 2006 Aug;45(2):127-33.
    PMID: 16807125 DOI: 10.1016/j.vph.2006.05.001
    Impaired vascular reactivity is a hallmark of several cardiovascular diseases that include hypertension and diabetes. This study compared the changes in vascular reactivity in age-matched experimental hypertension and diabetes, and, subsequently, tested whether these changes could be affected directly by ascorbic acid (10 microM). Endothelium-derived nitric oxide (NO) modulation of ascorbic acid effects was also investigated. All the experiments were performed in the presence of a cyclooxygenase inhibitor, indomethacin (10 microM). Results showed that the endothelium-dependent and -independent relaxations induced by acetylcholine (ACh) and sodium nitroprusside (SNP), respectively, were blunted to a similar extent in isolated aortic rings from age-matched spontaneously hypertensive (SHR) (R(max): ACh = 72.83+/-1.86%, SNP = 96.6+/-1.90%) and diabetic (Rmax: ACh = 64.09+/-5.14%, SNP = 95.84+/-1.41%) rats compared with aortic rings of normal rats (Rmax: ACh = 89%, SNP = 104.0+/-1.0%). The alpha1-receptor-mediated contractions induced by phenylephrine (PE) were augmented in diabetic (Cmax = 148.8+/-9.0%) rat aortic rings compared to both normal (Cmax = 127+/-6.9%) and SHR (Cmax = 118+/-4.5%) aortic rings. Ascorbic acid pretreatment was without any significant effects on the vascular responses to ACh, SNP and PE in aortic rings from normal rats. Ascorbic acid significantly improved ACh-induced relaxations in SHR (Rmax = 89.09+/-2.82%) aortic rings to a level similar to that observed in normal aortic rings, but this enhancement in ACh-induced relaxations was only partial in diabetic aortic rings. Ascorbic acid lacked any effects on SNP-induced relaxations in both SHR and diabetic aortic rings. Ascorbic acid markedly attenuated contractions induced by PE in aortic rings from both SHR (Cmax = 92.9+/-6.68%) and diabetic (Cmax = 116.9+/-9.4%) rats. Additionally, following inhibition of nitric oxide synthesis with l-NAME, ascorbic acid attenuated PE-induced contractions in all aortic ring types studied. These results suggest that (1) vascular hyper-responsiveness to alpha(1)-receptor agonists in diabetic arteries is independent of endothelial nitric oxide dysfunction; (2) ascorbic acid directly modulates contractile responses of hypertensive and diabetic rat aortas, likely through mechanisms in part independent of preservation of endothelium-derived nitric oxide.
    Matched MeSH terms: Diabetes Mellitus, Experimental/chemically induced
  20. Nna VU, Bakar ABA, Ahmad A, Mohamed M
    Andrology, 2019 01;7(1):110-123.
    PMID: 30515996 DOI: 10.1111/andr.12567
    BACKGROUND: Metformin has long been used for glycemic control in diabetic state. Recently, other benefits of metformin beyond blood glucose regulation have emerged.

    OBJECTIVES: To investigate the effect of metformin on the expression of testicular steroidogenesis-related genes, spermatogenesis, and fertility of male diabetic rats.

    MATERIALS AND METHODS: Eighteen adult male Sprague Dawley rats were divided into three groups, namely normal control (NC), diabetic control (DC), and metformin-treated (300 mg/kg body weight/day) diabetic rats (D+Met). Diabetes was induced using a single intraperitoneal injection of streptozotocin (60 mg/kg b.w.), followed by oral treatment with metformin for four weeks.

    RESULTS: Diabetes decreased serum and intratesticular testosterone levels and increased serum but not intratesticular levels of luteinizing hormone. Sperm count, motility, viability, and normal morphology were decreased, while sperm nuclear DNA fragmentation was increased in DC group, relative to NC group. Testicular mRNA levels of androgen receptor, luteinizing hormone receptor, cytochrome P450 enzyme (CYP11A1), steroidogenic acute regulatory (StAR) protein, 3β-hydroxysteroid dehydrogenase (HSD), and 17β-HSD, as well as the level of StAR protein and activities of CYP11A1, 3β-HSD, and 17β-HSD, were decreased in DC group. Similarly, decreased activities of epididymal antioxidant enzymes and increased lipid peroxidation were observed in DC group. Consequently, decreased litter size, fetal weight, mating and fertility indices, and increased pre- and post-implantation losses were recorded in DC group. Following intervention with metformin, we observed increases in serum and intratesticular testosterone levels, Leydig cell count, improved sperm parameters, and decreased sperm nuclear DNA fragmentation. Furthermore, mRNA levels and activities of steroidogenesis-related enzymes were increased, with improved fertility outcome.

    DISCUSSION AND CONCLUSION: Diabetes mellitus is associated with dysregulation of steroidogenesis, abnormal spermatogenesis, and fertility decline. Controlling hyperglycemia is therefore crucial in preserving male reproductive function. Metformin not only regulates blood glucose level, but also preserves male fertility in diabetic state.

    Matched MeSH terms: Diabetes Mellitus, Experimental/chemically induced
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links