Displaying publications 1 - 20 of 113 in total

Abstract:
Sort:
  1. Ajay M, Achike FI, Mustafa MR
    Pharmacol Res, 2007 May;55(5):385-91.
    PMID: 17317209
    In this study, we report the effects of a non-antioxidant flavonoid flavone on vascular reactivity in Wistar-Kyoto (WKY) rat isolated aortae. Whether flavone directly modulates vascular reactivity in spontaneously hypertensive rat (SHR) and streptozotocin-induced diabetic-WKY rat isolated aortae was also determined. Thoracic aortic rings were mounted in organ chambers and exposed to various drug treatments in the presence of flavone (10 microM) or its vehicle (DMSO), which served as control. Pretreatment with flavone enhanced relaxant effects to endothelium-dependent vasodilator acetylcholine (ACh) and attenuated contractile effects to alpha(1)-receptor agonist phenylephrine (PE) in WKY aortae compared to those observed in control aortic rings. Flavone had no effect on relaxations to ACh in WKY aortae incubated with either L-NAME or methylene blue, but enhanced relaxations to ACh in WKY aortae incubated with indomethacin or partially depolarized with KCl. Relaxations to ACh are totally abolished in both control or flavone pretreated endothelium-denuded WKY aortae. Flavone attenuated the inhibition by beta-NADH of ACh-induced relaxation in WKY aortae, but it had no significant effect on the transient contractions induced by beta-NADH nor the pyrogallol-induced abolishment of ACh-induced relaxation in WKY aortae. Flavone enhanced endothelium-independent relaxation to sodium nitroprusside (SNP) in both endothelium-intact and -denuded WKY aortae. Flavone enhanced relaxation to ACh and SNP as well as attenuated contractile effects to PE in SHR and diabetic aortae, a finding similar to that observed in normal WKY aortae. From these results, we conclude that flavone modulates vascular reactivity in normal as well as hypertensive and diabetic aortae. These effects of flavone results probably through enhanced bioactivity of nitric oxide released from the endothelium.
    Matched MeSH terms: Drug Interactions
  2. Shahzad H, Giribabu N, Karim K, Kassim NM, Muniandy S, Salleh N
    PLoS One, 2017;12(3):e0172765.
    PMID: 28253299 DOI: 10.1371/journal.pone.0172765
    Dysregulation of uterine fluid environment could impair successful reproduction and this could be due to the effect of environmental estrogens. Therefore, in this study, effect of quercetin, an environmental estrogen on uterine fluid and electrolytes concentrations were investigated under sex-steroid influence. Ovariectomised adult female Sprague-Dawley rats were given 10, 50 or 100mg/kg/day quercetin subcutaneously with 17-β estradiol (E) for seven days or three days E, then three days E plus progesterone (P) (E+P) treatment. Uterine fluid secretion rate, Na+, Cl- and HCO3- concentrations were determined by in-vivo perfusion. Following sacrifice, uteri were harvested and levels of the proteins of interest were identified by Western blotting and Realtime PCR. Distribution of these proteins in the uterus was observed by immunofluorescence. Levels of uterine cAMP were measured by enzyme-linked immunoassay (EIA). Administration of quercetin at increasing doses increased uterine fluid secretion rate, Na+, Cl- and HCO3- concentrations, but to the levels lesser than that of E. In concordant, levels of CFTR, SLC4A4, ENaC (α, β and γ), Na+/K+-ATPase, GPα/β, AC and cAMP in the uterus increased following increased in the doses of quercetin. Co-administration of quercetin with E caused uterine fluid secretion rate, Na+, Cl- and HCO3- concentrations to decrease. In concordant, uterine CFTR, SLC26A6, SLC4A4, ENaC (α, β and γ), Na+/K+-ATPase, GPα/β, AC and cAMP decreased. Greatest effects were observed following co-administration of 10mg/kg/day quercetin with E. Co-administration of quercetin with E+P caused uterine fluid Na+ and HCO3- concentrations to increase but no changes in fluid secretion rate and Cl- concentration were observed. Co-administration of high dose quercetin (100 mg/kg/day) with E+P caused uterine CFTR, SLC26A6, AC, GPα/β and ENaC (α, β and γ) to increase. Quercetin-induced changes in the uterine fluid secretion rate and electrolytes concentrations could potentially affect the uterine reproductive functions under female sex-steroid influence.
    Matched MeSH terms: Drug Interactions
  3. Ramasamy S, Kiew LV, Chung LY
    Molecules, 2014 Feb 24;19(2):2588-601.
    PMID: 24566323 DOI: 10.3390/molecules19022588
    Bacopa monnieri and the constituents of this plant, especially bacosides, possess various neuropharmacological properties. Like drugs, some herbal extracts and the constituents of their extracts alter cytochrome P450 (CYP) enzymes, causing potential herb-drug interactions. The effects of Bacopa monnieri standardized extract and the bacosides from the extract on five major CYP isoforms in vitro were analyzed using a luminescent CYP recombinant human enzyme assay. B. monnieri extract exhibited non-competitive inhibition of CYP2C19 (IC50/Ki = 23.67/9.5 µg/mL), CYP2C9 (36.49/12.5 µg/mL), CYP1A2 (52.20/25.1 µg/mL); competitive inhibition of CYP3A4 (83.95/14.5 µg/mL) and weak inhibition of CYP2D6 (IC50 = 2061.50 µg/mL). However, the bacosides showed negligible inhibition of the same isoforms. B. monnieri, which is orally administered, has a higher concentration in the gut than the liver; therefore, this herb could exhibit stronger inhibition of intestinal CYPs than hepatic CYPs. At an estimated gut concentration of 600 µg/mL (based on a daily dosage of 300 mg/day), B. monnieri reduced the catalytic activities of CYP3A4, CYP2C9 and CYP2C19 to less than 10% compared to the total activity (without inhibitor = 100%). These findings suggest that B. monnieri extract could contribute to herb-drug interactions when orally co-administered with drugs metabolized by CYP1A2, CYP3A4, CYP2C9 and CYP2C19.
    Matched MeSH terms: Herb-Drug Interactions
  4. Tan JR, Chakravarthi S, Judson JP, Haleagrahara N, Segarra I
    Naunyn Schmiedebergs Arch Pharmacol, 2013 Jul;386(7):619-33.
    PMID: 23552887 DOI: 10.1007/s00210-013-0861-4
    Sunitinib is a tyrosine kinase inhibitor for GIST and advanced renal cell carcinoma. Diclofenac is used in cancer pain management. Coadministration may mediate P450 toxicity. We evaluate their interaction, assessing biomarkers ALT, AST, BUN, creatinine, and histopathological changes in the liver, kidney, heart, brain, and spleen. ICR mice (male, n = 6 per group/dose) were administered saline (group A) or 30 mg/kg diclofenac ip (group B), or sunitinib po at 25, 50, 80, 100, 140 mg/kg (group C) or combination of diclofenac (30 mg/kg, ip) and sunitinib (25, 50, 80, 100, 140 mg/kg po). Diclofenac was administered 15 min before sunitinib, mice were euthanized 4 h post-sunitinib dose, and biomarkers and tissue histopathology were assessed. AST was 92.2 ± 8.0 U/L in group A and 159.7 ± 14.6 U/L in group B (p < 0.05); in group C, it the range was 105.1-152.6 U/L, and in group D, it was 156.0-209.5 U/L (p < 0.05). ALT was 48.9 ± 1.6 U/L (group A), 95.1 ± 4.5 U/L (p < 0.05) in group B, and 50.5-77.5 U/L in group C and 82.3-115.6 U/L after coadministration (p < 0.05). Renal function biomarker BUN was 16.3 ± 0.6 mg/dl (group A) and increased to 29.9 ± 2.6 mg/dl in group B (p < 0.05) and it the range was 19.1-33.3 mg/dl (p < 0.05) and 26.9-40.8 mg/dl in groups C and D, respectively. Creatinine was 5.9 pmol/ml in group A; 6.2 pmol/ml in group B (p < 0.01), and the range was 6.0-6.2 and 6.2-6.4 pmol/ml in groups C and D, respectively (p < 0.05 for D). Histopathological assessment (vascular and inflammation damages) showed toxicity in group B (p < 0.05) and mild toxicity in group C. Damage was significantly lesser in group D than group B (p < 0.05). Spleen only showed toxicity after coadministration. These results suggest vascular and inflammation protective effects of sunitinib, not shown after biomarker analysis.
    Matched MeSH terms: Drug Interactions
  5. Pan Y, Abd-Rashid BA, Ismail Z, Ismail R, Mak JW, Pook PC, et al.
    J Ethnopharmacol, 2010 Jul 20;130(2):275-83.
    PMID: 20457244 DOI: 10.1016/j.jep.2010.05.002
    ETHNOPHARMACOLOGICAL RELEVANCE: Centella asiatica (CA) has been widely cultivated as a vegetable or spice in China, Southeast Asia, India, Sri Lanka, Africa, and Oceanic countries and traditionally used for wound healing and maintaining normal blood pressure.

    AIM OF THE STUDY: The present study was carried out to examine the potential modulatory effects of three commercially available active components (asiaticoside, asiatic acid and madecassic acid) and four extracts (aqueous, ethanol, dichloromethane and hexane) of CA on three major cDNA-expressed human cytochrome P450 (CYP) isoforms.

    MATERIALS AND METHODS: High-performance liquid chromatography (HPLC)-based enzyme assays, namely tolbutamide 4-methyhydroxylase, dextromethorphan O-demethylase and testosterone 6beta-hydroxylase assays were developed to probe activities of CYP2C9, CYP2D6 and CYP3A4, respectively. Probe substrates were incubated with or without each active component and extract for each isoform, followed by examination of the kinetics parameters, IC(50) and K(i), to characterize modulatory effects.

    RESULTS: CYP2C9 was more susceptible to inhibitory effects by CA extracts compared to CYP2D6 and CYP3A4. Moderate degree of inhibition was observed in ethanol (K(i)=39.1 microg/ml) and dichloromethane (K(i)=26.6 microg/ml) extracts implying potential risk of interaction when CYP2C9 substrates are consumed with CA products. The two extracts however showed negligible inhibition towards CYP2D6 and CYP3A4 (IC(50)'s of 123.3 microg/ml and above). Similarly CA aqueous and hexane extracts did not significantly inhibit all three isoforms investigated (IC(50)'s of 117.9 microg/ml and above). Among the active constituents investigated, asiatic acid and madecassic acid appeared to selectively inhibit CYP2C9 and CYP2D6 more than CYP3A4. Of particular interest is the potent inhibitory effect of asiatic acid on CYP2C9 (K(i)=9.1 microg/ml). This signifies potential risk of interaction when substrates for this isoform are taken together with CA products with high asiatic acid content. Inhibitions of asiatic acid with the other isoforms and that of madecassic acid with all isoforms were only moderate (K(i)'s ranged from 17.2 to 84.4 microg/ml). On the other hand, the IC(50) values for asiaticoside were high (1070.2 microg/ml or above) for all three isoforms, indicating negligible or low potential of this compound to modulate CYP enzymatic activity.

    CONCLUSION: Centella asiatica extracts and active constituents inhibited CYP2C9, CYP2D6 and CYP3A4 activities with varying potency with CYP2C9 being the most susceptible isoform to inhibition. Significant inhibition was observed for asiatic acid and CA ethanol and dichloromethane extracts, implying involvement of semipolar constituents from CA in the effect. This study suggested that CA could cause drug-herb interactions through CYP2C9 inhibition.

    Matched MeSH terms: Herb-Drug Interactions
  6. Lim AY, Segarra I, Chakravarthi S, Akram S, Judson JP
    BMC Pharmacol., 2010;10:14.
    PMID: 20950441 DOI: 10.1186/1471-2210-10-14
    BACKGROUND: Sunitinib, a tyrosine kinase inhibitor to treat GIST and mRCC may interact with paracetamol as both undergo P450 mediated biotransformation and P-glycoprotein transport. This study evaluates the effects of sunitinib-paracetamol coadministration on liver and renal function biomarkers and liver, kidney, brain, heart and spleen histopathology. ICR male mice (n = 6 per group/dose) were administered saline (group-A) or paracetamol 500 mg/kg IP (group-B), or sunitinib at 25, 50, 80, 100, 140 mg/kg PO (group-C) or coadministered sunitinib at 25, 50, 80, 100, 140 mg/kg PO and paracetamol IP at fixed dose 500 mg/kg (group-D). Paracetamol was administered 15 min before sunitinib. Mice were sacrificed 4 h post sunitinib administration.
    RESULTS: Group-A serum ALT and AST levels were 14.29 ± 2.31 U/L and 160.37 ± 24.74 U/L respectively and increased to 249.6 ± 222.7 U/L and 377.1 ± 173.6 U/L respectively in group-B; group-C ALT and AST ranged 36.75-75.02 U/L and 204.4-290.3 U/L respectively. After paracetamol coadministration with low sunitinib doses (group-D), ALT and AST concentrations ranged 182.79-221.03 U/L and 259.7-264.4 U/L respectively, lower than group-B. Paracetamol coadministration with high sunitinib doses showed higher ALT and AST values (range 269.6-349.2 U/L and 430.2-540.3 U/L respectively), p < 0.05. Hepatic histopathology showed vascular congestion in group-B; mild congestion in group-C (but lesser than in group-B and D). In group-D, at low doses of sunitinib, lesser damage than in group-B occurred but larger changes including congestion were observed at high sunitinib doses. BUN levels were higher (p < 0.05) for group-B (33.81 ± 5.68 mg/dL) and group-D (range 35.01 ± 6.95 U/L to 52.85 ± 12.53 U/L) compared to group-A (15.60 ± 2.17 mg/dL) and group-C (range 17.50 ± 1.25 U/L to 26.68 ± 6.05 U/L). Creatinine remained unchanged. Renal congestion and necrosis was lower in group-C than group-B but was higher in group-D (p > 0.05). Mild cardiotoxicity occurred in groups B, C and D. Brain vascular congestion occurred at high doses of sunitinib administered alone or with paracetamol. Hepatic and renal biomarkers correlated with histopathology signs.
    CONCLUSIONS: Paracetamol and sunitinib coadministration may lead to dose dependent outcomes exhibiting mild hepatoprotective effect or increased hepatotoxicity. Sunitinib at high doses show renal, cardiac and brain toxicity. Liver and renal function monitoring is recommended.
    Matched MeSH terms: Drug Interactions
  7. Abdulla MH, Sattar MA, Khan MA, Abdullah NA, Johns EJ
    Acta Physiol (Oxf), 2009 Mar;195(3):397-404.
    PMID: 19183357 DOI: 10.1111/j.1748-1716.2008.01895.x
    This study investigated the influence of angiotensin II (Ang II) receptor and adrenergic blockade on the renal vasoconstrictions caused by Ang II and adrenergic agonists in spontaneously hypertensive rats (SHR).
    Matched MeSH terms: Drug Interactions
  8. Choo BKM, Kundap UP, Johan Arief MFB, Kumari Y, Yap JL, Wong CP, et al.
    PMID: 30844417 DOI: 10.1016/j.pnpbp.2019.02.014
    Epilepsy is marked by seizures that are a manifestation of excessive brain activity and is symptomatically treatable by anti-epileptic drugs (AEDs). Unfortunately, the older AEDs have many side effects, with cognitive impairment being a major side effect that affects the daily lives of people with epilepsy. Thus, this study aimed to determine if newer AEDs (Zonisamide, Levetiracetam, Perampanel, Lamotrigine and Valproic Acid) also cause cognitive impairment, using a zebrafish model. Acute seizures were induced in zebrafish using pentylenetetrazol (PTZ) and cognitive function was assessed using the T-maze test of learning and memory. Neurotransmitter and gene expression levels related to epilepsy as well as learning and memory were also studied to provide a better understanding of the underlying processes. Ultimately, impaired cognitive function was seen in AED treated zebrafish, regardless of whether seizures were induced. A highly significant decrease in γ-Aminobutyric Acid (GABA) and glutamate levels was also discovered, although acetylcholine levels were more variable. The gene expression levels of Brain-Derived Neurotrophic Factor (BDNF), Neuropeptide Y (NPY) and Cyclic Adenosine Monophosphate (CAMP) Responsive Element Binding Protein 1 (CREB-1) were not found to be significantly different in AED treated zebrafish. Based on the experimental results, a decrease in brain glutamate levels due to AED treatment appears to be at least one of the major factors behind the observed cognitive impairment in the treated zebrafish.
    Matched MeSH terms: Drug Interactions
  9. Jafarlou M, Baradaran B, Shanehbandi D, Saedi TA, Jafarlou V, Ismail P, et al.
    Cell Mol Biol (Noisy-le-grand), 2016 May 30;62(6):44-9.
    PMID: 27262801
    Acute myeloid leukemia (AML) is one of the most frequent types of leukemia which mostly affects adult people. Resistance to therapeutic drugs is considered as a major clinical concern resulting in a weaker response to chemotherapy, disease relapse and decreased survival rate. Survivin, a member of Inhibitor of Apoptosis Proteins (IAPs), is associated with drug resistance and inhibition of apoptotic mechanisms in numerous hematological malignancies. In the present study, we examined the combined effect of etoposide and siRNA-mediated silencing of survivin on U-937 acute myeloid leukemia cells. The AML cells were transfected with survivin specific siRNA and gene knockdown was confirmed by quantitative real time PCR and western blotting. Subsequently, U-937 cells were assessed for response to etoposide treatment and apoptosis rate was measured with flowcytometery. The cytotoxic effects in siRNA-etoposide group were measured and compared to etoposide single therapy group. Survivin siRNA effectively knocked down the mRNA and protein levels of survivin, which led to lower cell proliferation and enhanced apoptosis. Furthermore, combined treatment of etoposide and survivin siRNA synergistically increased the cell toxic effects of etoposide and its ability to induce apoptosis.
    Matched MeSH terms: Drug Interactions
  10. Akkaif MA, Daud NAA, Sha'aban A, Ng ML, Abdul Kader MAS, Noor DAM, et al.
    Molecules, 2021 Apr 01;26(7).
    PMID: 33915807 DOI: 10.3390/molecules26071987
    Clopidogrel is a widely-used antiplatelet drug. It is important for the treatment and prevention of coronary heart disease. Clopidogrel can effectively reduce platelet activity and therefore reduce stent thrombosis. However, some patients still have ischemic events despite taking the clopidogrel due to the alteration in clopidogrel metabolism attributable to various genetic and non-genetic factors. This review aims to summarise the mechanisms and causes of clopidogrel resistance (CR) and potential strategies to overcome it. This review summarised the possible effects of genetic polymorphism on CR among the Asian population, especially CYP2C19 *2 / *3 / *17, where the prevalence rate among Asians was 23.00%, 4.61%, 15.18%, respectively. The review also studied the effects of other factors and appropriate strategies used to overcome CR. Generally, CR among the Asian population was estimated at 17.2-81.6%. Therefore, our overview provides valuable insight into the causes of RC. In conclusion, understanding the prevalence of drug metabolism-related genetic polymorphism, especially CYP2C19 alleles, will enhance clinical understanding of racial differences in drug reactions, contributing to the development of personalised medicine in Asia.
    Matched MeSH terms: Drug Interactions
  11. Suvarna BS
    Kathmandu Univ Med J (KUMJ), 2008 7 1;6(23):406-11.
    PMID: 20071830
    Matched MeSH terms: Drug Interactions
  12. Tan SY, Kan E, Lim WY, Chay G, Law JH, Soo GW, et al.
    J Pharm Pharmacol, 2011 Jul;63(7):918-25.
    PMID: 21635257 DOI: 10.1111/j.2042-7158.2011.01296.x
    The pharmacokinetic interaction between metronidazole, an antibiotic-antiparasitic drug used to treat anaerobic bacterial and protozoal infections, and imatinib, a CYP3A4, P-glycoprotein substrate kinase inhibitor anticancer drug, was evaluated.
    Matched MeSH terms: Drug Interactions
  13. Zou D, Goh KL
    J Gastroenterol Hepatol, 2017 Jun;32(6):1152-1159.
    PMID: 28024166 DOI: 10.1111/jgh.13712
    Both proton pump inhibitors (PPIs) and clopidogrel are widely prescribed in the Asia-Pacific population. PPIs are the mainstay therapeutic agents for prophylaxis against aspirin gastropathy and for acid-related disorders including gastroesophageal reflux disease. They are also co-prescribed with oral anticoagulant agents and with dual-antiplatelet therapy for the treatment and prevention of gastrointestinal bleeding. Clopidogrel belongs to the drug class of thienopyridines and is currently the most widely prescribed oral anticoagulant agent either alone or in combination with aspirin. Platelet inhibition by clopidogrel is prone to significant inter-individual variability and is believed to be affected by several factors such as genetics and drug-drug interactions. Since it was first reported in 2009, the potential for drug-drug interactions between PPIs and clopidogrel has remained headline news, and its significance in clinical practice is the subject of an ongoing debate. For East Asian patients in particular, the clinical relevance of the interaction between PPIs and clopidogrel remains unclear because of conflicting data, as well as underrepresentation of East Asian subjects in landmark trials. Increased CYP2C19 genetic polymorphisms in individuals from Asia-Pacific countries only fuel the confusion. Recent studies in East Asian cohorts suggests that the potential of PPIs to attenuate the efficacy of clopidogrel could be minimized by the use of newer PPIs with weaker affinity for the CYP2C19 isoenzyme, namely, pantoprazole, dexlansoprazole, and rabeprazole. This review aims to help clinicians choose the most appropriate PPI for co-prescription with clopidogrel in patients from Asia-Pacific countries.
    Matched MeSH terms: Drug Interactions
  14. Perez-Fernandez D, Shcherbakov D, Matt T, Leong NC, Kudyba I, Duscha S, et al.
    Nat Commun, 2014;5:3112.
    PMID: 24473108 DOI: 10.1038/ncomms4112
    Clinical use of 2-deoxystreptamine aminoglycoside antibiotics, which target the bacterial ribosome, is compromised by adverse effects related to limited drug selectivity. Here we present a series of 4',6'-O-acetal and 4'-O-ether modifications on glucopyranosyl ring I of aminoglycosides. Chemical modifications were guided by measuring interactions between the compounds synthesized and ribosomes harbouring single point mutations in the drug-binding site, resulting in aminoglycosides that interact poorly with the drug-binding pocket of eukaryotic mitochondrial or cytosolic ribosomes. Yet, these compounds largely retain their inhibitory activity for bacterial ribosomes and show antibacterial activity. Our data indicate that 4'-O-substituted aminoglycosides possess increased selectivity towards bacterial ribosomes and little activity for any of the human drug-binding pockets.
    Matched MeSH terms: Drug Interactions
  15. Tan HJ
    J Dig Dis, 2010 Dec;11(6):334-42.
    PMID: 21091895 DOI: 10.1111/j.1751-2980.2010.00466.x
    A proton pump inhibitor (PPI) is often co-prescribed with clopidogrel to reduce the gastrointestinal risk of bleeding ulcers in patients following acute coronary syndrome or a stent implant. However, the safety issue of such practice has been scrutinized after some studies reporting an increased incidence of cardiovascular events and mortality, although there have also been contrary research reports. This has lead to a warning statement from the US Food and Drug Administration cautioning the concomitant use of PPI and clopidogrel. This review examines the evidence of PPI as gastroprotective agent, histamine H(2) antagonists as an alternative therapy, the influence of PPI on the antiplatelet effect of clopidogrel, and the controversies of various studies.
    Matched MeSH terms: Drug Interactions
  16. Pan Y, Abd-Rashid BA, Ismail Z, Ismail R, Mak JW, Pook PC, et al.
    J Ethnopharmacol, 2011 Jan 27;133(2):881-7.
    PMID: 21093571 DOI: 10.1016/j.jep.2010.11.026
    Andrographis paniculata (AP), Centella asiatica (CA) and Orthosiphon stamineus (OS) are three popular herbs traditionally used worldwide. AP is known for the treatment of infections and diabetes and CA is good for wound healing and healthy skin while OS is usually consumed as tea to treat kidney and urinary disorders. Interaction of these herbs with human cytochrome P450 2C19 (CYP2C19), a major hepatic CYP isoform involved in metabolism of many clinical drugs has not been investigated to date.
    Matched MeSH terms: Herb-Drug Interactions
  17. Amir O, Hassan Y, Sarriff A, Awaisu A, Abd Aziz N, Ismail O
    Pharm World Sci, 2009 Jun;31(3):387-93.
    PMID: 19255869 DOI: 10.1007/s11096-009-9288-x
    STUDY OBJECTIVE: To determine the incidence of and the risk factors associated with hyperkalemia, induced by ACEI-drug interactions among cardiac patients.

    SETTING: Five medical and cardiology wards of a tertiary care center in Malaysia.

    SUBJECTS: Five hundred cardiac inpatients, who received ACEIs concomitantly with other interacting drugs.

    METHOD: This was a prospective cohort study of 500 patients with cardiovascular diseases admitted to Penang Hospital between January to August 2006, who received ACEIs concomitantly with other interacting drugs. ACEI-drug interactions of clinical significance were identified using available drug information resources. Drug Interaction Probability Scale (DIPS) was used to assess the causality of association between ACEI-drug interactions and the adverse outcome (hyperkalemia).

    MAIN OUTCOME MEASURE: Hyperkalemia as an adverse clinical outcome of the interaction was identified from laboratory investigations.

    RESULTS: Of the 489 patients included in the analysis, 48 (9.8%) had hyperkalemia thought to be associated with ACEI-drug interactions. Univariate analysis using binary logistic regression revealed that advanced age (60 years or more), and taking more than 15 medications were independent risk factors significantly associated with hyperkalemia. However, current and previous smoking history appeared to be a protective factor. Risk factors identified as predictors of hyperkalemia secondary to ACEI-drug interactions by multi-logistic regression were: advanced age (adjusted OR 2.3, CI 1.07-5.01); renal disease (adjusted OR 4.7, CI 2.37-9.39); hepatic disease (adjusted OR 5.2, CI 1.08-25.03); taking 15-20 medications (adjusted OR 4.4, CI 2.08-9.19); and taking 21-26 medications (adjusted OR 9.0, CI 1.64-49.74).

    CONCLUSION: Cardiac patients receiving ACEIs concomitantly with potentially interacting drugs are at high risk of experiencing hyperkalemia. Old age, renal disease, hepatic disease, and receiving large number of medications are factors that may significantly increase their vulnerability towards this adverse outcome; thus, frequent monitoring is advocated.

    Matched MeSH terms: Drug Interactions
  18. Saw JT, Bahari MB, Ang HH, Lim YH
    Med J Malaysia, 2006 Oct;61(4):422-32.
    PMID: 17243519
    A cross sectional survey on pattern and perception of herbal use among medical patients in Penang Hospital was conducted. Among 250 patients surveyed, 67.9% were using herbal medicine and conventional medicine concomitantly. A majority of the patients used herbs for health maintenance (51.3%) purpose. More than 90% of herbal users did not disclose herbal use to their physician and "Doctor never asked" was the major reason given (54.2%). The Chinese reported the highest rate of herbal use but was least likely to disclose. These findings are important for health professionals to ensure medication safety and recognise potential drug herb interaction.
    Matched MeSH terms: Herb-Drug Interactions
  19. Lau CL, Chan ST, Selvaratanam M, Khoo HW, Lim AY, Modamio P, et al.
    Fundam Clin Pharmacol, 2015 Aug;29(4):404-16.
    PMID: 26011058 DOI: 10.1111/fcp.12126
    Tyrosine kinase inhibitor sunitinib (used in GIST, advanced RCC, and pancreatic neuroendocrine tumors) undergoes CYP3A4 metabolism and is an ABCB1B and ABCG2 efflux transporters substrate. We assessed the pharmacokinetic interaction with ibuprofen (an NSAID used by patients with cancer) in Balb/c male and female mice. Mice (study group) were coadministered (30 min apart) 30 mg/kg of ibuprofen and 60 mg/kg of sunitinib PO and compared with the control groups, which received sunitinib alone (60 mg/kg, PO). Sunitinib concentration in plasma, brain, kidney, and liver was measured by HPLC as scheduled and noncompartmental pharmacokinetic parameters estimated. In female control mice, sunitinib AUC0→∞ decreased in plasma (P < 0.05), was higher in liver and brain (P < 0.001), and lower in kidney (P < 0.001) vs. male control mice. After ibuprofen coadministration, female mice showed lower AUC0→∞ in plasma (P < 0.01), brain, liver, and kidney (all P < 0.001). However, in male mice, AUC0→∞ remained unchanged in plasma, increased in liver and kidney, and decreased in brain (all P < 0.001). The tissue-to-plasma AUC0→∞ ratio was similar between male and female control mice, but changed after ibuprofen coadministration: Male mice showed 1.6-fold higher liver-to-plasma ratio (P < 0.001) while remained unchanged in female mice and in kidney (male and female mice) but decreased 55% in brain (P < 0.05). The tissue-to-plasma partial AUC ratio, the drug tissue targeting index, and the tissue-plasma hysteresis-like plots also showed sex-based ibuprofen-sunitinib drug interaction differences. The results illustrate the relevance of this DDI on sunitinib pharmacokinetics and tissue uptake. These may be due to gender-based P450 and efflux/transporters differences.
    Matched MeSH terms: Drug Interactions
  20. Nabishah BM, Morat PB, Khalid BA, Kadir BA
    Clin Exp Pharmacol Physiol, 1990 Dec;17(12):841-7.
    PMID: 2092952
    1. The effects of corticosteroid pretreatment on acetylcholine (ACH)-induced contraction of bronchial smooth muscle (BSM) were studied. 2. ACH dose-response curves for dexamethasone (DM)- and corticosterone (B)-treated but not deoxycorticosterone (DOC)-treated BSM were significantly shifted to the right; this provides evidence that glucocorticoid treatment reduced the sensitivity of BSM to ACH. 3. Morphine enhanced BSM contraction in response to ACH by 20%. DM suppressed this enhancement. 4. These findings correlated well with the reduction of muscarinic receptor numbers in BSM by glucocorticoids in our previous study. In addition, glucocorticoids reduced the sensitivity of BSM to opioids.
    Matched MeSH terms: Drug Interactions
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links