Displaying publications 1 - 20 of 51 in total

Abstract:
Sort:
  1. Brenciani A, Cinthi M, Coccitto SN, Massacci FR, Albini E, Cucco L, et al.
    J Antimicrob Chemother, 2024 Apr 02;79(4):846-850.
    PMID: 38366373 DOI: 10.1093/jac/dkae039
    OBJECTIVES: To investigate the global distribution of an optrA-harbouring linezolid-resistant Enterococcus faecalis ST476 clonal lineage.

    METHODS: Comprehensive searches of the NCBI database were performed to identify published peer-reviewed articles and genomes of E. faecalis ST476. Each genome was analysed for resistome, virulome, OptrA variant and optrA genetic contexts. A phylogenetic comparison of ST476 genomes with publicly available genomes of other STs was also performed.

    RESULTS: Sixty-six E. faecalis ST476 isolates from 15 countries (China, Japan, South Korea, Austria, Denmark, Spain, Czech Republic, Colombia, Tunisia, Italy, Malaysia, Belgium, Germany, United Arab Emirates and Switzerland) mainly of human and animal origin were identified. Thirty available ST476 genomes compared with genomes of 591 STs indicated a progressive radiation of E. faecalis STs starting from ST21. The closest ancestral node for ST476 was ST1238. Thirty E. faecalis ST476 genomes exhibited 3-916 SNP differences. Several antimicrobial resistance and virulence genes were conserved among the ST476 genomes. The optrA genetic context exhibited a high degree of or complete identity to the chromosomal transposon Tn6674. Only three isolates displayed an optrA-carrying plasmid with complete or partial Tn6674. The WT OptrA protein was most widespread in the ST476 lineage.

    CONCLUSIONS: Linezolid-resistant optrA-carrying E. faecalis of the clonal lineage ST476 is globally distributed in human, animal and environmental settings. The presence of such an emerging clone can be of great concern for public health. Thus, a One Health approach is needed to counteract the spread and the evolution of this enterococcal clonal lineage.

    Matched MeSH terms: Enterococcus faecalis
  2. Chen KJ, Lai CC, Chen HC, Chong YJ, Sun MH, Chen YP, et al.
    Microorganisms, 2021 Apr 24;9(5).
    PMID: 33923356 DOI: 10.3390/microorganisms9050918
    Enterococcus faecalis is known to cause severe acute endophthalmitis and often leads to poor visual outcomes in most ophthalmic infections. This retrospective study is to report the clinical settings, antimicrobial susceptibility patterns, and visual outcome of E. faecalis endophthalmitis at a tertiary referral institution in Taoyuan, Taiwan. E. faecalis endophthalmitis was diagnosed in 37 eyes of 37 patients. Post-cataract surgery was the most common cause (n = 27, 73%), followed by bleb-associated (n = 3, 8%), endogenous (n = 2, 5%), corneal ulcer-related (n = 2, 5%), post-vitrectomy (n = 1, 3%), post-pterygium excision (n = 1, 3%), and trauma (n = 1, 3%). Visual acuities upon presentation ranged from counting fingers to no light perception. Pars plana vitrectomy with intravitreal antibiotics were performed in 23 eyes (76%) as primary or secondary treatment. All isolates (37/37, 100%) were sensitive to vancomycin, penicillin, ampicillin, and teicoplanin. Six of 22 eyes (27%) were resistant to high-level gentamicin (minimum inhibitory concentration > 500 mg/L). Final visual acuities were better than 20/400 in 11 eyes (30%), 5/200 to hand motions in 4 eyes (11%), and light perception to no light perception in 22 eyes (59%). Three eyes were treated with evisceration. Compared with non-cataract subgroups, the post-cataract subgroup showed a significant difference of better visual prognosis (p = 0.016).
    Matched MeSH terms: Enterococcus faecalis
  3. Kok ESK, Lim XJ, Chew SX, Ong SF, See LY, Lim SH, et al.
    BMC Oral Health, 2021 03 12;21(1):116.
    PMID: 33711992 DOI: 10.1186/s12903-021-01470-x
    BACKGROUND: Compare antimicrobial efficacy of a quarternary ammonium silane (QAS)/k21 as an intracanal medicament against E. faecalis and C. albicans biofilms formed on root dentin.

    METHODOLOGY: Dentin blocks were sterilized and E. faecalis and C. albicans microbial colonies were counted for colony-forming-units against 2%k21, 2%CHX and Ca(OH)2 medicaments. Biofilm colonies after 7 days on dentin were analysed using confocal laser scanning microscopy with live/dead bacterial viability staining. TEM was done to study dentin collagen matrix. Dentin discs from 3rd day and 7th day well plate was used for Raman spectra and observed under fluorescent-microscope. Docking studies were carried out on MMP-2 S1 binding-domain with k21.

    RESULTS: There was reduction of E. faecalis/C. albicans when k21, chlorhexidine and calcium hydroxide were used with highest percentage in 2%k21 treated specimens. 2%k21 showed dense and regular collagen network with intact cross-banding and decreased Raman intensity for 2%k21 on 3rd day. NaOCl + k21 showed least adherence, whereas saline groups showed highest adherence of E. faecalis and C. albicans to root-canal dentin. Alizarin red staining of hDPSCs revealed calcium deposition in all groups with significant difference seen amongst 2%k21 groups. MMP-2 ligand binding was seen accurately indicating possible target sites for k21 intervention.

    CONCLUSION: 2%k21 can be considered as alternative intracanal medicament.

    Matched MeSH terms: Enterococcus faecalis
  4. Ismail IH, Al-Bayaty FH, Yusof EM, Gulam Khan HBS, Hamka FA, Azmi NA
    J Conserv Dent, 2021 02 10;23(5):489-496.
    PMID: 33911359 DOI: 10.4103/JCD.JCD_528_20
    Introduction: Enterococcus faecalis can be found in failed endodontic treatment (FET) even after performing primary endodontic treatment (PET). Calcium hydroxide (Ca(OH)2) cannot fully eliminate this microorganism during PET. Brazilian green propolis (bee glue) was found to be more effective against E. faecalis when compared to Ca(OH)2. A much less studied Malaysian geopropolis (MP) as well as Aloe vera (AV) is antibacterial but is unknown against E. faecalis.

    Objective: The objective of this study is to determine the antimicrobial effects of MP, AV, and MP + AV in comparison with Ca(OH)2 against E. faecalis, as an intracanal medicament.

    Materials and Methods: Antimicrobial activity of MP, AV, MP + AV, Ca(OH)2, and dimethyl sulfoxide was tested against E. faecalis using antimicrobial sensitivity testing, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC). The results were analyzed by Kruskal-Wallis test with Mann-Whitney post hoc test and repeated measures analysis of variance with Bonferroni post hoc test (P < 0.05).

    Results: For agar well-diffusion method, MP + AV gave maximum inhibition zone diameter (mean: 8.11 ± 0.015 mm), MP (mean: 6.21 ± 0.046 mm, Ca(OH)2 (mean: 5.5 ± 0.006), and AV (mean: 5.05 ± 0.012) with P < 0.05. MIC for MP + AV was 2 mg/ml, MP at 8 mg/ml, Ca(OH)2 at 8 mg/ml, and AV at 16 mg/ml. The MBC for MP + AV is at 4 mg/ml, MP at 16 mg/ml, Ca(OH)2 at 16 mg/ml, and AV at 32 mg/ml.

    Conclusion: The combination of MP and AV consistently showed better antimicrobial activity compared to MP and AV alone against E. faecalis. The findings suggest that MP and AV used in combination may be an ideal intracanal medicament in FET and PET.

    Matched MeSH terms: Enterococcus faecalis
  5. Parolia A, Kumar H, Ramamurthy S, Madheswaran T, Davamani F, Pichika MR, et al.
    Molecules, 2021 Jan 30;26(3).
    PMID: 33573147 DOI: 10.3390/molecules26030715
    To determine the antibacterial effect of propolis nanoparticles (PNs) as an endodontic irrigant against Enterococcus faecalis biofilm inside the endodontic root canal system. Two-hundred-ten extracted human teeth were sectioned to obtain 6 mm of the middle third of the root. The root canal was enlarged to an internal diameter of 0.9 mm. The specimens were inoculated with E. faecalis for 21 days. Following this, specimens were randomly divided into seven groups, with 30 dentinal blocks in each group including: group I-saline; group II-propolis 100 µg/mL; group III-propolis 300 µg/mL; group IV-propolis nanoparticle 100 µg/mL; group V-propolis nanoparticle 300µg/mL; group VI-6% sodium hypochlorite; group VII-2% chlorhexidine. Dentin shavings were collected at 200 and 400 μm depths, and total numbers of CFUs were determined at the end of one, five, and ten minutes. The non-parametric Kruskal-Wallis and Mann-Whitney tests were used to compare the differences in reduction in CFUs between all groups, and probability values of p < 0.05 were set as the reference for statistically significant results. The antibacterial effect of PNs as an endodontic irrigant was also assessed against E. faecalis isolates from patients with failed root canal treatment. Scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) were also performed after exposure to PNs. A Raman spectroscope, equipped with a Leica microscope and lenses with curve-fitting Raman software, was used for analysis. The molecular interactions between bioactive compounds of propolis (Pinocembrin, Kaempferol, and Quercetin) and the proteins Sortase A and β-galactosidase were also understood by computational molecular docking studies. PN300 was significantly more effective in reducing CFUs compared to all other groups (p < 0.05) except 6% NaOCl and 2% CHX (p > 0.05) at all time intervals and both depths. At five minutes, 6% NaOCl and 2% CHX were the most effective in reducing CFUs (p < 0.05). However, no significant difference was found between PN300, 6% NaOCl, and 2% CHX at 10 min (p > 0.05). SEM images also showed the maximum reduction in E. faecalis with PN300, 6% NaOCl, and 2% CHX at five and ten minutes. CLSM images showed the number of dead cells in dentin were highest with PN300 compared to PN100 and saline. There was a reduction in the 484 cm-1 band and an increase in the 870 cm-1 band in the PN300 group. The detailed observations of the docking poses of bioactive compounds and their interactions with key residues of the binding site in all the three docking protocols revealed that the interactions were consistent with reasonable docking and IFD docking scores. PN300 was equally as effective as 6% NaOCl and 2% CHX in reducing the E. faecalis biofilms.
    Matched MeSH terms: Enterococcus faecalis/drug effects*; Enterococcus faecalis/pathogenicity
  6. Yip CH, Mahalingam S, Wan KL, Nathan S
    PLoS One, 2021;16(6):e0253445.
    PMID: 34161391 DOI: 10.1371/journal.pone.0253445
    Prodigiosin, a red linear tripyrrole pigment, has long been recognised for its antimicrobial property. However, the physiological contribution of prodigiosin to the survival of its producing hosts still remains undefined. Hence, the aim of this study was to investigate the biological role of prodigiosin from Serratia marcescens, particularly in microbial competition through its antimicrobial activity, towards the growth and secreted virulence factors of four clinical pathogenic bacteria (methicillin-resistant Staphylococcus aureus (MRSA), Enterococcus faecalis, Salmonella enterica serovar Typhimurium and Pseudomonas aeruginosa) as well as Staphylococcus aureus and Escherichia coli. Prodigiosin was first extracted from S. marcescens and its purity confirmed by absorption spectrum, high performance liquid chromatography (HPLC) and liquid chromatography-tandem mass spectrophotometry (LC-MS/MS). The extracted prodigiosin was antagonistic towards all the tested bacteria. A disc-diffusion assay showed that prodigiosin is more selective towards Gram-positive bacteria and inhibited the growth of MRSA, S. aureus and E. faecalis and Gram-negative E. coli. A minimum inhibitory concentration of 10 μg/μL of prodigiosin was required to inhibit the growth of S. aureus, E. coli and E. faecalis whereas > 10 μg/μL was required to inhibit MRSA growth. We further assessed the effect of prodigiosin towards bacterial virulence factors such as haemolysin and production of protease as well as on biofilm formation. Prodigiosin did not inhibit haemolysis activity of clinically associated bacteria but was able to reduce protease activity for MRSA, E. coli and E. faecalis as well as decrease E. faecalis, Salmonella Typhimurium and E. coli biofilm formation. Results of this study show that in addition to its role in inhibiting bacterial growth, prodigiosin also inhibits the bacterial virulence factor protease production and biofilm formation, two strategies employed by bacteria in response to microbial competition. As clinical pathogens were more resistant to prodigiosin, we propose that prodigiosin is physiologically important for S. marcescens to compete against other bacteria in its natural soil and surface water environments.
    Matched MeSH terms: Enterococcus faecalis/drug effects; Enterococcus faecalis/growth & development
  7. Albaayit SFA, Maharjan R, Abdullah R, Noor MHM
    Biomed Res Int, 2021;2021:3123476.
    PMID: 33748267 DOI: 10.1155/2021/3123476
    BACKGROUND: Clausena excavata Burum. f. has long been applied in ethnomedicine for the treatment of various disorders like rhinitis, headache, cough, wound healing, fever, and detoxification. This study is aimed at investigating the antibacterial activity against Enterococcus faecalis ATCC 49532 using AlamarBlue assay and atomic force microscopy (AFM) as well as the cytotoxicity, anticancer, and phytotoxicity of C. excavata.

    METHOD: Bacterial cell viability was performed by using microplate AlamarBlue assay. Atomic force microscopy was used to determine morphological changes in the surface of bacterial cells. Cytotoxicity and phytotoxicity were determined by brine shrimp lethality and Lemna minor bioassay. Caco-2 (colorectal adenocarcinoma) cell line was used for the evaluation of the anticancer effects.

    RESULT: Among the fractions tested, ethyl acetate (EA) fraction was found to be active with minimum inhibitory concentration (MIC) of 750 μg/mL against E. faecalis, but other fractions were found to be insensitive to bacterial growth. Microscopically, the EA fraction-treated bacteria showed highly damaged cells with their cytoplasmic content scattered all over. The LC50 value of the EA fraction against brine shrimp was more than 1000 μg/mL showing the nontoxic nature of this fraction. Chloroform (CH), EA, and methanol (MOH) fractions of C. excavata were highly herbicidal at the concentration of 1000 μg/mL. EA inhibited Caco-2 cell line with an IC50 of 20 μg/mL.

    CONCLUSIONS: This study is the first to reveal anti-E. faecalis property of EA fraction of C. excavata leaves, natural herbicidal, and anticancer agents thus highlight the potential compound present in its leaf which needs to be isolated and tested against multidrug-resistant E. faecalis.

    Matched MeSH terms: Enterococcus faecalis/growth & development*
  8. Daood U, Parolia A, Matinlinna J, Yiu C, Ahmed HMA, Fawzy A
    Dent Mater, 2020 12;36(12):e386-e402.
    PMID: 33010944 DOI: 10.1016/j.dental.2020.09.008
    OBJECTIVES: Evaluate a new modified quaternary ammonium silane irrigant solution for its antimicrobial, cytotoxic and mechanical properties of dentine substrate.

    METHODS: Root canal preparation was performed using stainless steel K-files™ and F4 size protaper with irrigation protocols of 6% NaOCl + 2% CHX; 3.5% QIS; 2% QIS and sterile saline. Biofilms were prepared using E. faecalis adjusted and allowed to grow for 3 days, treated with irrigants, and allowed to grow for 7 days. AFM was performed and surface free energy calculated. MC3T3 cells were infected with endo irrigant treated E. faecalis biofilms. Raman spectroscopy of biofilms were performed after bacterial re-growth on root dentine and exposed to different irrigation protocols and collagen fibers analysed collagen fibers using TEM. Antimicrobial potency against E. faecalis biofilms and cytoxicity against 3T3 NIH cells were also. Resin penetration and MitoTracker green were also evaluated for sealer penetration and mitochondrial viability. Data were analysed using One-way ANOVA, principal component analysis and post-hoc Fisher's least-significant difference.

    RESULTS: Elastic moduli were maintained amongst control (5.5 ± 0.9) and 3.5% QIS (4.4 ± 1.1) specimens with surface free energy higher in QIS specimens. MC3T3 cells showed reduced viability in 6%NaOCl+2%CHX specimens compared to QIS specimens. DNA/purine were expressed in increased intensities in control and 6% NaOCl + 2% CHX specimens with bands around 480-490 cm-1 reduced in QIS specimens. 3.5% QIS specimens showed intact collagen fibrillar network and predominantly dead bacterial cells in confocal microscopy. 3.5% QIS irrigant formed a thin crust-type surface layer with cytoplasmic extensions of 3T3NIH spread over root dentine. Experiments confirmed MitoTracker accumulation in 3.5% treated cells.

    SIGNIFICANCE: Novel QIS root canal irrigant achieved optimum antimicrobial protection inside the root canals facilitating a toxic effect against the Enterococcus faecalis biofilm. Root dentine substrates exhibited optimum mechanical properties and there was viability of fibroblastic mitochondria.

    Matched MeSH terms: Enterococcus faecalis
  9. Naicker D, Zilm P, Nagendrababu V, Rossi-Fedele G
    Eur Endod J, 2020 12;5(3):242-247.
    PMID: 33353919 DOI: 10.14744/eej.2020.70883
    OBJECTIVE: To assess the effect of osmotic stress on various bacteria in a planktonic milieu and the effect of exposure to sodium hypochlorite (NaOCl) on the microbial cells previously subjected to osmotic stress.

    METHODS: Enterococcus faecalis, Streptococcus sanguinis, Fusobacterium nucleatum, Porphyromonas gingivalis and Prevotella intermedia were suspended as follows: Iso-osmotic group 0.9% NaCl; Hypo-osmotic group "ultrapure water"; Hyper-osmotic group 9% NaCl solution for 120 hours before exposure to 0.0001% NaOCl for 10 minutes. Quantitative analyses of viable cells were performed at 0 and 120 hours and after exposure to NaOCl to obtain colony forming units (CFU/mL). A linear mixed-effects model was used to find the association between mean CFU/mL (logarithmic transformation) and the interaction of solution Group and Time (P<0.001).

    RESULTS: F. nucleatum, P. gingivalis and P. intermedia did not survive after 24 hours in any of the solutions and were excluded from further testing. For S. sanguinis there were significant differences at each time interval, when holding solution group constant. After 120 hours, the Hyper-osmotic group presented with the highest CFU/mL and was significantly different to the Iso-osmotic group (P<0.001). For E. Faecalis, there was a significant difference for each pairwise comparison of time (P<0.001) in mean CFU/mL between 0 hours and 120 hours for the Iso-osmotic and Hyper-osmotic groups. At 120 hours, no significant differences were found between the three groups. Significant differences were also found between 0 hours and Post-NaOCl administration, and between 120 hours and Post-NaOCl administration for all three groups (P<0.001). Exposure to NaOCl after hypo-osmotic stress was associated with significantly less CFU/mL for S. sanguinis compared to hyperosmosis and iso-osmosis (P<0.001) and for E. Faecalis only compared to hyperosmosis (P<0.001).

    CONCLUSION: S. sanguinis and E. faecalis were able to withstand osmotic stress for 120 hours. Hypo-osmotic stress before contact with NaOCl was associated with lower viable bacterial numbers, when compared to the other media for the above species. Hyper-osmotic stress was associated with higher viable bacterial numbers after NaOCl exposure for E. faecalis.

    Matched MeSH terms: Enterococcus faecalis
  10. Parolia A, Kumar H, Ramamurthy S, Davamani F, Pau A
    BMC Oral Health, 2020 11 25;20(1):339.
    PMID: 33238961 DOI: 10.1186/s12903-020-01330-0
    BACKGROUND: The successful outcome of endodontic treatment depends on controlling the intra-radicular microbial biofilm by effective instrumentation and disinfection using various irrigants and intracanal medicaments. Instrumentation alone cannot effectively debride the root canals specially due to the complex morphology of the root canal system. A number of antibiotics and surfactants are being widely used in the treatment of biofilms however, the current trend is towards identification of natural products in disinfection. The aim of the study was to determine the antibacterial effect of chitosan-propolis nanoparticle (CPN) as an intracanal medicament against Enterococcus faecalis biofilm in root canal.

    METHODS: 240 extracted human teeth were sectioned to obtain 6 mm of the middle third of the root. The root canal was enlarged to an internal diameter of 0.9 mm. The specimens were inoculated with E. faecalis for 21 days. Following this, specimens were randomly divided into eight groups (n = 30) according to the intracanal medicament placed: group I: saline, group II: chitosan, group III: propolis100 µg/ml (P100), group IV: propolis 250 µg/ml (P250), group V: chitosan-propolis nanoparticle 100 µg/ml (CPN100), group VI: chitosan-propolis nanoparticle 250 µg/ml (CPN250), group VII: calcium hydroxide(CH) and group VIII: 2% chlorhexidine (CHX) gel. Dentine shavings were collected at 200 and 400 μm depths, and total numbers of CFUs were determined at the end of day one, three and seven. The non-parametric Kruskal Wallis and Mann-Whitney tests were used to compare the differences in reduction of CFUs between all groups and probability values of p 

    Matched MeSH terms: Enterococcus faecalis
  11. Loong SK, Lim FS, Khoo JJ, Lee HY, Suntharalingam C, Ishak SN, et al.
    Trop Biomed, 2020 Sep 01;37(3):803-811.
    PMID: 33612793 DOI: 10.47665/tb.37.3.803
    Ticks are vectors of bacteria, protozoa and viruses capable of causing serious and life threatening diseases in humans and animals. Disease transmission occurs through the transfer of pathogen from tick bites to susceptible humans or animals. Most commonly known tick-borne pathogens are obligate intracellular microorganisms but little is known on the prevalence of culturable pathogenic bacteria from ticks capable of growth on artificial nutrient media. One hundred and forty seven ticks originating from dairy cattle, goats and rodents were collected from nine selected sites in Peninsular Malaysia. The culture of surfacesterilized tick homogenates revealed the isolation of various pathogenic bacteria including, Staphylococcus sp., Corynebacterium sp., Rothia sp., Enterococcus faecalis, Klebsiella pneumoniae, Escherichia coli and Bacillus sp. and its derived genera. These pathogens are among those that affect humans and animals. Findings from this study suggest that in addition to the regular intracellular pathogens, ticks could also harbor extracellular pathogenic bacteria. Further studies, hence, would be needed to determine if these extracellular pathogens could contribute to human or animal infection.
    Matched MeSH terms: Enterococcus faecalis
  12. Sainudeen S, Nair VS, Zarbah M, Abdulla AM, Najeeb CM, Ganapathy S
    J Pharm Bioallied Sci, 2020 Aug;12(Suppl 1):S423-S429.
    PMID: 33149499 DOI: 10.4103/jpbs.JPBS_127_20
    Aim: The purpose of this study was to evaluate the antimicrobial efficacy of Tylophora indica, Curcumin longa, and Phyllanthus amarus on Enterococcus faecalis biofilms formed on the tooth substrate. Sodium hypochlorite was used as a positive control. DMSO (dimethyl sulfoxide), the vehicle for the herbal extracts, was used as the negative control.

    Materials and Methods: Extracted human teeth were biomechanically prepared, vertically sectioned, placed in the tissue culture wells exposing the root canal surface to E. faecalis to form a biofilm. At the end of the third week, all groups were treated for 15 min with the test solutions and the control. The results were analyzed both quantitatively and qualitatively.

    Results: Statistical analysis was performed by using one-way analysis of variance and compared by the Mann-Whitney test using the Statistical Package for the Social Sciences (SPSS) software, version 20.0. The qualitative assay with the 3-week biofilm on the canal portion showed complete inhibition of bacterial growth for NaOCl, whereas samples treated with herbal solutions showed significant reduction of bacterial growth compared to control group, which showed 139.9 × 109 CFU/mL among the experimental herbal solutions groups. P. amarus has shown maximum bacterial count followed by C. longa and T. indica.

    Conclusion: NaOCl 5% showed maximum antibacterial activity against 3-week biofilm on tooth substrate. T. indica, P. amarus, and C. longa showed statistically significant antibacterial activity against 3-week biofilm. The use of herbal alternatives might prove to be advantageous considering the several undesirable characteristics of NaOCl.

    Matched MeSH terms: Enterococcus faecalis
  13. Wan Mat Khalir WKA, Shameli K, Jazayeri SD, Othman NA, Che Jusoh NW, Mohd Hassan N
    Nanomaterials (Basel), 2020 Jun 03;10(6).
    PMID: 32503127 DOI: 10.3390/nano10061104
    It is believed of great interest to incorporate silver nanoparticles (Ag-NPs) into stable supported materials using biological methods to control the adverse properties of nanoscale particles. In this study, in-situ biofabrication of Ag-NPs using Entada spiralis (E. spiralis) aqueous extract in Ceiba pentandra (C. pentandra) fiber as supporting material was used in which, the E. spiralis extract acted as both reducing and stabilizing agents to incorporate Ag-NPs in the C. pentandra fiber. The properties of Ag-NPs incorporated in the C. pentandra fiber (C. pentandra/Ag-NPs) were characterized using UV-visible spectroscopy (UV-vis), X-ray Diffraction (XRD), Field Emission Transmission Electron Microscope (FETEM), Scanning Electron Microscope (Scanning Electron Microscope (SEM), Energy Dispersive X-ray (EDX), Brunauer-Emmett-Teller (BET), Thermogravimetric (TGA) and Fourier Transform Infrared (FTIR) analyses. The average size of Ag-NPs measured using FETEM image was 4.74 nm spherical in shape. The C. pentandra/Ag-NPs was easily separated after application, and could control the release of Ag-NPs to the environment due to its strong attachment in C. pentandra fiber. The C. pentandra/Ag-NPs exposed good qualitative and quantitative antibacterial activities against Staphylococcus aureus (ATCC 25923), Enterococcus faecalis (ATCC 29212), Escherichia coli (ATCC 25922) and Proteus vulgaris (ATCC 33420). The dye catalytic properties of C. pentandra/Ag-NPs revealed the dye reduction time in which it was completed within 4 min for 20 mg/L rhodamine B and 20 min for 20 mg/L methylene blue dye, respectively. Based on the results, it is evident that C. pentandra/Ag-NPs are potentially promising to be applied in wound healing, textile, wastewater treatment, food packaging, labeling and biomedical fields.
    Matched MeSH terms: Enterococcus faecalis
  14. Mogana R, Adhikari A, Tzar MN, Ramliza R, Wiart C
    BMC Complement Med Ther, 2020 Feb 14;20(1):55.
    PMID: 32059725 DOI: 10.1186/s12906-020-2837-5
    BACKGROUND: Canarium patentinervium leaves are used by the local indigenous people of Malaysia for wound healing. The current study is undertaken to screen the comprehensive antibacterial activity of the leaves and barks extracts, fractions and isolated compounds from this plant. Bioassay guided fractionation was also undertaken to deeply evaluate the antibacterial activity of the water fraction of the leaves extract. This is to provide preliminary scientific evidence to the ethnopharmacology usage of this plant by investigating antibacterial properties of the plant and its isolated constituents.

    METHODS: Bio-assay guided fractionation and subsequent isolation of compounds using open column chromatography. The antibacterial activity against gram positive and gram negative ATCC strain and resistant clinical strains were evaluated using microtiter broth dilution method to determine minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and time-kill assay. The chemical structure of the isolated compounds from the water fraction of the ethanol extract of leaves was elucidated using Nuclear Magnetic Resonance (NMR).

    RESULTS: The ethanol extract of the leaves and barks showed antimicrobial activity against all four ATCC and eight clinical isolates. The ethanol extract of the leaves and the corresponding water fraction had good activity against MRSA S. aureus. (MIC: 250 μg/ml) and had bactericidal effect on eight of the clinical strains (MSSA,MRSA, oxacillin-resistant CONS, oxacillin-sensitive CONS, Enterococcus faecalis, Klebsiela species, Kleb pneumoniae ESBL and Candida parapsilosis). Further phytochemical investigation of the water fraction of the crude ethanol extract of leaves afforded compound 7 (hyperin) and compound 8 (cynaroside) that had bactericidal activity against tested bacterial species (MIC 50 μg/ml and 100 μg/ml). The two compounds were isolated from this genus for the first time.

    CONCLUSIONS: These results may provide a rational support for the traditional use of Canarium patentinervium Miq. in infections and wound healing, since the antimicrobial compounds isolated were also present in the leaves extract.

    Matched MeSH terms: Enterococcus faecalis
  15. Elghaieb H, Tedim AP, Abbassi MS, Novais C, Duarte B, Hassen A, et al.
    J Antimicrob Chemother, 2020 01 01;75(1):30-35.
    PMID: 31605129 DOI: 10.1093/jac/dkz419
    OBJECTIVES: Increasing numbers of linezolid-resistant Enterococcus carrying optrA are being reported across different niches worldwide. We aimed to characterize the first optrA-carrying Enterococcus faecalis obtained from food-producing animals and retail meat samples in Tunisia.

    METHODS: Seven optrA-carrying E. faecalis obtained from chicken faeces (n=3, August 2017) and retail chicken meat (n=4, August 2017) in Tunisia were analysed. Antimicrobial susceptibility was determined by disc diffusion, broth microdilution and Etest against 13 antibiotics, linezolid and tedizolid, respectively (EUCAST/CLSI). optrA stability (∼600 bacterial generations), transfer (filter mating) and location (S1-PFGE/hybridization) were characterized. WGS (Illumina-HiSeq) was done for four representatives that were analysed through in silico and genomic mapping tools.

    RESULTS: Four MDR clones carrying different virulence genes were identified in chicken faeces (ST476) and retail meat (the same ST476 clone plus ST21 and ST859) samples. MICs of linezolid and tedizolid were stably maintained at 8 and 1-2 mg/L, respectively. optrA was located in the same transferable chromosomal Tn6674-like element in ST476 and ST21 clones, similar to isolates from pigs in Malaysia and humans in China. ST859 carried a non-conjugative plasmid of ∼40 kb with an impB-fexA-optrA segment, similar to plasmids from pigs and humans in China.

    CONCLUSIONS: The same chromosomal and transferable Tn6674-like element was identified in different E. faecalis clones from humans and animals. The finding of retail meat contaminated with the same linezolid-resistant E. faecalis strain obtained from a food-producing animal highlights the potential role of the food chain in the worrisome dissemination of optrA that can be stably maintained without selective pressure over generations.

    Matched MeSH terms: Enterococcus faecalis/classification; Enterococcus faecalis/drug effects*; Enterococcus faecalis/genetics*
  16. Wan Mat Khalir WKA, Shameli K, Jazayeri SD, Othman NA, Che Jusoh NW, Hassan NM
    Front Chem, 2020;8:620.
    PMID: 32974269 DOI: 10.3389/fchem.2020.00620
    Silver nanoparticles (Ag-NPs) have been established as antibacterial nanoparticles and have been innovatively developed to overcome the occurrence of antibiotic resistance in the environment. In this study, an environmentally friendly and easy method of the biosynthesis of Ag-NPs plants, mediated by aqueous extract stem extract of Entada spiralis (E. spiralis), was successfully developed. The E. spiralis/Ag-NPs samples were characterized using spectroscopy and the microscopic technique of UV-visible (UV-vis), X-ray Diffraction (XRD), Field Emission Transmission Electron Microscope (FETEM), zeta potential, and Fourier Transform Infrared (FTIR) analyses. Surface Plasmon Resonance (SPR) absorption at 400-450 nm in the UV-vis spectra established the formation of E. spiralis/Ag-NPs. The crystalline structure of E. spiralis/Ag-NPs was displayed in the XRD analysis. The small size, around 18.49 ± 4.23 nm, and spherical shape of Ag-NPs with good distribution was observed in the FETEM image. The best physicochemical parameters on Ag-NPs biosynthesis using E. spiralis extract occurred at a moderate temperature (~52.0°C), 0.100 M of silver nitrate, 2.50 g of E. spiralis dosage and 600 min of stirring reaction time. The antibacterial activity was tested against Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, and Proteus vulgaris using an antibacterial disk diffusion assay. Based on the results, it is evident that E. spiralis/Ag-NPs are susceptible to all the bacteria and has promising potential to be applied in both the industry and medical fields.
    Matched MeSH terms: Enterococcus faecalis
  17. Sui, Sien Leong, Lihan, Samuel, Hwa, Chuan Chia
    MyJurnal
    The abuse of antibiotics usage in bird industry has resulted in the emerging antibiotic resistant Enterococci worldwide which has posed a threat clinically to human health. The present study was to screen and identify the potential virulence agents in antibiotic resistance E. faecalis in bird industry in Borneo. Enterococcus bacteria collected from the birds’ faeces and indoor air inside ten birdhouses were identified to species level and their antibiotic resistance was checked using antibiotic susceptibility discs. Specific primers using PCR assay were intended for the detection of four potential virulence genes (ace, AS, efaA, gelE). Out of the thirty-seven Enterococci faecal bacteria, the prevailing bacteria found were Enterococcus qallinacum (51%), Enterococcus faecalis (35%) and Enterococcus harae (8%). The airborne bacteria were reported as Enterococcus faecalis (5%) and Enterococcus qallinacum (1%). Twenty-seven percent of isolates were reported to have Multiple Antibiotic Resistance (MAR) index ≥ 0.2 with 9 distinct resistance patterns formed. E. faecalis showed higher resistance to vancomycin. Virulence genes were successfully reported in the 15 E. faecalis isolates. Sixty-seven percent of isolates were detected positive for four virulence genes, 27% possessed three (AS, efaA, gelE) genes and 6% possessed two (ace, AS) genes. Antibiotic resistance and virulence genes detection were significantly correlated. These virulence genes or antibiotic resistance genes were important in the pathogenesis of E. faecalis infections.
    Matched MeSH terms: Enterococcus faecalis
  18. How, Y. H., Ewe, J. A., Song, K. P., Kuan, C. H., Kuan, C. S., Yeo, S. K.
    MyJurnal
    The present work aimed to determine the antagonistic effect of probiotic-fermented soy against oral pathogens. Indigenous oral probiotics (Streptococcus salivarius Taylor’s Univer- sity Collection Centre (TUCC) 1251, S. salivarius TUCC 1253, S. salivarius TUCC 1254, S. salivarius TUCC 1255, and S. orisratti TUCC 1253) were incorporated into soy fermentation at 37°C for 24 h. Growth characteristics, β-glucosidase activity, and total isoflavones content of Streptococcus strains following soy fermentation were analysed. Antimicrobial test of Streptococcus-fermented soy was carried out against oral pathogens Enterococcus faecalis American Type Culture Collection (ATCC) 700802, Streptococcus pyogenes ATCC 19615, and Staphylococcus aureus ATCC 25923. Streptococcus strains showed a significant increase in growth following soy fermentation. S. salivarius TUCC 1253-fermented soy showed signif- icantly higher extracellular β-glucosidase activity and amount of aglycones. S. salivarius TUCC 1253-fermented soy showed antimicrobial effect against all oral tested pathogens in both aerobic and anaerobic conditions. These results showed that S. salivarius TUCC 1253-fermented soy could potentially be used as a preventive action or alternative treatment for oral infections.

    Matched MeSH terms: Enterococcus faecalis
  19. Ismail NA, Shameli K, Wong MM, Teow SY, Chew J, Sukri SNAM
    Mater Sci Eng C Mater Biol Appl, 2019 Nov;104:109899.
    PMID: 31499959 DOI: 10.1016/j.msec.2019.109899
    In this study, a comparative study of effect using honey on copper nanoparticles (Cu-NPs) via simple, environmentally friendly process and inexpensive route was reported. Honey and ascorbic acid act as stabilizing and reducing agents with the assistance of sonochemical method. The products were characterized using UV-visible (UV-vis) spectroscopy, X-Ray Diffraction (XRD), High-Resolution Transmission Electron Microscopy (HRTEM), Field-Emission Scanning Electron Microscopy (FESEM) and Fourier Transform Infrared (FTIR) spectroscopy. The reddish brown colour demonstrated the formation of Cu-NPs and UV-visible proved the plasmon resonance of Cu-NPs. XRD also confirmed a highly pure Cu-NPs obtained with absence of copper oxide in which the structure is crystalline. The spherical size of the Cu-NPs was acquire in the presence of honey which is 3.68 ± 0.78 nm with narrow particle distribution. The antibacterial activity was seen against gram-positive and gram-negative bacteria which are Enterococcus faecalis (E. faecalis) and Escherichia coli (E. coli). At higher concentration of Cu-NPs, they were more effective in killing both bacteria. The Cu-NPs without and with honey exhibited toxicities toward normal and cancerous cells. However, Cu-NPs without honey showed more potent killing activity against normal and cancer cells.
    Matched MeSH terms: Enterococcus faecalis/drug effects
  20. Weng PL, Ramli R, Hamat RA
    PMID: 31533204 DOI: 10.3390/ijerph16183439
    Enterococci are commonly found in humans, animals and environments. Their highly adaptive mechanisms are related to several virulent determinants and their ability to resist antibiotics. Data on the relationship between the esp gene, biofilm formation and antibiotic susceptibility profiles may differ between countries. This cross-sectional study was conducted to determine the proportion of esp gene and biofilm formation among Enterococcus faecalis and Enterococcus faecium clinical isolates. We also investigated the possible association between the esp gene with antibiotic susceptibility patterns and biofilm formation. The isolates were collected from clinical samples and identified using biochemical tests and 16SRNA. Antibiotic susceptibility patterns and a biofilm assay were conducted according to the established guidelines. Molecular detection by PCR was used to identify the esp gene using established primers. In total, 52 and 28 of E. faecalis and E. faecium were identified, respectively. E. faecium exhibited higher resistance rates compared to E. faecalis as follows: piperacillin/tazobactam (100% versus 1.9%), ampicillin (92.8% versus 1.9%), high-level gentamicin resistance (HLGR) (89.3% versus 25.0%) and penicillin (82.1% versus 7.7%). E. faecium produced more biofilms than E. faecalis (59.3% versus 49.0%). E. faecium acquired the esp gene more frequently than E. faecalis (78.6% versus 46.2%). Interestingly, the associations between ampicillin and tazobactam/piperacillin resistance with the esp gene were statistically significant (X2 = 4.581, p = 0.027; and X2 = 6.276, p = 0.012, respectively). Our results demonstrate that E. faecium exhibits high rates of antimicrobial resistance, esp gene acquisition and biofilm formation. These peculiar traits of E. faecium may have implications for the management of enterococcal infections in hospitals. Thus, concerted efforts by all parties in establishing appropriate treatment and effective control measures are warranted in future.
    Matched MeSH terms: Enterococcus faecalis/genetics; Enterococcus faecalis/physiology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links