Displaying publications 1 - 20 of 374 in total

Abstract:
Sort:
  1. Tiong KH, Yiap BC, Tan EL, Ismail R, Ong CE
    Xenobiotica, 2010 Jul;40(7):458-66.
    PMID: 20402563 DOI: 10.3109/00498251003786749
    1. The effect of flavonoids on coumarin 7-hydroxylation, an activity marker of an important human liver cytochrome P450 isoform, cytochrome P450 2A6 (CYP2A6), was investigated in this study. 2. Coumarin 7-hydroxylase activity was measured fluorometrically in reaction mixtures containing cDNA-expressed CYP2A6, nicotinamide adenine dinucleotide phosphate generating system and 10 uM coumarin, at various concentrations of flavonoids. 3. Among the 23 compounds tested, most of the active members were from flavonol group of hydroxylated flavonoids, with myricetin being the most potent inhibitor followed by quercetin, galangin, and kaempferol. 4. Further exploration of the inhibition mechanism of these compounds revealed that myricetin, galangin, and kaempferol exhibited mixed-type of inhibition pattern while quercetin was observed to exhibit competitive mode of inhibition. 5. Structure-function analyses revealed that degree of inhibition was closely related to the number and location of hydroxyl groups, glycosylation of the free hydroxyl groups, degree of saturation of the flavane nucleus as well as the presence of the alkoxylated function.
    Matched MeSH terms: Enzyme Inhibitors/metabolism*; Enzyme Inhibitors/pharmacology
  2. Chin LC, Achike FI, Mustafa MR
    Vascul. Pharmacol., 2007 Mar;46(3):223-8.
    PMID: 17126611 DOI: 10.1016/j.vph.2006.10.005
    Hydrogen peroxide (H(2)O(2)) contributes in the regulation of vascular tone, especially in pathological states. The role of H(2)O(2) and superoxide anion free radicals in angiotensin II (Ang II)-induced contraction of diabetic tissues was examined with the aim of elucidating the underlying mechanisms. Isometric tension in response to various drug treatments was measured in isolated superior mesenteric arteries of streptozotocin (STZ)-induced diabetic WKY rats using the Mulvany wire myograph. Compared to the normal (euglycaemic) arteries, the Ang II-induced contraction was significantly reduced in diabetic arteries. Superoxide dismutase (SOD; converts superoxide to H(2)O(2)) significantly reduced the contraction in both types of arteries -- an effect abolished by catalase (H(2)O(2) scavenger), suggesting that the SOD effect was mediated by H(2)O(2). Treatment with catalase had no effect on the Ang II contraction in euglycaemic arteries, but it raised the contraction in diabetic arteries to euglycaemic levels. This increase was similar to that observed with diabetic arteries incubated with L-NAME. Combined catalase and L-NAME treatment further enhanced the contraction in diabetic arteries, suggesting that the catalase effect was not mediated by nitric oxide (NO). The catalase effect was abolished by indomethacin treatment. These results suggest that attenuation of Ang II-induced contraction in diabetic tissues is modulated by endogenous H(2)O(2), the scavenging of which unmasks an indomethacin-sensitive (and therefore cyclooxygenase product-mediated) Ang II-induced contraction.
    Matched MeSH terms: Enzyme Inhibitors/pharmacology
  3. Kuan WC, Sim R, Wong WJ, Dujaili J, Kasim S, Lee KK, et al.
    Value Health, 2023 Oct;26(10):1558-1576.
    PMID: 37236395 DOI: 10.1016/j.jval.2023.05.011
    OBJECTIVES: Decision-analytic models (DAMs) with varying structures and assumptions have been applied in economic evaluations (EEs) to assist decision making for heart failure with reduced ejection fraction (HFrEF) therapeutics. This systematic review aimed to summarize and critically appraise the EEs of guideline-directed medical therapies (GDMTs) for HFrEF.

    METHODS: A systematic search of English articles and gray literature, published from January 2010, was performed on databases including MEDLINE, Embase, Scopus, NHSEED, health technology assessment, Cochrane Library, etc. The included studies were EEs with DAMs that compared the costs and outcomes of angiotensin-converting enzyme inhibitors, angiotensin-receptor blockers, angiotensin-receptor neprilysin inhibitors, beta-blockers, mineralocorticoid-receptor agonists, and sodium-glucose cotransporter-2 inhibitors. The study quality was evaluated using the Bias in Economic Evaluation (ECOBIAS) 2015 checklist and Consolidated Health Economic Evaluation Reporting Standards (CHEERS) 2022 checklists.

    RESULTS: A total of 59 EEs were included. Markov model, with a lifetime horizon and a monthly cycle length, was most commonly used in evaluating GDMTs for HFrEF. Most EEs conducted in the high-income countries demonstrated that novel GDMTs for HFrEF were cost-effective compared with the standard of care, with the standardized median incremental cost-effectiveness ratio (ICER) of $21 361/quality-adjusted life-year. The key factors influencing ICERs and study conclusions included model structures, input parameters, clinical heterogeneity, and country-specific willingness-to-pay threshold.

    CONCLUSIONS: Novel GDMTs were cost-effective compared with the standard of care. Given the heterogeneity of the DAMs and ICERs, alongside variations in willingness-to-pay thresholds across countries, there is a need to conduct country-specific EEs, particularly in low- and middle-income countries, using model structures that are coherent with the local decision context.

    Matched MeSH terms: Angiotensin-Converting Enzyme Inhibitors/therapeutic use
  4. Veerasamy R, Rajak H
    Turk J Pharm Sci, 2021 04 20;18(2):151-156.
    PMID: 33900700 DOI: 10.4274/tjps.galenos.2020.45556
    Objectives: The present study aimed to establish significant and validated quantitative structure-activity relationship (QSAR) models for neuraminidase inhibitors and correlate their physicochemical, steric, and electrostatic properties with their anti-influenza activity.

    Materials and Methods: We have developed and validated 2D and 3D QSAR models by using multiple linear regression, partial least square regression, and k-nearest neighbor-molecular field analysis methods.

    Results: 2D QSAR models had q2: 0.950 and pred_r2: 0.877 and 3D QSAR models had q2: 0.899 and pred_r2: 0.957. These results showed that the models werere predictive.

    Conclusion: Parameters such as hydrogen count and hydrophilicity were involved in 2D QSAR models. The 3D QSAR study revealed that steric and hydrophobic descriptors were negatively contributed to neuraminidase inhibitory activity. The results of this study could be used as platform for design of better anti-influenza drugs.

    Matched MeSH terms: Enzyme Inhibitors
  5. Fahmeeda Mohamad Jazamuddin, Wan Mohd Aizat, Hoe-Han Goh, Chen-Fei Low, Syarul Nataqain Baharum
    Trop Life Sci Res, 2019;30(2):2012-209.
    MyJurnal
    Vibriosis is a prevalent aquatic disease caused by Vibrio species and has led to massive loss of brown-marbled grouper, Epinephelus fuscoguttatus. The complexity of molecular mechanisms associated with immune defence can be studied through transcriptomics analysis. High quality and quantity of total RNAs are crucial for the veracity of RNA sequencing and gene expression analysis. A low quality RNA will compromise downstream analysis, resulting in loss of time and revenue to re-acquire the data again. Thus, a reliable and an efficient RNA isolation method is the first and most important step to obtain high quality RNA for gene expression studies. There are many aspects need to be considered when deciding an extraction method, such as the cost-effectiveness of the protocol, the duration of chemical exposure, the duration required for a complete extraction and the number of sample-transferring. A good RNA extraction protocol must be able to produce high yield and purity of RNA free from enzyme inhibitors, such as nucleases (RNase), phenols, alcohols or other chemicals carryover, apart from protein and genomic DNA contamination, to maintain isolated RNA integrity in storage condition. In this study, TransZolTM Up produced clean and pure RNA samples from control gills only but not from the infected gill and whole-body tissues. Modified conventional CTAB (conventional hexadecyltrimethylammonium bromide) method was then used as an alternative method to isolate RNA from gill and whole-body tissues of Vibrio-infected E. fuscoguttatus. Modified CTAB method produced intact RNA on gel electrophoresis with higher RIN number (>6.5) for infected gill and whole-body tissues, suggesting that this method could also be used to isolate high quality RNA from fish samples. Therefore, this method is potentially suitable to be used to extract RNA from other fish species especially those that have been infected.
    Matched MeSH terms: Enzyme Inhibitors
  6. Flaherty GT, Hession P, Liew CH, Lim BCW, Leong TK, Lim V, et al.
    PMID: 32868984 DOI: 10.1186/s40794-020-00118-y
    Background: A high burden of severe disease and death from the coronavirus disease 2019 (COVID-19) has been consistently observed in older patients, especially those with pre-existing medical co-morbidities. The global pandemic lockdown has isolated many patients with chronic illnesses from their routine medical care. This narrative review article analyses the multitude of issues faced by individuals with underlying medical conditions during the COVID-19 pandemic.

    Methods: Sources for this publication were identified through searches of PubMed for articles published between 31st December 2019 and 4th June 2020, using combinations of search terms. Guidelines and updates from reputable agencies were also consulted. Only articles published in the English language were included.

    Results: The volume of literature on COVID-19 continues to expand, with 17,845 articles indexed on PubMed by 4th June 2020, 130 of which were deemed particularly relevant to the subject matter of this review. Older patients are more likely to progress to severe COVID-19 disease requiring intensive care unit (ICU) admission. Patients with pre-existing cardiovascular disease, especially hypertension and coronary heart disease, are at greatly increased risk of developing severe and fatal COVID-19 disease. A controversial aspect of the management of COVID-19 disease has been the use of angiotensin-converting enzyme inhibitors and angiotensin receptor blockers. Obese COVID-19 patients are more likely to require complex ICU management. Putative mechanisms of increased COVID-19 disease severity in diabetes include hyperglycaemia, altered immune function, sub-optimal glycaemic control during hospitalisation, a pro-thrombotic and pro-inflammatory state. Patients with mental health disorders are particularly vulnerable to social isolation, and this has been compounded by the suspension of non-emergency care in hospitals around the world, making it difficult for patients with chronic mental illness to attend outpatient appointments.

    Conclusions: The global pandemic of COVID-19 disease has had a disproportionately negative impact on patients living with chronic medical illness. Future research should be directed at efforts to protect vulnerable patients from possible further waves of COVID-19 and minimising the negative impact of pandemic mitigation strategies on these individuals.

    Matched MeSH terms: Angiotensin-Converting Enzyme Inhibitors
  7. Suhaini S, Liew SZ, Norhaniza J, Lee PC, Jualang G, Embi N, et al.
    Trop Biomed, 2015 Sep;32(3):419-33.
    PMID: 26695202 MyJurnal
    Gleichenia truncata is a highland fern from the Gleicheniaceae family known for its traditional use among indigenous communities in Asia to treat fever. The scientific basis of its effect has yet to be documented. A yeast-based kinase assay conducted in our laboratory revealed that crude methanolic extract (CME) of G. truncata exhibited glycogen synthase kinase-3 (GSK3)-inhibitory activity. GSK3β is now recognized to have a pivotal role in the regulation of inflammatory response during bacterial infections. We have also previously shown that lithium chloride (LiCl), a GSK3 inhibitor suppressed development of Plasmodium berghei in a murine model of malarial infection. The present study is aimed at evaluating G. truncata for its anti-malarial and anti-inflammatory effects using in vivo malarial and melioidosis infection models respectively. In a four-day suppressive test, intraperitoneal injections of up to 250 mg/kg body weight (bw) G. truncata CME into P.berghei-infected mice suppressed parasitaemia development by >60%. Intraperitoneal administration of 150 mg/kg bw G. truncata CME into Burkholderia pseudomallei-infected mice improved survivability by 44%. G. truncata CME lowered levels of pro-inflammatory cytokines (TNF-α, IFN-γ) in serum and organs of B. pseudomallei-infected mice. In both infections, increased phosphorylations (Ser9) of GSK3β were detected in organ samples of animals administered with G. truncata CME compared to controls. Taken together, results from this study strongly suggest that the anti-malarial and anti-inflammatory effects elicited by G. truncata in part were mediated through inhibition of GSK3β. The findings provide scientific basis for the ethnomedicinal use of this fern to treat inflammation-associated symptoms.
    Matched MeSH terms: Enzyme Inhibitors/pharmacology
  8. Maniam P, Nurul Aiezzah Z, Mohamed R, Embi N, Hasidah MS
    Trop Biomed, 2015 Mar;32(1):36-48.
    PMID: 25801253
    Increased susceptibility of diabetics to melioidosis, a disease caused by the Burkholderia pseudomallei bacterium is believed to be attributed to dysfunction of the innate immune system. However, the underlying mechanism of the innate susceptibility is not well-understood. Glycogen synthase kinase-3β (GSK3β) plays an important role in the innate inflammatory response caused by bacterial pathogens. The present study was conducted to investigate the effects of GSK3β inhibition by LiCl on levels of pro- and anti-inflammatory cytokines; and the activity of transcription factor NF-κB in B. pseudomallei-infected peripheral blood mononuclear cells (PBMC) derived from diabetic-induced and normal Sprague Dawley rats. In addition, the effects of LiCl on intracellular bacterial counts were also investigated. Infection of PBMC from diabetic and normal rats with B. pseudomallei resulted in elevated levels of cytokines (TNF-α, IL-12 and IL-10) and phosphorylation of NF-κB in both cell types. Intracellular bacterial counts decreased with time in both cell types during infection. However bacterial clearance was less prominent in diabetic PBMC. Burkholderia pseudomallei infection also caused inactivation (Ser9 phosphorylation) of GSK3β in normal PBMC, an effect absent in infected diabetic PBMC. Inhibition of GSK3β by LiCl lowered the levels of pro-inflammatory cytokines (TNF-α and IL-12) in both normal and diabetic PBMC. Similarly, phosphorylated NF- κB (pNF-κB) levels in both cell types were decreased with LiCl treatment. Also, LiCl was able to significantly decrease the intracellular bacterial count in normal as well as diabetic PBMC. Interestingly, the levels of anti-inflammatory cytokine IL-10 in both normal and diabetic PBMC were further elevated with GSK3β inhibition. More importantly, GSK3β in infected diabetic PBMC was inactivated as in their non-diabetic counterparts upon LiCl treatment. Taken together, our results suggest that inhibition of dysregulated GSK3β in diabetic PBMC resulted in the inactivation of NF-κB and modulation of inflammatory cytokine levels. This is evidence that dysregulation of GSK3β is a contributing factor in the molecular basis of innate dysfunction and susceptibility of diabetic host to melioidosis infection.
    Matched MeSH terms: Enzyme Inhibitors/metabolism
  9. Tay TF, Maheran M, Too SL, Hasidah MS, Ismail G, Embi N
    Trop Biomed, 2012 Dec;29(4):551-67.
    PMID: 23202600
    The disease melioidosis, caused by the soil bacteria Burkholderia pseudomallei, often manifests as acute septicemia with high fatality. Glycogen synthase kinase-3β (GSK3β) plays a key role during the inflammatory response induced by bacteria. We used a murine model of acute melioidosis to investigate the effects of LiCl, a GSK3 inhibitor on experimental animal survivability as well as TNF-α, IL-1β, IFN-γ, IL-10 and IL-1Ra cytokine levels in blood, lung, liver and spleen of B. pseudomallei-infected mice. Our results showed that administration of 100 μg/g LiCl improved survivability of mice infected with 5 X LD50 of B. pseudomallei. Bacterial counts in spleen, liver and lungs of infected mice administered with LiCl were lower than non-treated controls. Our data also revealed that GSK3β is phosphorylated in the spleen, liver and lung of animals infected with B. pseudomallei. However in infected animals administered with LiCl, higher levels of pGSK3 were detected in the organs. Levels of proinflammatory cytokines (TNF-α, IL-1β and IFN-γ) and anti-inflammatory cytokines (IL-10 and IL-1Ra) in sera and organs tested were elevated significantly following B. pseudomallei infection. With GSK3β inhibition, pro-inflammatory cytokines (TNF-α, IFN-γ, IL-1β) were significantly decreased in all the samples tested whilst the levels of anti-inflammatory cytokines, IL-10 (spleen and lung) and IL-1Ra (spleen, liver and sera) were further elevated. This study represents the first report implicating GSK3β in the modulation of cytokine production during B. pseudomallei infection thus reiterating the important role of GSK3β in the inflammatory response caused by bacterial pathogens.
    Matched MeSH terms: Enzyme Inhibitors/administration & dosage*
  10. Inayat-Hussain SH, Chan KM, Rajab NF, Din LB, Chow SC, Kizilors A, et al.
    Toxicol Lett, 2010 Mar 1;193(1):108-14.
    PMID: 20026395 DOI: 10.1016/j.toxlet.2009.12.010
    Goniothalamin (GTN) isolated from Goniothalamus sp. has been demonstrated to induce apoptosis in a variety of cancer cell lines including Jurkat T leukemia cells. However, the mechanism of GTN-induced apoptosis upstream of mitochondria is still poorly defined. In this study, GTN caused a decrease in GSH with an elevation of reactive oxygen species as early as 30 min and DNA damage as assessed by Comet assay. Analysis using topoisomerase II processing of supercoiled pBR 322 DNA showed that GTN caused DNA damage via a topoisomerase II-independent pathway suggesting that cellular oxidative stress may contribute to genotoxicity. A 12-fold increase of caspase-2 activity was observed in GTN-treated Jurkat cells after 4h treatment and this was confirmed using Western blotting. Although the caspase-2 inhibitor Z-VDVAD-FMK inhibited the proteolytic activity of caspase-2, apoptosis ensued confirming that caspase-2 activity was not crucial for GTN-induced apoptosis. However, GTN-induced apoptosis was completely abrogated by N-acetylcysteine further confirming the role of oxidative stress. Since cytochrome c release was observed as early as 1h without any appreciable change in Bcl-2 protein expression, we further investigated whether overexpression of Bcl-2 confers resistance in GTN-induced cytotoxicity. Using a panel of Jurkat Bcl-2 transfectants, GTN cytotoxicity was not abrogated in these cells. In conclusion, GTN induces DNA damage and oxidative stress resulting in apoptosis which is independent of both caspase-2 and Bcl-2.
    Matched MeSH terms: Enzyme Inhibitors
  11. Lim EL, Seah TC, Koe XF, Wahab HA, Adenan MI, Jamil MF, et al.
    Toxicol In Vitro, 2013 Mar;27(2):812-24.
    PMID: 23274770 DOI: 10.1016/j.tiv.2012.12.014
    CYP450 enzymes are key determinants in drug toxicities, reduced pharmacological effect and adverse drug reactions. Mitragynine, an euphoric compound was evaluated for its effects on the expression of mRNAs encoding CYP1A2, CYP2D6 and CYP3A4 and protein expression and resultant enzymatic activity. The mRNA and protein expression of CYP450 isoforms were carried out using an optimized multiplex qRT-PCR assay and Western blot analysis. CYP1A2 and CYP3A4 enzyme activities were evaluated using P450-Glo™ assays. The effects of mitragynine on human CYP3A4 protein expression were determined using an optimized hCYP3A4-HepG2 cell-based assay. An in silico computational method to predict the binding conformation of mitragynine to the active site of the CYP3A4 enzyme was performed and further validated using in vitro CYP3A4 inhibition assays. Mitragynine was found to induce mRNA and protein expression of CYP1A2. For the highest concentration of 25 μM, induction of mRNA was approximately 70% that of the positive control and was consistent with the increased CYP1A2 enzymatic activity. Thus, mitragynine is a significant in vitro CYP1A2 inducer. However, it appeared to be a weak CYP3A4 inducer at the transcriptional level and a weak CYP3A4 enzyme inhibitor. It is therefore, unlikely to have any significant clinical effects on CYP3A4 activity.
    Matched MeSH terms: Enzyme Inhibitors/pharmacology*
  12. Muhsain SN, Lang MA, Abu-Bakar A
    Toxicol Appl Pharmacol, 2015 Jan 1;282(1):77-89.
    PMID: 25478736 DOI: 10.1016/j.taap.2014.11.010
    The intracellular level of bilirubin (BR), an endogenous antioxidant that is cytotoxic at high concentrations, is tightly controlled within the optimal therapeutic range. We have recently described a concerted intracellular BR regulation by two microsomal enzymes: heme oxygenase 1 (HMOX1), essential for BR production and cytochrome P450 2A5 (CYP2A5), a BR oxidase. Herein, we describe targeting of these enzymes to hepatic mitochondria during oxidative stress. The kinetics of microsomal and mitochondrial BR oxidation were compared. Treatment of DBA/2J mice with 200mgpyrazole/kg/day for 3days increased hepatic intracellular protein carbonyl content and induced nucleo-translocation of Nrf2. HMOX1 and CYP2A5 proteins and activities were elevated in microsomes and mitoplasts but not the UGT1A1, a catalyst of BR glucuronidation. A CYP2A5 antibody inhibited 75% of microsomal BR oxidation. The inhibition was absent in control mitoplasts but elevated to 50% after treatment. An adrenodoxin reductase antibody did not inhibit microsomal BR oxidation but inhibited 50% of mitochondrial BR oxidation. Ascorbic acid inhibited 5% and 22% of the reaction in control and treated microsomes, respectively. In control mitoplasts the inhibition was 100%, which was reduced to 50% after treatment. Bilirubin affinity to mitochondrial and microsomal CYP2A5 enzyme is equally high. Lastly, the treatment neither released cytochrome c into cytoplasm nor dissipated membrane potential, indicating the absence of mitochondrial membrane damage. Collectively, the observations suggest that BR regulatory enzymes are recruited to mitochondria during oxidative stress and BR oxidation by mitochondrial CYP2A5 is supported by mitochondrial mono-oxygenase system. The induced recruitment potentially confers membrane protection.
    Matched MeSH terms: Enzyme Inhibitors/pharmacology
  13. Kadir NH, David R, Rossiter JT, Gooderham NJ
    Toxicology, 2015 Aug 6;334:59-71.
    PMID: 26066520 DOI: 10.1016/j.tox.2015.06.002
    Cruciferous vegetable consumption correlates with reduced risk of cancer. This chemopreventative activity may involve glucosinolates and their hydrolysis products. Glucosinolate-derived isothiocyanates have been studied for their toxicity and chemopreventative properties, but other hydrolysis products (epithionitriles and nitriles) have not been thoroughly examined. We report that these hydrolysis products differ in their cytotoxicity to human cells, with toxicity most strongly associated with isothiocyanates rather than epithionitriles and nitriles. We explored mechanisms of this differential cytotoxicity by examining the role of oxidative metabolism, oxidative stress, mitochondrial permeability, reduced glutathione levels, cell cycle arrest and apoptosis. 2-Propenylisothiocyanate and 3-butenylisothiocyanate both inhibited cytochome P450 1A (CYP1A) enzyme activity in CYP expressing MCL-5 cells at high cytotoxic doses. Incubation of MCL-5 cells with non-cytotoxic doses of 2-propenylisothiocyanate for 24h resulted in a dose-dependent inhibition of ethoxyresorufin O-deethylase, yet failed to affect CYP1A1 mRNA expression indicating interference with enzyme activity rather than inhibition of transcription. Increased reactive oxygen species (ROS) production was observed only for 2-propenylisothiocyanate treatment. 2-Propenylisothiocyanate treatment lowered reduced glutathione levels whereas no changes were noted with 3,4-epithiobutylnitrile. Cell cycle analysis showed that 2-propenylisothiocyanate induced a G2/M block whereas other hydrolysis products showed only marginal effects. We found that 2-propenylisothiocyanate and 3-butenylisothiocyanate induced cell death predominantly via necrosis whereas, 3,4-epithiobutylnitrile promoted both necrosis and apoptosis. Thus the activity of glucosinolate hydrolysis products includes cytotoxicity that is compound-class specific and may contribute to their putative chemoprotection properties.
    Matched MeSH terms: Cytochrome P-450 Enzyme Inhibitors/pharmacology
  14. Khadijah Ramli NS, Giribabu N, Muniandy S, Salleh N
    Theriogenology, 2018 Mar 01;108:354-361.
    PMID: 29294437 DOI: 10.1016/j.theriogenology.2017.12.035
    Precise regulation of vas deferens fluid pH is essential for sperm. However, the mechanisms underlying effect of testosterone on vas deferens fluid pH have never been identified, which could involve changes in expression and functional activity of vacoular (V)-ATPase.

    METHODS: Orchidectomized, adult male Sprague-Dawley rats were treated subcutaneously with 125 μg/kg/day and 250 μg/kg/day testosterone with or without flutamide (androgen receptor blocker) and finasteride (5α-reductase inhibitor) for seven (7) days. Following treatment completion, in vivo perfusion of vas deferens lumen was performed and changes in fluid secretion rate, pH and HCO3- content were measured with and without bafilomycin, a V-ATPase inhibitor. Rats were then sacrificed and vas deferens were harvested and subjected for V-ATPase A1 and B1/2 protein expression and distribution analysis by western blotting and immunohistochemistry, respectively.

    RESULTS: In sham-operated and testosterone-treated orchidectomized rats, higher fluid secretion rate, which was not antagonized by bafilomycin but lower HCO3- content and pH which were antagonized by bafilomycin were observed when compared to orchidectomized-only and orchidectomized, testosterone-treated rats receiving flutamide or finasteride, respectively. Bafilomycin had no effect on fluid secretion rate, HCO3- content and pH in orchidectomized and testosterone-treated orchidectomized rats receiving flutamide and finasteride. V-ATPase A1 and B1/2 proteins were expressed at high levels in vas deferens and were highly distributed at the apical membrane of luminal epithelium and in muscle layer of this organ, mainly in sham and testosterone-treated orchidectomized rats.

    CONCLUSIONS: V-ATPase is involved in acidification of vas deferens fluid under testosterone influence.

    Matched MeSH terms: Enzyme Inhibitors/pharmacology
  15. Ali MS, Yun CC, Chor AL, Rahman RN, Basri M, Salleh AB
    Protein J, 2012 Mar;31(3):229-37.
    PMID: 22350313 DOI: 10.1007/s10930-012-9395-8
    A mutant of the lipase from Geobacillus sp. strain T1 with a phenylalanine to leucine substitution at position 16 was overexpressed in Escherichia coli strain BL21(De3)pLysS. The crude enzyme was purified by two-step affinity chromatography with a final recovery and specific activity of 47.4 and 6,315.8 U/mg, respectively. The molecular weight of the purified F16L lipase was approximately 43 kDa by 12% SDS-PAGE analysis. The F16L lipase was demonstrated to be a thermophilic enzyme due its optimum temperature at 70 °C and showed stability over a temperature range of 40-60 °C. The enzyme exhibited an optimum pH 7 in phosphate buffer and was relatively stable at an alkaline pH 8-9. Metal ions such as Ca(2+), Mn(2+), Na(+), and K(+) enhanced the lipase activity, but Mg(2+), Zn(2+), and Fe(2+) inhibited the lipase. All surfactants tested, including Tween 20, 40, 60, 80, Triton X-100, and SDS, significantly inhibited the lipolytic action of the lipase. A high hydrolytic rate was observed on long-chain natural oils and triglycerides, with a notable preference for olive oil (C18:1; natural oil) and triolein (C18:1; triglyceride). The F16L lipase was deduced to be a metalloenzyme because it was strongly inhibited by 5 mM EDTA. Moderate inhibition was observed in the presence of PMSF at a similar concentration, indicating that serine residues are involved in its catalytic action. Further, the activity was not impaired by water-miscible solvents, including methanol, ethanol, and acetone.
    Matched MeSH terms: Enzyme Inhibitors/pharmacology
  16. Katouah H, Chen A, Othman I, Gieseg SP
    Int J Biochem Cell Biol, 2015 Oct;67:34-42.
    PMID: 26255116 DOI: 10.1016/j.biocel.2015.08.001
    Oxidised low density lipoprotein (oxLDL) is thought to be a significant contributor to the death of macrophage cells observed in advanced atherosclerotic plaques. Using human-derived U937 cells we have examined the effect of cytotoxic oxLDL on oxidative stress and cellular catabolism. Within 3h of the addition of oxLDL, there was a rapid, concentration dependent rise in cellular reactive oxygen species followed by the loss of cellular GSH, and the enzyme activity of both glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and aconitase. The loss of these catabolic enzymes was accompanied by the loss of cellular ATP and lower lactate generation. Addition of the macrophage antioxidant 7,8-dihydroneopterin inhibited the ROS generation, glutathione loss and catabolic inactivation. NOX was shown to be activated by oxLDL addition while apocynin inhibited the loss of GSH and cell viability. The data suggests that oxLDL triggers an excess of ROS production through NOX activation, and catabolic failure through thiol oxidation resulting in cell death.
    Matched MeSH terms: Enzyme Inhibitors/pharmacology
  17. Suyamud B, Chen Y, Quyen DTT, Dong Z, Zhao C, Hu J
    Sci Total Environ, 2024 Jan 10;907:167942.
    PMID: 37863226 DOI: 10.1016/j.scitotenv.2023.167942
    Aquaculture is a highly important and expanding industry in Southeast Asia (SEA). An upcoming problem is the emergence of antibiotic resistant pathogens due to the unchecked use of antibiotics and human clinical practices. This review focused insight into the occurrence of antimicrobial resistance (AMR) and strategies from SEA aquaculture based on the original research publication over the period 2002 to 2023. Amongst the 11 SEA countries, the most AMR report has come from Vietnam, Malaysia, and Thailand, respectively. The AMR found in SEA aquaculture were classified into 17 drug classes. The most reported AMR are aminoglycosides, beta-lactams, (fluoro)quinolones, tetracycline, sulpha group and multi-drug. Beta-lactams, tetracycline, sulpha group are reported in each country with the reported frequencies higher than 40 %. Escherichia coli, Aeromonas and Vibrio are the most widely and frequently reported ARB in SEA aquaculture. Multiple antibiotic resistance (MAR) indexes for the sample containing multiple bacterial isolates were generally low, while the medium numbers of MAR indexes for the typical bacteria species were higher than 0.2 and showed higher MAR levels than the global mean. Most of the detected ARGs are related to beta-lactams, tetracycline, sulpha group, and aminoglycosides. Amongst the beta-lactam resistance genes, blaTEM, and blaSHV are the most frequently detected. Almost all the available information of antibiotics, ARB and ARGs in SEA aquaculture was consistent with the global scale analysis. In addition, factors that contribute to the development and spread of AMR in SEA aquaculture were discussed. Moreover, the national action plan to combat AMR in SEA countries and the available technologies that already applied in the SEA aquaculture are also included in this review. Such findings underline the need for synergistic efforts from scientists, engineers, policy makers, government managers, entrepreneurs, and communities to manage and reduce the burden of AMR in aquaculture of SEA countries.
    Matched MeSH terms: Angiotensin-Converting Enzyme Inhibitors
  18. Kumolosasi E, Ng WB, Abdul Aziz SA
    Med J Malaysia, 2012 Aug;67(4):379-85.
    PMID: 23082445 MyJurnal
    Hypertension has been identified as one of the causes for end stage renal failure (ESRF) and is likely to worsen kidney function. This retrospective study was carried out at a tertiary hospital in Malaysia with the objective of determining the effectiveness of combination antihypertensive drugs in hypertensive patients with ESRF admitted between 2006 and 2008. Patients with incomplete data and who were on monotherapy were excluded from this study. Although six different combinations gave significant reductions in systolic blood pressure (SBP) (13.38 +/- 9.11 mmHg, p < 0.05) and diastolic blood pressure (DBP) (6.03 +/- 11.39 mmHg, p < 0.05), 69.16% patients did not achieve target blood pressure (BP) (< or = 130/80 mmHg). Combination of beta blocker (BB) with calcium channel blocker (CCB) was the most commonly used. The CCB-diuretic regimen achieved highest percentage of BP control compared to others (40%). Comparison of blood pressure reduction between different combinations of antihypertensive drugs were not significant (p > 0.05) except for CCB-diuretics and BB-CCB-alpha blocker. The findings suggested better BP control with CCB-diuretic relative to other combinations used.
    Matched MeSH terms: Angiotensin-Converting Enzyme Inhibitors/therapeutic use
  19. Ong HT, Ong LM, Ho JJ
    Med J Malaysia, 2012 Aug;67(4):359-62.
    PMID: 23082441 MyJurnal
    Matched MeSH terms: Angiotensin-Converting Enzyme Inhibitors/therapeutic use
  20. Ong HT, Rozina G
    Med J Malaysia, 2009 Mar;64(1):3-11.
    PMID: 19852313 MyJurnal
    Since hypertension is generally asymptomatic, in treating hypertension we are actually seeking to prevent target organ damage and reduce adverse clinical outcome. There have been numerous large clinical trials addressing the question of whether any antihypertensive drug has special protective effects on the cardiovascular and renal systems in addition to the benefit from blood pressure (BP) reduction1-15. In seeking to correctly interpret the message from these trials, it is important to avoid the confusion that can occur when pharmaceutical companies seek to make the results suit their marketing needs 16-18. The aim of this article is thus to provide an unbiased review of the value of the different antihypertensive drugs for the clinician treating essential hypertension in Malaysia.
    Matched MeSH terms: Angiotensin-Converting Enzyme Inhibitors/therapeutic use
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links