Displaying publications 1 - 20 of 35 in total

Abstract:
Sort:
  1. Abdullahi SA, Unyah NZ, Nordin N, Basir R, Nasir WM, Alapid AA, et al.
    Mini Rev Med Chem, 2020;20(9):739-753.
    PMID: 31660810 DOI: 10.2174/1389557519666191029105736
    Identification of drug target in protozoan T. gondii is an important step in the development of chemotherapeutic agents. Likewise, exploring phytochemical compounds effective against the parasite can lead to the development of new drug agent that can be useful for prophylaxis and treatment of toxoplasmosis. In this review, we searched for the relevant literature on the herbs that were tested against T. gondii either in vitro or in vivo, as well as different phytochemicals and their potential activities on T. gondii. Potential activities of major phytochemicals, such as alkaloid, flavonoid, terpenoids and tannins on various target sites on T. gondii as well as other related parasites was discussed. It is believed that the phytochemicals from natural sources are potential drug candidates for the treatment of toxoplasmosis with little or no toxicity to humans.
    Matched MeSH terms: Flavonoids/therapeutic use
  2. Agatonovic-Kustrin S, Morton DW, Adam A, Mizaton HH, Zakaria H
    J Chromatogr A, 2017 Dec 29;1530:192-196.
    PMID: 29132827 DOI: 10.1016/j.chroma.2017.11.012
    The steady increase of diabetes is becoming a major burden on health care systems. As diabetic complications arise from oxidative stress, an antioxidant therapy along with anti-diabetic drugs is recommended. Myrmecodia or ant plant is highly valued as a traditional medicine in West Papua. It is used as an alternative treatment for diabetes, as the substances produced by ants can reduce blood sugar levels. The aim of this study was to develop and establish high-performance thin-layer chromatographic (HPTLC)-bioautographic methods to measure the antioxidant and hypoglycemic effects in different extracts from Myrmecodia platytyrea and to compare them with sterol content. Antioxidant activity in methanol, ethanol, dichloromethane (DCM) and ethyl acetate (EA) extracts were measured with a direct HPTLC-2,2-diphenyl-1-picrylhydrazyl free radical (DPPH) assay, while hypoglycemic effects were assessed using a newly developed α-amylase inhibitory activity assay. Stigmasterol is observed, after derivatization with anisaldehyde, as purple colored zones under visible light at hRF values of 0.66. The highest antioxidant activity was observed in the ethanol extract which is rich in polyphenols and flavonoids, while the DCM extract did not show antioxidant activity, but had significant α-amylase inhibitory activity. The highest α-amylase inhibitory activity was observed in the EA and DCM extracts and was related to their stigmasterol content.
    Matched MeSH terms: Flavonoids/therapeutic use
  3. Alharbi KS, Javed Shaikh MA, Imam SS, Alshehri S, Ghoneim MM, Almalki WH, et al.
    Curr Med Chem, 2023;30(18):2061-2074.
    PMID: 36415096 DOI: 10.2174/0929867330666221122115212
    More than 10 million people worldwide have Alzheimer's disease (AD), a degenerative neurological illness and the most prevalent form of dementia. AD's progression in memory loss, cognitive deterioration, and behavioral changes are all symptoms. Amyloid-beta 42 (Aβ42), the hyperphosphorylated forms of microtubule-associated tau protein, and other cellular and systemic alterations are all factors that contribute to cognitive decline in AD. Rather than delivering a possible cure, present therapy strategies focus on reducing disease symptoms. It has long been suggested that various naturally occurring small molecules (plant extract products and microbiological isolates, for example) could be beneficial in preventing or treating disease. Small compounds, such as flavonoids, have attracted much interest recently due to their potential to alleviate cellular stress. Flavonoids have been proven helpful in various ways, including antioxidants, anti-inflammatory agents, and anti-apoptotic agents, but their mechanism remains unknown. The flavonoid therapy of Alzheimer's disease focuses on this review, which includes a comprehensive literature analysis.
    Matched MeSH terms: Flavonoids/therapeutic use
  4. Atiq A, Parhar I
    Molecules, 2020 Oct 23;25(21).
    PMID: 33113890 DOI: 10.3390/molecules25214895
    Clinically, gliomas are classified into four grades, with grade IV glioblastoma multiforme being the most malignant and deadly, which accounts for 50% of all gliomas. Characteristically, glioblastoma involves the aggressive proliferation of cells and invasion of normal brain tissue, outcomes as poor patient prognosis. With the current standard therapy of glioblastoma; surgical resection and radiotherapy followed by adjuvant chemotherapy with temozolomide, it remains fatal, because of the development of drug resistance, tumor recurrence, and metastasis. Therefore, the need for the effective therapeutic option for glioblastoma remains elusive. Previous studies have demonstrated the chemopreventive role of naturally occurring pharmacological agents through preventing or reversing the initiation phase of carcinogenesis or arresting the cancer progression phase. In this review, we discuss the role of natural phytochemicals in the amelioration of glioblastoma, with the aim to improve therapeutic outcomes, and minimize the adverse side effects to improve patient's prognosis and enhancing their quality of life.
    Matched MeSH terms: Flavonoids/therapeutic use
  5. Aziz Z, Huin WK, Badrul Hisham MD, Tang WL, Yaacob S
    Complement Ther Med, 2018 Aug;39:49-55.
    PMID: 30012392 DOI: 10.1016/j.ctim.2018.05.011
    OBJECTIVE: To present a systematic review of randomised controlled trials (RCTs) examining the effects of MPFF in the management of haemorrhoid symptoms.

    METHODS: Electronic databases including CENTRAL, CINAHL, EMBASE, MEDLINE were searched up to April 2018 for relevant RCTs. Journal and conference proceedings were also searched. Two review authors independently selected trials, extracted data, assessed the risks of bias in included trials and graded the quality of evidence. Meta-analyses were conducted for studies presenting similar outcomes.

    RESULTS: Ten RCTs involving 1164 participants were included. These RCTs varied in terms of patients' grade of haemorrhoids, length of trials, and outcome assessed. Most of the studies did not describe adequately the process of randomisation and allocation concealment. The pooled analysis of data from three studies indicated that there was significant difference between groups for the bleeding outcome, favoring the MPFF group (RR 1.46; 95% CI 1.10-1.93; p = 0.008). Except for bleeding, the current evidence did not show MPFF has significant effects on all the other outcomes examined when compared with placebo. Even then, the quality of evidence for bleeding was judged as low due to the small number and inconsistent results among the included studies.

    CONCLUSION: This review highlights the need for further rigorous research if MPFF was to be routinely used for the treatment of haemorrhoid symptoms.

    Matched MeSH terms: Flavonoids/therapeutic use*
  6. Cheng LC, Murugaiyah V, Chan KL
    J Ethnopharmacol, 2015 Dec 24;176:485-93.
    PMID: 26593216 DOI: 10.1016/j.jep.2015.11.025
    ETHNOPHARMACOLOGICAL RELEVANCE: Lippia nodiflora has been traditionally used in the Ayurvedic, Unani, and Sidha systems, as well as Traditional Chinese Medicine (TCM) for the treatment of knee joint pain, lithiasis, diuresis, urinary disorder and swelling.
    AIM OF THE STUDY: The present study aims to investigate the antihyperuricemic effect of the L. nodiflora methanol extract, fractions, and chemical constituents and their mechanism of action in the rat model.
    MATERIALS AND METHODS: The mechanisms were investigated by performing xanthine oxidase inhibitory, uricosuric, and liver xanthine oxidase/xanthine dehydrogenase (XOD/XDH) inhibitory studies in potassium oxonate- and hypoxanthine-induced hyperuricemic rats. The plant safety profile was determined using acute toxicity study. The molecular docking of the active compound to the xanthine oxidase was simulated using computer aided molecular modeling analysis.
    RESULTS: Oral administration of methanol extract showed a dose-dependent reduction effect on the serum uric acid level of hyperuricemic rats. F3 was the most potent fraction in lowering the serum uric acid level of hyperuricemic rats. Bioactivity-guided purification of F3 afforded two phenylethanoid glycosides, arenarioside (1) and verbascoside (2) and three flavonoids, 6-hydroxyluteolin (3), 6-hydroxyluteolin-7-O-glycoside (4), and nodifloretin (5). The highest serum uric acid reduction effect was exhibited by 3 (66.94%) in hyperuricemic rats, followed by 5 (55.97%), 4 (49.16%), 2 (29.03%), and 1 (22.08%) at 0.2 mmol/kg. Dose-response investigation on 3 at doses of 0.05, 0.1, and 0.3 mmol/kg produced a significant dose-dependent reduction on the serum uric acid level of hyperuricemic rats. Repeated administration of F3 or 3 to the hyperuricemic rats for 10 continuous days resulted in a significant and progressive serum uric acid lowering effect in hyperuricemic rats. In contrast, methanol extract and F3 did not reduce serum uric acid level of normoruricemic rats. In addition, F4 significantly increased the uric acid excretion of hyperuricemic rats at 200mg/kg. No toxic effect was observed in rats administered with 5000 mg/kg of methanol extract or F3.
    CONCLUSION: The potential application of L. nodiflora against hyperuricemia in the animal in accordance with its traditional uses has been demonstrated in the present study for the first time. The antihyperuricemic effect possessed by L. nodiflora was contributed mainly by liver XOD/XDH inhibitory activities and partially by uricosuric effect. Flavonoids mainly accountable for the uric acid lowering effect of L. nodiflora through the inhibition of XOD/XDH activities.
    KEYWORDS: Antihyperuricemic; Hypoxanthine-induced hyperuricemic rat; Lippia nodiflora; Liver xanthine oxidase and xanthine dehydrogenase; Serum uric acid; Uric acid excretion
    Matched MeSH terms: Flavonoids/therapeutic use*
  7. Das SS, Tambe S, Prasad Verma PR, Amin P, Singh N, Singh SK, et al.
    Nanomedicine (Lond), 2022 Oct;17(23):1799-1816.
    PMID: 36636965 DOI: 10.2217/nnm-2022-0117
    Flavonoids represent a major group of polyphenolic compounds. Their capacity to inhibit tumor proliferation, cell cycle, angiogenesis, migration and invasion is substantially responsible for their chemotherapeutic activity against lung cancer. However, their clinical application is limited due to poor aqueous solubility, low permeability and quick blood clearance, which leads to their low bioavailability. Nanoengineered systems such as liposomes, nanoparticles, micelles, dendrimers and nanotubes can considerably enhance the targeted action of the flavonoids with improved efficacy and pharmacokinetic properties, and flavonoids can be successfully translated from bench to bedside through various nanoengineering approaches. This review addresses the therapeutic potential of various flavonoids and highlights the cutting-edge progress in the nanoengineered systems that incorporate flavonoids for treating lung cancer.
    Matched MeSH terms: Flavonoids/therapeutic use
  8. George S, Ajikumaran Nair S, Johnson AJ, Venkataraman R, Baby S
    J Ethnopharmacol, 2015 Jun 20;168:158-63.
    PMID: 25858510 DOI: 10.1016/j.jep.2015.03.060
    Melicope lunu-ankenda leaves are used to treat diabetes in folklore medicinal practices in India and Malaysia. Here we report the isolation of an O-prenylated flavonoid (3,5,4'-trihydroxy-8,3'-dimethoxy-7-(3-methylbut-2-enoxy)flavone; OPF) from the leaves of M. lunu-ankenda and its antidiabetes activity against type-2 diabetes mellitus (T2DM).
    Matched MeSH terms: Flavonoids/therapeutic use*
  9. Gour A, Manhas D, Bag S, Gorain B, Nandi U
    Phytother Res, 2021 Aug;35(8):4258-4283.
    PMID: 33786876 DOI: 10.1002/ptr.7092
    Emergence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection, COVID-19, has become the global panic since December 2019, which urges the global healthcare professionals to identify novel therapeutics to counteract this pandemic. So far, there is no approved treatment available to control this public health issue; however, a few antiviral agents and repurposed drugs support the patients under medical supervision by compromising their adverse effects, especially in emergency conditions. Only a few vaccines have been approved to date. In this context, several plant natural products-based research studies are evidenced to play a crucial role in immunomodulation that can prevent the chances of infection as well as combat the cytokine release storm (CRS) generated during COVID-19 infection. In this present review, we have focused on flavonoids, especially epicatechin, epigallocatechin gallate, hesperidin, naringenin, quercetin, rutin, luteolin, baicalin, diosmin, ge nistein, biochanin A, and silymarin, which can counteract the virus-mediated elevated levels of inflammatory cytokines leading to multiple organ failure. In addition, a comprehensive discussion on available in silico, in vitro, and in vivo findings with critical analysis has also been evaluated, which might pave the way for further development of phytotherapeutics to identify the potential lead candidatetoward effective and safe management of the SARS-CoV-2 disease.
    Matched MeSH terms: Flavonoids/therapeutic use*
  10. Gupta G, Chellappan DK, Agarwal M, Ashwathanarayana M, Nammi S, Pabreja K, et al.
    Cent Nerv Syst Agents Med Chem, 2017;17(3):196-200.
    PMID: 27834136 DOI: 10.2174/1871524917666161111095335
    BACKGROUND: Elevation in brain levels of aluminium can be neurotoxic and can cause learning and memory deficiencies. In Chinese medicine, Morus alba is used as a neuroprotective herb. The current study was intended to discover the recuperative effect of morusin against aluminium trichloride (AlCl3)-induced memory impairment in rats along with biochemical mechanism of its protective action.

    METHODS: Memory deficiency was produced by AlCl3 (100 mg/kg; p.o.) in experimental animals. Learning and memory activity was measured using Morris water maze (MWM) test model. Central cholinergic activity was evaluated through the measurement of brain acetylcholinesterase (AChE) activity. In addition to the above, oxidative stress was determined through assessment of brain thiobarbituric acid-reactive species (TBARS) and glutathione (GSH) levels.

    RESULTS: AlCl3 administration prompted significant deficiency of learning and memory in rats, as specified by a noticeable reduction in MWM presentation. AlCl3 administration also produced a significant deterioration in brain AChE action and brain oxidative stress (increase in TBARS and decrease in GSH) levels. Treatment with morusin (5.0 and 10.0 mg/kg, dose orally) significantly overturned AlCl3- induced learning and memory shortages along with diminution of AlCl3-induced rise in brain AChE activity and brain oxidative stress levels.

    CONCLUSION: It may be concluded that morusin exerts a memory-preservative outcome in mental discrepancies of rats feasibly through its various activities.

    Matched MeSH terms: Flavonoids/therapeutic use*
  11. Hamid AA, Aminuddin A, Yunus MHM, Murthy JK, Hui CK, Ugusman A
    Rev Cardiovasc Med, 2020 Jun 30;21(2):275-287.
    PMID: 32706215 DOI: 10.31083/j.rcm.2020.02.50
    Inflammation and oxidative stress are involved in the pathogenesis of cardiovascular diseases such as atherosclerosis, hypertension and ischemic heart disease. Natural products play an important role as nutritional supplements with potential health benefits in cardiovascular diseases. Polygonum minus (PM) is an aromatic plant that is widely used as a flavoring agent in cooking and has been recognized as a plant with various medicinal properties including antioxidative and anti-inflammatory actions. Phytoconstituents found in PM such as phenolic and flavonoid compounds contribute to the plant's antioxidative and anti-inflammatory effects. We conducted this review to systematically identify articles related to the antioxidative and anti-inflammatory activities of PM. A computerized database search was conducted on Ovid MEDLINE, PubMed, Scopus, and ACS publication, from 1946 until May 2020, and the following keywords were used: 'Kesum OR Polygonum minus OR Persicaria minor' AND 'inflammat* OR oxida* OR antioxida*'. A total of 125 articles were obtained. Another eight additional articles were identified through Google Scholar and review articles. Altogether, 17 articles were used for data extraction, comprising 16 articles on antioxidant and one article on anti-inflammatory activity of PM. These studies consist of 14 in vitro studies, one in vivo animal study, one combined in vitro and in vivo study and one combined in vitro and ex vivo study. All the studies reported that PM exhibits antioxidative and anti-inflammatory activities which are most likely attributed to its high phenolic and flavonoid content.
    Matched MeSH terms: Flavonoids/therapeutic use*
  12. Hamsin DE, Hamid RA, Yazan LS, Taib CN, Ting YL
    PMID: 23298265 DOI: 10.1186/1472-6882-13-5
    Ardisia crispa (Myrsinaceae) is used in traditional Malay medicine to treat various ailments associated with inflammation, including rheumatism. The plant's hexane fraction was previously shown to inhibit several diseases associated with inflammation. As there is a strong correlation between inflammation and angiogenesis, we conducted the present study to investigate the anti-angiogenic effects of the plant's roots in animal models of inflammation-induced angiogenesis.
    Matched MeSH terms: Flavonoids/therapeutic use
  13. Harasstani OA, Moin S, Tham CL, Liew CY, Ismail N, Rajajendram R, et al.
    Inflamm Res, 2010 Sep;59(9):711-21.
    PMID: 20221843 DOI: 10.1007/s00011-010-0182-8
    OBJECTIVES: We evaluated several flavonoid combinations for synergy in the inhibition of proinflammatory mediator synthesis in the RAW 264.7 cellular model of inflammation.

    METHODS: The inhibitory effect of chrysin, kaempferol, morin, silibinin, quercetin, diosmin and hesperidin upon nitric oxide (NO), prostaglandin E(2) (PGE(2)) and tumour necrosis factor-alpha (TNF-alpha) secretion from the LPS-induced RAW 264.7 monocytic macrophage was assessed and IC(50) values obtained. Flavonoids that showed reasonable inhibitory effects in at least two out of the three assays were combined in a series of fixed IC(50) ratios and reassessed for inhibition of NO, PGE(2) and TNF-alpha. Dose-response curves were generated and interactions were analysed using isobolographic analysis.

    RESULTS: The experiments showed that only chrysin, kaempferol, morin, and silibinin were potent enough to produce dose-response effects upon at least two out of the three mediators assayed. Combinations of these four flavonoids showed that several combinations afforded highly significant synergistic effects.

    CONCLUSIONS: Some flavonoids are synergistic in their anti-inflammatory effects when combined. In particular chrysin and kaempferol significantly synergised in their inhibitory effect upon NO, PGE(2) and TNF-alpha secretion. These findings open further avenues of research into combinatorial therapeutics of inflammatory-related diseases and the pharmacology of flavonoid synergy.

    Matched MeSH terms: Flavonoids/therapeutic use
  14. Hasan MM, Ahmed QU, Mat Soad SZ, Tunna TS
    Biomed Pharmacother, 2018 May;101:833-841.
    PMID: 29635892 DOI: 10.1016/j.biopha.2018.02.137
    Diabetes mellitus is a chronic disease which has high prevalence. The deficiency in insulin production or impaired insulin function is the underlying cause of this disease. Utilization of plant sources as a cure of diabetes has rich evidence in the history. Recently, the traditional medicinal plants have been investigated scientifically to understand the underlying mechanism behind antidiabetic potential. In this regard, a substantial number of in vivo and in vitro models have been introduced for investigating the bottom-line mechanism of the antidiabetic effect. A good number of methods have been reported to be used successfully to determine antidiabetic effects of plant extracts or isolated compounds. This review encompasses all the possible methods with a list of medicinal plants which may contribute to discovering a novel drug to treat diabetes more efficaciously with the minimum or no side effects.
    Matched MeSH terms: Flavonoids/therapeutic use
  15. Islam F, Bibi S, Meem AFK, Islam MM, Rahaman MS, Bepary S, et al.
    Int J Mol Sci, 2021 Nov 23;22(23).
    PMID: 34884440 DOI: 10.3390/ijms222312638
    Several coronaviruses (CoVs) have been associated with serious health hazards in recent decades, resulting in the deaths of thousands around the globe. The recent coronavirus pandemic has emphasized the importance of discovering novel and effective antiviral medicines as quickly as possible to prevent more loss of human lives. Positive-sense RNA viruses with group spikes protruding from their surfaces and an abnormally large RNA genome enclose CoVs. CoVs have already been related to a range of respiratory infectious diseases possibly fatal to humans, such as MERS, SARS, and the current COVID-19 outbreak. As a result, effective prevention, treatment, and medications against human coronavirus (HCoV) is urgently needed. In recent years, many natural substances have been discovered with a variety of biological significance, including antiviral properties. Throughout this work, we reviewed a wide range of natural substances that interrupt the life cycles for MERS and SARS, as well as their potential application in the treatment of COVID-19.
    Matched MeSH terms: Flavonoids/therapeutic use
  16. Jalil AM, Ismail A
    Molecules, 2008 Sep 16;13(9):2190-219.
    PMID: 18830150
    Cocoa and cocoa products have received much attention due to their significant polyphenol contents. Cocoa and cocoa products, namely cocoa liquor, cocoa powder and chocolates (milk and dark chocolates) may present varied polyphenol contents and possess different levels of antioxidant potentials. For the past ten years, at least 28 human studies have been conducted utilizing one of these cocoa products. However, questions arise on which of these products would deliver the best polyphenol contents and antioxidant effects. Moreover, the presence of methylxanthines, peptides, and minerals could synergistically enhance or reduce antioxidant properties of cocoa and cocoa products. To a greater extent, cocoa beans from different countries of origins and the methods of preparation (primary and secondary) could also partially influence the antioxidant polyphenols of cocoa products. Hence, comprehensive studies on the aforementioned factors could provide the understanding of health-promoting activities of cocoa or cocoa products components.
    Matched MeSH terms: Flavonoids/therapeutic use
  17. Jubaidi FF, Zainalabidin S, Taib IS, Hamid ZA, Budin SB
    Int J Mol Sci, 2021 May 12;22(10).
    PMID: 34065781 DOI: 10.3390/ijms22105094
    Diabetic cardiomyopathy is one of the major mortality risk factors among diabetic patients worldwide. It has been established that most of the cardiac structural and functional alterations in the diabetic cardiomyopathy condition resulted from the hyperglycemia-induced persistent oxidative stress in the heart, resulting in the maladaptive responses of inflammation and apoptosis. Flavonoids, the most abundant phytochemical in plants, have been reported to exhibit diverse therapeutic potential in medicine and other biological activities. Flavonoids have been widely studied for their effects in protecting the heart against diabetes-induced cardiomyopathy. The potential of flavonoids in alleviating diabetic cardiomyopathy is mainly related with their remedial actions as anti-hyperglycemic, antioxidant, anti-inflammatory, and anti-apoptotic agents. In this review, we summarize the latest findings of flavonoid treatments on diabetic cardiomyopathy as well as elucidating the mechanisms involved.
    Matched MeSH terms: Flavonoids/therapeutic use
  18. Koosha S, Alshawsh MA, Looi CY, Seyedan A, Mohamed Z
    Int J Med Sci, 2016;13(5):374-85.
    PMID: 27226778 DOI: 10.7150/ijms.14485
    Colorectal cancer (CRC) is the third most common type of cancer in the world, causing thousands of deaths annually. Although chemotherapy is known to be an effective treatment to combat colon cancer, it produces severe side effects. Natural products, on the other hand, appear to generate fewer side effects than do chemotherapeutic drugs. Flavonoids are polyphenolic compounds found in various fruits and vegetables known to possess antioxidant activities, and the literature shows that several of these flavonoids have anti-CRC propertiesFlavonoids are classified into five main subclasses: flavonols, flavanones, flavones, flavan-3-ols, and flavanonols. Of these subclasses, the flavanonols have a minimum effect against CRC, whereas the flavones play an important role. The main targets for the inhibitory effect of flavonoids on CRC signaling pathways are caspase; nuclear factor kappa B; mitogen-activated protein kinase/p38; matrix metalloproteinase (MMP)-2, MMP-7, and MMP-9; p53; β-catenin; cyclin-dependent kinase (CDK)2 and CDK4; and cyclins A, B, D, and E. In this review article, we summarize the in vitro and in vivo studies that have been performed since 2000 on the anti-CRC properties of flavonoids. We also describe the signaling pathways affected by flavonoids that have been found to be involved in CRC. Some flavonoids have the potential to be an effective alternative to chemotherapeutic drugs in the treatment of colon cancer; well-controlled clinical studies should, however, be conducted to support this proposal.
    Matched MeSH terms: Flavonoids/therapeutic use*
  19. Lai HY, Lim YY, Kim KH
    PMID: 20429956 DOI: 10.1186/1472-6882-10-15
    Blechnum orientale Linn. (Blechnaceae) is used ethnomedicinally for the treatment of various skin diseases, stomach pain, urinary bladder complaints and sterilization of women. The aim of the study was to evaluate antioxidant, anticancer and antibacterial activity of five solvent fractions obtained from the methanol extract of the leaves of Blechnum orientale Linn.
    Matched MeSH terms: Flavonoids/therapeutic use
  20. Machha A, Achike FI, Mustafa AM, Mustafa MR
    Nitric Oxide, 2007 Jun;16(4):442-7.
    PMID: 17513143 DOI: 10.1016/j.niox.2007.04.001
    The present work examined the effect of chronic oral administration of quercetin, a flavonoid antioxidant, on blood glucose, vascular function and oxidative stress in STZ-induced diabetic rats. Male Wistar-Kyoto (WKY) rats were randomized into euglycemic, untreated diabetic, vehicle (1% w/v methylcellulose)-treated diabetic, which served as control, or quercetin (10mgkg(-1) body weight)-treated diabetic groups and treated orally for 6 weeks. Quercetin treatment reduced blood glucose level in diabetic rats. Impaired relaxations to endothelium-dependent vasodilator acetylcholine (ACh) and enhanced vasoconstriction responses to alpha(1)-adrenoceptor agonist phenylephrine (PE) in diabetic rat aortic rings were restored to euglycemic levels by quercetin treatment. Pretreatment with N(omega)-nitro-l-arginine methyl ester (l-NAME, 10microM) or methylene blue (10microM) completely blocked but indomethacin (10microM) did not affect relaxations to ACh in aortic rings from vehicle- or quercetin-treated diabetic rats. PE-induced vasoconstriction with an essentially similar magnitude in vehicle- or quercetin-treated diabetic rat aortic rings pretreated with l-NAME (10microM) plus indomethacin (10microM). Quercetin treatment reduced plasma malonaldehyde (MDA) plus 4-hydroxyalkenals (4-HNE) content as well as increased superoxide dismutase activity and total antioxidant capacity in diabetic rats. From the present study, it can be concluded that quercetin administration to diabetic rats restores vascular function, probably through enhancement in the bioavailability of endothelium-derived nitric oxide coupled to reduced blood glucose level and oxidative stress.
    Matched MeSH terms: Flavonoids/therapeutic use*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links