Displaying publications 1 - 20 of 38 in total

Abstract:
Sort:
  1. Balasbaneh AT, Yeoh D, Juki MI, Ibrahim MHW, Abidin ARZ
    PMID: 33712956 DOI: 10.1007/s11356-021-13190-4
    This research aims to assess the sustainability of the most common earth-retaining walls (Gravity Walls and Cantilever Walls) in terms of environmental impacts, economic issues, and their combination. Gravity walls observed in this study consist of Gabion Wall, Crib Wall, and Rubble Masonry Wall, while Cantilever Walls include Reinforced Concrete Wall. Six different criteria were taken into account, including global warming potential, fossil depletion potential, eutrophication potential, acidification potential, human toxicity potential, and cost. To achieve the aim of this study, life cycle assessments, life cycle costs, and multi-criteria decision-making methods were implemented. The results showed that the most environmental-friendly option among all alternatives was the Gabion Wall, followed by the Rubble Masonry Wall. However, in terms of economic aspects, the Cantilever Concrete Wall was the best option, costing about 17% less than the Gabion Wall. On the other hand, the results of multi-criteria decision-making showed that the Gabion Wall was the most sustainable choice. This study addressed the research gap by carrying out a sustainability assessment of different retaining walls while considering cost and environmental impacts at the same time.
    Matched MeSH terms: Fossils
  2. Barker G, Barton H, Bird M, Daly P, Datan I, Dykes A, et al.
    J Hum Evol, 2007 Mar;52(3):243-61.
    PMID: 17161859
    Recent research in Europe, Africa, and Southeast Asia suggests that we can no longer assume a direct and exclusive link between anatomically modern humans and behavioral modernity (the 'human revolution'), and assume that the presence of either one implies the presence of the other: discussions of the emergence of cultural complexity have to proceed with greater scrutiny of the evidence on a site-by-site basis to establish secure associations between the archaeology present there and the hominins who created it. This paper presents one such case study: Niah Cave in Sarawak on the island of Borneo, famous for the discovery in 1958 in the West Mouth of the Great Cave of a modern human skull, the 'Deep Skull,' controversially associated with radiocarbon dates of ca. 40,000 years before the present. A new chronostratigraphy has been developed through a re-investigation of the lithostratigraphy left by the earlier excavations, AMS-dating using three different comparative pre-treatments including ABOX of charcoal, and U-series using the Diffusion-Absorption model applied to fragments of bones from the Deep Skull itself. Stratigraphic reasons for earlier uncertainties about the antiquity of the skull are examined, and it is shown not to be an 'intrusive' artifact. It was probably excavated from fluvial-pond-desiccation deposits that accumulated episodically in a shallow basin immediately behind the cave entrance lip, in a climate that ranged from times of comparative aridity with complete desiccation, to episodes of greater surface wetness, changes attributed to regional climatic fluctuations. Vegetation outside the cave varied significantly over time, including wet lowland forest, montane forest, savannah, and grassland. The new dates and the lithostratigraphy relate the Deep Skull to evidence of episodes of human activity that range in date from ca. 46,000 to ca. 34,000 years ago. Initial investigations of sediment scorching, pollen, palynomorphs, phytoliths, plant macrofossils, and starch grains recovered from existing exposures, and of vertebrates from the current and the earlier excavations, suggest that human foraging during these times was marked by habitat-tailored hunting technologies, the collection and processing of toxic plants for consumption, and, perhaps, the use of fire at some forest-edges. The Niah evidence demonstrates the sophisticated nature of the subsistence behavior developed by modern humans to exploit the tropical environments that they encountered in Southeast Asia, including rainforest.
    Matched MeSH terms: Fossils*
  3. Barnett R, Westbury MV, Sandoval-Velasco M, Vieira FG, Jeon S, Zazula G, et al.
    Curr Biol, 2020 Dec 21;30(24):5018-5025.e5.
    PMID: 33065008 DOI: 10.1016/j.cub.2020.09.051
    Homotherium was a genus of large-bodied scimitar-toothed cats, morphologically distinct from any extant felid species, that went extinct at the end of the Pleistocene [1-4]. They possessed large, saber-form serrated canine teeth, powerful forelimbs, a sloping back, and an enlarged optic bulb, all of which were key characteristics for predation on Pleistocene megafauna [5]. Previous mitochondrial DNA phylogenies suggested that it was a highly divergent sister lineage to all extant cat species [6-8]. However, mitochondrial phylogenies can be misled by hybridization [9], incomplete lineage sorting (ILS), or sex-biased dispersal patterns [10], which might be especially relevant for Homotherium since widespread mito-nuclear discrepancies have been uncovered in modern cats [10]. To examine the evolutionary history of Homotherium, we generated a ∼7x nuclear genome and a ∼38x exome from H. latidens using shotgun and target-capture sequencing approaches. Phylogenetic analyses reveal Homotherium as highly divergent (∼22.5 Ma) from living cat species, with no detectable signs of gene flow. Comparative genomic analyses found signatures of positive selection in several genes, including those involved in vision, cognitive function, and energy consumption, putatively consistent with diurnal activity, well-developed social behavior, and cursorial hunting [5]. Finally, we uncover relatively high levels of genetic diversity, suggesting that Homotherium may have been more abundant than the limited fossil record suggests [3, 4, 11-14]. Our findings complement and extend previous inferences from both the fossil record and initial molecular studies, enhancing our understanding of the evolution and ecology of this remarkable lineage.
    Matched MeSH terms: Fossils/anatomy & histology
  4. Basir Jasin
    Sains Malaysiana, 2015;44:217-223.
    Posidonomya is common in the Kubang Pasu and Singa Formations in northwest Peninsular Malaysia. It was discovered from the red mudstone layers (redbeds) in many localities in Langkawi Islands, Perlis and Kedah. Previous studies suggested that the age of Posidonomya ranged from Middle Devonian to Carboniferous. Posidonomya beds in Kedah and Perlis are located above the Tournaisian radiolarian chert layers. The age of Posidonomya from Peninsular Malaysia is comparable to those of Europe, Morocco, Turkey and South China which range from Tournaisian to Serpukhovian, Early Carboniferous. The fossil specimens exhibit morphological features closely related to Posidonomya becheri Bronn. Two taxa were identified namely Posidonomya becheri Bronn and Posidonomya cf. kochi (von Koenen). The occurrence of Posidonomya indicates that the age of the lower part of the Kubang Pasu and Singa Formations is Early Carboniferous. Its geographic distribution formed a wide paleobiogeographic province in the Paleo-Tethys. The province was located in the warm tropical-subtropical climatic zone. Therefore, Posidonomya can be a good indicator for warm climate. Its wide distribution and short stratigraphic range make it a good index fossil for the Early Carboniferous.
    Matched MeSH terms: Fossils
  5. Bolotov IN, Kondakov AV, Vikhrev IV, Aksenova OV, Bespalaya YV, Gofarov MY, et al.
    Sci Rep, 2017 05 18;7(1):2135.
    PMID: 28522869 DOI: 10.1038/s41598-017-02312-z
    The concept of long-lived (ancient) lakes has had a great influence on the development of evolutionary biogeography. According to this insight, a number of lakes on Earth have existed for several million years (e.g., Baikal and Tanganyika) and represent unique evolutionary hotspots with multiple intra-basin radiations. In contrast, rivers are usually considered to be variable systems, and the possibility of their long-term existence during geological epochs has never been tested. In this study, we reconstruct the history of freshwater basin interactions across continents based on the multi-locus fossil-calibrated phylogeny of freshwater mussels (Unionidae). These mussels most likely originated in Southeast and East Asia in the Jurassic, with the earliest expansions into North America and Africa (since the mid-Cretaceous) following the colonization of Europe and India (since the Paleocene). We discovered two ancient monophyletic mussel radiations (mean age ~51-55 Ma) within the paleo-Mekong catchment (i.e., the Mekong, Siam, and Malacca Straits paleo-river drainage basins). Our findings reveal that the Mekong may be considered a long-lived river that has existed throughout the entire Cenozoic epoch.
    Matched MeSH terms: Fossils
  6. Cappellini E, Welker F, Pandolfi L, Ramos-Madrigal J, Samodova D, Rüther PL, et al.
    Nature, 2019 10;574(7776):103-107.
    PMID: 31511700 DOI: 10.1038/s41586-019-1555-y
    The sequencing of ancient DNA has enabled the reconstruction of speciation, migration and admixture events for extinct taxa1. However, the irreversible post-mortem degradation2 of ancient DNA has so far limited its recovery-outside permafrost areas-to specimens that are not older than approximately 0.5 million years (Myr)3. By contrast, tandem mass spectrometry has enabled the sequencing of approximately 1.5-Myr-old collagen type I4, and suggested the presence of protein residues in fossils of the Cretaceous period5-although with limited phylogenetic use6. In the absence of molecular evidence, the speciation of several extinct species of the Early and Middle Pleistocene epoch remains contentious. Here we address the phylogenetic relationships of the Eurasian Rhinocerotidae of the Pleistocene epoch7-9, using the proteome of dental enamel from a Stephanorhinus tooth that is approximately 1.77-Myr old, recovered from the archaeological site of Dmanisi (South Caucasus, Georgia)10. Molecular phylogenetic analyses place this Stephanorhinus as a sister group to the clade formed by the woolly rhinoceros (Coelodonta antiquitatis) and Merck's rhinoceros (Stephanorhinus kirchbergensis). We show that Coelodonta evolved from an early Stephanorhinus lineage, and that this latter genus includes at least two distinct evolutionary lines. The genus Stephanorhinus is therefore currently paraphyletic, and its systematic revision is needed. We demonstrate that sequencing the proteome of Early Pleistocene dental enamel overcomes the limitations of phylogenetic inference based on ancient collagen or DNA. Our approach also provides additional information about the sex and taxonomic assignment of other specimens from Dmanisi. Our findings reveal that proteomic investigation of ancient dental enamel-which is the hardest tissue in vertebrates11, and is highly abundant in the fossil record-can push the reconstruction of molecular evolution further back into the Early Pleistocene epoch, beyond the currently known limits of ancient DNA preservation.
    Matched MeSH terms: Fossils*
  7. Carlhoff S, Duli A, Nägele K, Nur M, Skov L, Sumantri I, et al.
    Nature, 2021 Aug;596(7873):543-547.
    PMID: 34433944 DOI: 10.1038/s41586-021-03823-6
    Much remains unknown about the population history of early modern humans in southeast Asia, where the archaeological record is sparse and the tropical climate is inimical to the preservation of ancient human DNA1. So far, only two low-coverage pre-Neolithic human genomes have been sequenced from this region. Both are from mainland Hòabìnhian hunter-gatherer sites: Pha Faen in Laos, dated to 7939-7751 calibrated years before present (yr cal BP; present taken as AD 1950), and Gua Cha in Malaysia (4.4-4.2 kyr cal BP)1. Here we report, to our knowledge, the first ancient human genome from Wallacea, the oceanic island zone between the Sunda Shelf (comprising mainland southeast Asia and the continental islands of western Indonesia) and Pleistocene Sahul (Australia-New Guinea). We extracted DNA from the petrous bone of a young female hunter-gatherer buried 7.3-7.2 kyr cal BP at the limestone cave of Leang Panninge2 in South Sulawesi, Indonesia. Genetic analyses show that this pre-Neolithic forager, who is associated with the 'Toalean' technocomplex3,4, shares most genetic drift and morphological similarities with present-day Papuan and Indigenous Australian groups, yet represents a previously unknown divergent human lineage that branched off around the time of the split between these populations approximately 37,000 years ago5. We also describe Denisovan and deep Asian-related ancestries in the Leang Panninge genome, and infer their large-scale displacement from the region today.
    Matched MeSH terms: Fossils*
  8. Chan YH, Syed Abdul Rahman SNF, Lahuri HM, Khalid A
    Environ Pollut, 2021 Mar 01;278:116843.
    PMID: 33711630 DOI: 10.1016/j.envpol.2021.116843
    Carbon monoxide (CO) is a highly valuable component of syngas which could be used to synthesize various chemicals and fuels. Conventionally, syngas is derived from fossil-based natural gas and coal which are non-renewable. To curb the problem, CO2 gasification offers a win-win solution in which CO2 is converted with wastes to CO, achieving carbon emission mitigation and addressing waste disposal issue simultaneously. In this review, gasification of various wastes by CO2 with particular focus given to generation of CO-rich syngas is presented and critically discussed. This includes the effects of operating parameters (temperature, pressure and physicochemical properties of feedstocks) and advanced CO2 gasification techniques (catalytic CO2 gasification, CO2 co-gasification and microwave-driven CO2 gasification). Furthermore, associated technological challenges are highlighted and way forward in this field are proposed.
    Matched MeSH terms: Fossils
  9. Curnoe D, Datan I, Zhao JX, Leh Moi Ung C, Aubert M, Sauffi MS, et al.
    PLoS One, 2018;13(6):e0196633.
    PMID: 29874227 DOI: 10.1371/journal.pone.0196633
    The skeletal remains of Late Pleistocene-early Holocene humans are exceptionally rare in island Southeast Asia. As a result, the identity and physical adaptations of the early inhabitants of the region are poorly known. One archaeological locality that has historically been important for understanding the peopling of island Southeast Asia is the Niah Caves in the northeast of Borneo. Here we present the results of direct Uranium-series dating and the first published descriptions of three partial human mandibles from the West Mouth of the Niah Caves recovered during excavations by the Harrissons in 1957. One of them (mandible E/B1 100") is somewhat younger than the 'Deep Skull' with a best dating estimate of c30-28 ka (at 2σ), while the other two mandibles (D/N5 42-48" and E/W 33 24-36") are dated to a minimum of c11.0-10.5 ka (at 2σ) and c10.0-9.0 ka (at 2σ). Jaw E/B1 100" is unusually small and robust compared with other Late Pleistocene mandibles suggesting that it may have been ontogenetically altered through masticatory strain under a model of phenotypic plasticity. Possible dietary causes could include the consumption of tough or dried meats or palm plants, behaviours which have been documented previously in the archaeological record of the Niah Caves. Our work suggests a long history back to before the LGM of economic strategies involving the exploitation of raw plant foods or perhaps dried and stored meat resources. This offers new insights into the economic strategies of Late Pleistocene-early Holocene hunter-gatherers living in, or adjacent to, tropical rainforests.
    Matched MeSH terms: Fossils*
  10. Curnoe D, Datan I, Goh HM, Sauffi MS
    J Hum Evol, 2019 02;127:133-148.
    PMID: 30777354 DOI: 10.1016/j.jhevol.2018.12.008
    The skeletal remains of Pleistocene anatomically modern humans are rare in island Southeast Asia. Moreover, continuing doubts over the dating of most of these finds has left the arrival time for the region's earliest inhabitants an open question. The unique biogeography of island Southeast Asia also raises questions about the physical and cultural adaptations of early anatomically modern humans, especially within the setting of rainforest inhabitation. Within this context the Deep Skull from the West Mouth of the Niah Caves continues to figure prominently owing to its relative completeness and the greater certainty surrounding its geological age. Recovered along with this partial cranium in 1958 were several postcranial bones including a partial femur which until now has received little attention. Here we provide a description and undertake a comparison of the Deep Skull femur finding it to be very small in all of its cross-sectional dimensions. We note a number of size and shape similarities to the femora of Indigenous Southeast Asians, especially Aeta people from the Philippines. We estimate its stature to have been roughly 145-146 cm and body mass around 35 kg, confirming similarities to Aeta females. Its extreme gracility indicated by low values for a range of biomechanical parameters taken midshaft meets expectations for a very small (female) Paleolithic East Asian. Interestingly, the second moment of area about the mediolateral axis is enlarged relative to the second moment of area about the anteroposterior axis, which could potentially signal a difference in activity levels or lifestyle compared with other Paleolithic femora. However, it might also be the result of sexual dimorphism in these parameters as well as possibly reflecting changes associated with aging.
    Matched MeSH terms: Fossils/anatomy & histology*
  11. Demarchi B, Stiller J, Grealy A, Mackie M, Deng Y, Gilbert T, et al.
    Proc Natl Acad Sci U S A, 2022 Oct 25;119(43):e2109326119.
    PMID: 35609205 DOI: 10.1073/pnas.2109326119
    The realization that ancient biomolecules are preserved in "fossil" samples has revolutionized archaeological science. Protein sequences survive longer than DNA, but their phylogenetic resolution is inferior; therefore, careful assessment of the research questions is required. Here, we show the potential of ancient proteins preserved in Pleistocene eggshell in addressing a longstanding controversy in human and animal evolution: the identity of the extinct bird that laid large eggs which were exploited by Australia's indigenous people. The eggs had been originally attributed to the iconic extinct flightless bird Genyornis newtoni (†Dromornithidae, Galloanseres) and were subsequently dated to before 50 ± 5 ka by Miller et al. [Nat. Commun. 7, 10496 (2016)]. This was taken to represent the likely extinction date for this endemic megafaunal species and thus implied a role of humans in its demise. A contrasting hypothesis, according to which the eggs were laid by a large mound-builder megapode (Megapodiidae, Galliformes), would therefore acquit humans of their responsibility in the extinction of Genyornis. Ancient protein sequences were reconstructed and used to assess the evolutionary proximity of the undetermined eggshell to extant birds, rejecting the megapode hypothesis. Authentic ancient DNA could not be confirmed from these highly degraded samples, but morphometric data also support the attribution of the eggshell to Genyornis. When used in triangulation to address well-defined hypotheses, paleoproteomics is a powerful tool for reconstructing the evolutionary history in ancient samples. In addition to the clarification of phylogenetic placement, these data provide a more nuanced understanding of the modes of interactions between humans and their environment.
    Matched MeSH terms: Fossils
  12. Forster P, Matsumura S
    Science, 2005 May 13;308(5724):965-6.
    PMID: 15890867
    Matched MeSH terms: Fossils
  13. Froufe E, Bolotov I, Aldridge DC, Bogan AE, Breton S, Gan HM, et al.
    Heredity (Edinb), 2020 Jan;124(1):182-196.
    PMID: 31201385 DOI: 10.1038/s41437-019-0242-y
    Using a new fossil-calibrated mitogenome-based approach, we identified macroevolutionary shifts in mitochondrial gene order among the freshwater mussels (Unionoidea). We show that the early Mesozoic divergence of the two Unionoidea clades, Margaritiferidae and Unionidae, was accompanied by a synchronous split in the gene arrangement in the female mitogenome (i.e., gene orders MF1 and UF1). Our results suggest that this macroevolutionary jump was completed within a relatively short time interval (95% HPD 201-226 Ma) that coincided with the Triassic-Jurassic mass extinction. Both gene orders have persisted within these clades for ~200 Ma. The monophyly of the so-called "problematic" Gonideinae taxa was supported by all the inferred phylogenies in this study using, for the first time, the M- and F-type mitogenomes either singly or combined. Within Gonideinae, two additional splits in the gene order (UF1 to UF2, UF2 to UF3) occurred in the Mesozoic and have persisted for ~150 and ~100 Ma, respectively. Finally, the mitogenomic results suggest ancient connections between freshwater basins of East Asia and Europe near the Cretaceous-Paleogene boundary, probably via a continuous paleo-river system or along the Tethys coastal line, which are well supported by at least three independent but almost synchronous divergence events.
    Matched MeSH terms: Fossils
  14. Heinrichs J, Scheben A, Bechteler J, Lee GE, Schäfer-Verwimp A, Hedenäs L, et al.
    PLoS One, 2016;11(5):e0156301.
    PMID: 27244582 DOI: 10.1371/journal.pone.0156301
    Cambay amber originates from the warmest period of the Eocene, which is also well known for the appearance of early angiosperm-dominated megathermal forests. The humid climate of these forests may have triggered the evolution of epiphytic lineages of bryophytes; however, early Eocene fossils of bryophytes are rare. Here, we present evidence for lejeuneoid liverworts and pleurocarpous mosses in Cambay amber. The preserved morphology of the moss fossil is inconclusive for a detailed taxonomic treatment. The liverwort fossil is, however, distinctive; its zig-zagged stems, suberect complicate-bilobed leaves, large leaf lobules, and small, deeply bifid underleaves suggest a member of Lejeuneaceae subtribe Lejeuneinae (Harpalejeunea, Lejeunea, Microlejeunea). We tested alternative classification possibilities by conducting divergence time estimates based on DNA sequence variation of Lejeuneinae using the age of the fossil for corresponding age constraints. Consideration of the fossil as a stem group member of Microlejeunea or Lejeunea resulted in an Eocene to Late Cretaceous age of the Lejeuneinae crown group. This reconstruction is in good accordance with published divergence time estimates generated without the newly presented fossil evidence. Balancing available evidence, we describe the liverwort fossil as the extinct species Microlejeunea nyiahae, representing the oldest crown group fossil of Lejeuneaceae.
    Matched MeSH terms: Fossils/anatomy & histology; Fossils/history
  15. Hill N
    PLoS One, 2019;14(2):e0206023.
    PMID: 30785876 DOI: 10.1371/journal.pone.0206023
    Tropidolaemus wagleri is a species of Asian pitviper with a geographic range including Thailand, Vietnam, Malaysia, Singapore, Bruniei, parts of Indonesia, and the Philippines. Tropidolaemus is a member of the Crotalinae subfamily, within Viperidae. The genus Tropidolaemus includes five species, and was once included within the genus Trimeresurus. While some osteologic characteristics have been noted a comprehensive description of cranial elements has not been produced for T. wagleri. An in-depth description of the cranial skeleton of Tropidolaemus wagleri lays the foundation for future projects to compare and contrast other taxa within Crotalinae and Viperidae. The chosen reference specimen was compared to the presumed younger specimens to note any variation in ontogeny. The study here provides a comprehensive description of isolated cranial elements as well as a description of ontogenetic change within the specimens observed. This study contributes to the knowledge of osteological characters in T. wagleri and provides a foundation for a long term project to identify isolated elements in the fossil record.
    Matched MeSH terms: Fossils
  16. Ibrahim N, Kutschera U
    Theory Biosci, 2013 Dec;132(4):267-75.
    PMID: 23975643 DOI: 10.1007/s12064-013-0192-5
    Over many years of his life, the British naturalist Alfred Russel Wallace (1823-1913) explored the tropical forests of Malaysia, collecting numerous specimens, including hundreds of birds, many of them new to science. Subsequently, Wallace published a series of papers on systematic ornithology, and discovered a new species on top of a volcano on Ternate, where he wrote, in 1858, his famous essay on natural selection. Based on this hands-on experience, and an analysis of an Archaeopteryx fossil, Wallace suggested that birds may have descended from dinosaurian ancestors. Here, we describe the "dinosaur-bird hypothesis" that originated with the work of Thomas H. Huxley (1825-1895). We present the strong evidence linking theropod dinosaurs to birds, and briefly outline the long and ongoing controversy around this concept. Dinosaurs preserving plumage, nesting sites and trace fossils provide overwhelming evidence for the dinosaurian origin of birds. Based on these recent findings of paleontological research, we conclude that extant birds indeed descended, with some modifications, from small, Mesozoic theropod dinosaurs. In the light of Wallace's view of bird origins, we critically evaluate recent opposing views to this idea, including Ernst Mayr's (1904-2005) arguments against the "dinosaur-bird hypothesis", and document that this famous ornithologist was not correct in his assessment of this important aspect of vertebrate evolution.
    Matched MeSH terms: Fossils
  17. Ibrahim YKh, Tshen LT, Westaway KE, Cranbrook EO, Humphrey L, Muhammad RF, et al.
    J Hum Evol, 2013 Dec;65(6):770-97.
    PMID: 24210657 DOI: 10.1016/j.jhevol.2013.09.005
    Nine isolated fossil Pongo teeth from two cave sites in Peninsular Malaysia are reported. These are the first fossil Pongo specimens recorded in Peninsular Malaysia and represent significant southward extensions of the ancient Southeast Asian continental range of fossil Pongo during two key periods of the Quaternary. These new records from Peninsular Malaysia show that ancestral Pongo successfully passed the major biogeographical divide between mainland continental Southeast Asia and the Sunda subregion before 500 ka (thousand years ago). If the presence of Pongo remains in fossil assemblages indicates prevailing forest habitat, then the persistence of Pongo at Batu Caves until 60 ka implies that during the Last Glacial Phase sufficient forest cover persisted in the west coast plain of what is now Peninsular Malaysia at least ten millennia after a presumed corridor of desiccation had extended to central and east Java. Ultimately, environmental conditions of the peninsula during the Last Glacial Maximum evidently became inhospitable for Pongo, causing local extinction. Following post-glacial climatic amelioration and reforestation, a renewed sea barrier prevented re-colonization from the rainforest refugium in Sumatra, accounting for the present day absence of Pongo in apparently hospitable lowland evergreen rainforest of Peninsular Malaysia. The new teeth provide further evidence that Pongo did not undergo a consistent trend toward dental size reduction over time.
    Matched MeSH terms: Fossils
  18. Khalil Ebrahim Jasim
    Sains Malaysiana, 2012;41:1011-1016.
    During the last quarter of the twentieth century there have been intensive research activities looking for green sources of energy. The main aim of the green generators or converters of energy is to replace the conventional (fossil) energy sources, hence reducing further accumulation of the green house gasses GHGs. Conventional silicon and III-V semiconductor solar cell based on crystalline bulk, quantum well and quantum dots structure or amorphous and thin film structures provided a feasible solution. However, natural dye sensitized solar cells NDSSC are a promising class of photovoltaic cells with the capability of generating green energy at low production cost since no vacuum systems or expensive equipment are required in their fabrication. Also, natural dyes are abundant, easily extracted and safe materials. In NDSSC, once dye molecules exposed to light they become oxidized and transfer electrons to a nanostructured layer of wide bandgap semiconductors such as TiO2. The generated electrons are drawn outside the cell through ohmic contact to a load. In this paper we review the structure and operation principles of the dye sensitized solar cell DSSC. We discuss preparation procedures, optical and electrical characterization of the NDSSC using local dyes extracted from Henna (lawsonia inermis L.), pomegranate, cherries and Bahraini raspberries (rubus spp.). These natural organic dyes are potential candidates to replace some of the man-made dyes used as sensitizer in many commercialized photoelectrochemical cells. Factors limiting the operation of the DSSC are discussed. NDSSCs are expected to be a favored choice in the building-integrated
    photovoltaics (BIPV) due to their robustness, therefore, requiring no special shielding from natural events such as tree strikes or hails.
    Matched MeSH terms: Fossils
  19. Liu J, Andersson A, Zhong G, Geng X, Ding P, Zhu S, et al.
    Sci Total Environ, 2020 Jul 03;744:140359.
    PMID: 32688001 DOI: 10.1016/j.scitotenv.2020.140359
    Black Carbon (BC) deteriorates air quality and contributes to climate warming, yet its regionally- and seasonally-varying emission sources are poorly constrained. Here we employ natural abundance radiocarbon (14C) measurements of BC intercepted at a northern Malaysia regional receptor site, Bachok, to quantify the relative biomass vs. fossil source contributions of atmospheric BC, in a first year-round study for SE Asia (December 2015-December 2016). The annual average 14C signature suggests as large contributions from biomass burning as from fossil fuel combustion. This is similar to findings from analogous measurements at S Asian receptors sites (~50% biomass burning), while E Asia sites are dominated by fossil emission (~20% biomass burning). The 14C-based source fingerprinting of BC in the dry spring season in SE Asia signals an even more elevated biomass burning contribution (~70% or even higher), presumably from forest, shrub and agricultural fires. This is consistent with this period showing also elevated ratio of organic carbon to BC (up from ~5 to 30) and estimates of BC emissions from satellite fire data. Hence, the present study emphasizes the importance of mitigating dry season vegetation fires in SE Asia.
    Matched MeSH terms: Fossils
  20. Lopes-Lima M, Bolotov IN, Do VT, Aldridge DC, Fonseca MM, Gan HM, et al.
    Mol Phylogenet Evol, 2018 10;127:98-118.
    PMID: 29729933 DOI: 10.1016/j.ympev.2018.04.041
    Two Unionida (freshwater mussel) families are present in the Northern Hemisphere; the Margaritiferidae, representing the most threatened of unionid families, and the Unionidae, which include several genera of unresolved taxonomic placement. The recent reassignment of the poorly studied Lamprotula rochechouartii from the Unionidae to the Margaritiferidae motivated a new search for other potential species of margaritiferids from members of Gibbosula and Lamprotula. Based on molecular and morphological analyses conducted on newly collected specimens from Vietnam, we here assign Gibbosula crassa to the Margaritiferidae. Additionally, we reanalyzed all diagnostic characteristics of the Margaritiferidae and examined museum specimens of Lamprotula and Gibbosula. As a result, two additional species are also moved to the Margaritiferidae, i.e. Gibbosula confragosa and Gibbosula polysticta. We performed a robust five marker phylogeny with all available margaritiferid species and discuss the taxonomy within the family. The present phylogeny reveals the division of Margaritiferidae into four ancient clades with distinct morphological, biogeographical and ecological characteristics that justify the division of the Margaritiferidae into two subfamilies (Gibbosulinae and Margaritiferinae) and four genera (Gibbosula, Cumberlandia, Margaritifera, and Pseudunio). The systematics of the Margaritiferidae family is re-defined as well as their distribution, potential origin and main biogeographic patterns.
    Matched MeSH terms: Fossils
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links