Displaying publications 1 - 20 of 231 in total

Abstract:
Sort:
  1. Lim L, Ab Majid AH
    Data Brief, 2020 Jun;30:105575.
    PMID: 32368598 DOI: 10.1016/j.dib.2020.105575
    The metagenomic datasets of the microbial DNA from tropical bed bugs (Cimex hemipterus) after feeding on human blood were presented. Next-generation sequencing of the community DNA was carried out on an Illumina Miseq platform and the raw fastq files were analyzed using QIIME (version 1.9.1). The metagenome of three samples comprised of 108,198 sequences representing 44,646,263 bps with a mean length of 412.63 bps. The sequence data is accessible at the NCBI SRA under the bioproject number PRJNA600667. Community analysis showed Proteobacteria was the most abundance (more than 99%) microbial community that present in the guts of fully fed tropical bed bugs.
    Matched MeSH terms: Gastrointestinal Microbiome
  2. Abu Bakar Sajak A, Mediani A, Maulidiani, Mohd Dom NS, Machap C, Hamid M, et al.
    Phytomedicine, 2017 Dec 01;36:201-209.
    PMID: 29157816 DOI: 10.1016/j.phymed.2017.10.011
    BACKGROUND: Ipomoea aquatica (locally known as "kangkung") has previously been reported to have hypoglycemic activities on glucose level in diabetes patients. However, the effect of I. aquatica ethanolic extract on the metabolites in the body has remained unknown.

    PURPOSE: This study provides new insights on the changes of endogenous metabolites caused by I. aquatica ethanolic extract and improves the understanding on the therapeutic efficacy and mechanism of I. aquatica ethanolic extract.

    METHODS: By using a combination of 1H nuclear magnetic resonance (NMR) with multivariate analysis (MVDA), the changes of metabolites due to I. aquatica ethanolic extract administration in obese diabetic-induced Sprague Dawley rats (OB+STZ+IA) were identified.

    RESULTS: The results suggested 19 potential biomarkers with variable importance projections (VIP) above 0.5, which include creatine/creatinine, glucose, creatinine, citrate, carnitine, 2-oxoglutarate, succinate, hippurate, leucine, 1-methylnicotinamice (MNA), taurine, 3-hydroxybutyrate (3-HB), tryptophan, lysine, trigonelline, allantoin, formiate, acetoacetate (AcAc) and dimethylamine. From the changes in the metabolites, the affected pathways and aspects of metabolism were identified.

    CONCLUSION: I. aquatica ethanolic extract increases metabolite levels such as creatinine/creatine, carnitine, MNA, trigonelline, leucine, lysine, 3-HB and decreases metabolite levels, including glucose and tricarboxylic acid (TCA) intermediates. This implies capabilities of I. aquatica ethanolic extract promoting glycolysis, gut microbiota and nicotinate/nicotinamide metabolism, improving the glomerular filtration rate (GFR) and reducing the β-oxidation rate. However, the administration of I. aquatica ethanolic extract has several drawbacks, such as unimproved changes in amino acid metabolism, especially in reducing branched chain amino acid (BCAA) synthesis pathways and lipid metabolism.

    Matched MeSH terms: Gastrointestinal Microbiome/drug effects
  3. Rukayadi, Y., Abdulkarim, S.M., Sulaiman, R., Abdelkarim, H.
    MyJurnal
    Plants have been used recently to eliminate bacterial growth in food products. This study was undertaken to test the in vitro sanitizing effect of crude extract from bitter gourd (BG) fruit on the growth of native microorganisms in raw chicken leg meat. Hot air dried BG and extrudate extracts at 1% concentration and exposure times of (5, 10 and 15 min) were used to treat the samples using dilution method. Results showed that BG extrudate had a slightly stronger bactericidal activity against the microflora than the B.G. hot air drying treatment, especially, on E. coli at all exposure time. Overall, there is no significant difference between the treatments; Total Plate Count (TPC), Escherichia coli, Bacillus cereus, Staphylococcus aureus. The best reduction time of microflora by hot air dried extract was at (15 min) except for B. cereus was at (5 min) and for extrudate extract was at (5 min) except for E. coli was at (10 min). In conclusion, bitter gourd extract could be used as an important natural sanitizer for rinsing raw food matrials such chicken meat.
    Matched MeSH terms: Gastrointestinal Microbiome
  4. Chin VK, Yong VC, Chong PP, Amin Nordin S, Basir R, Abdullah M
    Mediators Inflamm, 2020;2020:9560684.
    PMID: 32322167 DOI: 10.1155/2020/9560684
    Human gut is home to a diverse and complex microbial ecosystem encompassing bacteria, viruses, parasites, fungi, and other microorganisms that have an undisputable role in maintaining good health for the host. Studies on the interplay between microbiota in the gut and various human diseases remain the key focus among many researchers. Nevertheless, advances in sequencing technologies and computational biology have helped us to identify a diversity of fungal community that reside in the gut known as the mycobiome. Although studies on gut mycobiome are still in its infancy, numerous sources have reported its potential role in host homeostasis and disease development. Nonetheless, the actual mechanism of its involvement remains largely unknown and underexplored. Thus, in this review, we attempt to discuss the recent advances in gut mycobiome research from multiple perspectives. This includes understanding the composition of fungal communities in the gut and the involvement of gut mycobiome in host immunity and gut-brain axis. Further, we also discuss on multibiome interactions in the gut with emphasis on fungi-bacteria interaction and the influence of diet in shaping gut mycobiome composition. This review also highlights the relation between fungal metabolites and gut mycobiota in human homeostasis and the role of gut mycobiome in various human diseases. This multiperspective review on gut mycobiome could perhaps shed new light for future studies in the mycobiome research area.
    Matched MeSH terms: Gastrointestinal Microbiome/genetics; Gastrointestinal Microbiome/physiology*
  5. Woon JS, King PJH, Mackeen MM, Mahadi NM, Wan Seman WMK, Broughton WJ, et al.
    Mol Biotechnol, 2017 Jul;59(7):271-283.
    PMID: 28573450 DOI: 10.1007/s12033-017-0015-x
    Coptotermes curvignathus is a termite that, owing to its ability to digest living trees, serves as a gold mine for robust industrial enzymes. This unique characteristic reflects the presence of very efficient hydrolytic enzyme systems including cellulases. Transcriptomic analyses of the gut of C. curvignathus revealed that carbohydrate-active enzymes (CAZy) were encoded by 3254 transcripts and that included 69 transcripts encoding glycoside hydrolase family 7 (GHF7) enzymes. Since GHF7 enzymes are useful to the biomass conversion industry, a gene encoding for a GHF7 enzyme (Gh1254) was synthesized, sub-cloned and expressed in the methylotrophic yeast Pichia pastoris. Expressed GH1254 had an apparent molecular mass of 42 kDa, but purification was hampered by its low expression levels in shaken flasks. To obtain more of the enzyme, GH1254 was produced in a bioreactor that resulted in a fourfold increase in crude enzyme levels. The purified enzyme was active towards soluble synthetic substrates such as 4-methylumbelliferyl-β-D-cellobioside, 4-nitrophenyl-β-D-cellobioside and 4-nitrophenyl-β-D-lactoside but was non-hydrolytic towards Avicel or carboxymethyl cellulose. GH1254 catalyzed optimally at 35 °C and maintained 70% of its activity at 25 °C. This enzyme is thus potentially useful in food industries employing low-temperature conditions.
    Matched MeSH terms: Gastrointestinal Microbiome
  6. Al-Awadi A, Grove J, Taylor M, Valdes A, Vijay A, Bawden S, et al.
    BMJ Open, 2021 10 07;11(10):e045802.
    PMID: 34620653 DOI: 10.1136/bmjopen-2020-045802
    INTRODUCTION: A Low Glycaemic Index (LGI) diet is a proposed lifestyle intervention in non-alcoholic fatty liver diseases (NAFLD) which is designed to reduce circulating blood glucose levels, hepatic glucose influx, insulin resistance and de novo lipogenesis. A significant reduction in liver fat content through following a 1-week LGI diet has been reported in healthy volunteers. Changes in dietary fat and carbohydrates have also been shown to alter gut microbiota composition and lead to hepatic steatosis through the gut-liver axis. There are no available trials examining the effects of an LGI diet on liver fat accumulation in patients with NAFLD; nor has the impact of consuming an LGI diet on gut microbiota composition been studied in this population. The aim of this trial is to investigate the effects of LGI diet consumption on liver fat content and its effects on gut microbiota composition in participants with NAFLD compared with a High Glycaemic Index (HGI) control diet.

    METHODS AND ANALYSIS: A 2×2 cross-over randomised mechanistic dietary trial will allocate 16 participants with NAFLD to a 2-week either HGI or LGI diet followed by a 4-week wash-out period and then the LGI or HGI diet, alternative to that followed in the first 2 weeks. Baseline and postintervention (four visits) outcome measures will be collected to assess liver fat content (using MRI/S and controlled attenuation parameter-FibroScan), gut microbiota composition (using 16S RNA analysis) and blood biomarkers including glycaemic, insulinaemic, liver, lipid and haematological profiles, gut hormones levels and short-chain fatty acids.

    ETHICS AND DISSEMINATION: Study protocol has been approved by the ethics committees of The University of Nottingham and East Midlands Nottingham-2 Research Ethics Committee (REC reference 19/EM/0291). Data from this trial will be used as part of a Philosophy Doctorate thesis. Publications will be in peer-reviewed journals.

    TRIAL REGISTRATION NUMBER: NCT04415632.

    Matched MeSH terms: Gastrointestinal Microbiome*
  7. Kurina I, Popenko A, Klimenko N, Koshechkin S, Chuprikova L, Filipenko M, et al.
    Mol Cell Probes, 2020 Aug;52:101570.
    PMID: 32304824 DOI: 10.1016/j.mcp.2020.101570
    Nowadays the advent of innovative high-throughput sequencing allows obtaining high-quality microbiome profiling. However, PCR-based tests are still considered the "golden standard" for many clinical applications. Here, we designed a qPCR-based platform with fluorescent-labeled oligonucleotide probes for assessing human gut microbiome composition. The system allows conducting qualitative and semiquantitative analysis for 12 prokaryotic taxa that are prevalent in the human gut and associated with diseases, diet, age and other factors. The platform was validated by comparing microbiome profile data obtained with two different methods - the platform and high-throughput 16S rRNA sequencing - across 42 stool samples. The test can form the basis for precise and cost-efficient microbiome assay for large-scale surveys including clinical trials with interventions related to diet and disease risks.
    Matched MeSH terms: Gastrointestinal Microbiome/genetics*
  8. Mohamad NE, Yeap SK, Ky H, Liew NWC, Beh BK, Boo SY, et al.
    PMID: 33029159 DOI: 10.1155/2020/1257962
    Obesity is a pandemic metabolic syndrome with increasing incidences every year. Among the significant factors that lead to obesity, overconsumption of high-fat food in daily intake is always the main contributor. Functional foods have shown a positive effect on disease prevention and provide health benefits, including counteracting obesity problem. Vinegar is one of the fermented functional beverages that have been consumed for many years, and different types of vinegar showed different bioactivities and efficacies. In this study, we investigated the potential effects of pineapple vinegar as an antiobesity agent on a high-fat diet- (HFD-) induced C57BL/6 obese mice. C57BL/6 mice were treated with pineapple vinegar (1 mL/kg BW and 0.08 mL/kg BW) for 12 weeks after 24 weeks of HFD incubation. Serum biochemistry profiles, antioxidant assays, qPCR, proteome profiler, and 16S metagenomic were done posttreatment. Our data showed that a high concentration of pineapple vinegar (1 mL/kg BW) treatment significantly (p < 0.05) reduced the bodyweight (∼20%), restored lipid profiles, increased the antioxidant activities, and reduced the oxidative stress. Besides, significant (p < 0.05) regulation of several adipokines and inflammatory-related genes was recorded. Through the regulation of gut microbiota, we found a higher abundance of Akkermansia muciniphila, a microbiota reported to be associated with obesity in the high concentration of pineapple vinegar treatment. Collectively, these data established the mechanism of pineapple vinegar as antiobesity in mice and revealed the potential of pineapple vinegar as a functional food for obesity.
    Matched MeSH terms: Gastrointestinal Microbiome
  9. Joseph N, Clayton JB, Hoops SL, Linhardt CA, Mohd Hashim A, Mohd Yusof BN, et al.
    Evol Bioinform Online, 2020;16:1176934320965943.
    PMID: 33281440 DOI: 10.1177/1176934320965943
    Childhood obesity is a serious public health problem worldwide. Perturbations in the gut microbiota composition have been associated with the development of obesity in both children and adults. Probiotics, on the other hand, are proven to restore the composition of the gut microbiome which helps reduce the development of obesity. However, data on the effect of probiotics on gut microbiota and its association with childhood obesity is limited. This study aims to determine the effect of probiotics supplement intervention on gut microbiota profiles in obese and normal-weight children. A total of 37 children, 17 normal weight, and 20 overweight school children from a government school in Selangor were selected to participate in this study. Participants were further divided into intervention and control groups. The intervention groups received daily probiotic drinks while the control groups continued eating their typical diet. Fecal samples were collected from the participants for DNA extraction. The hypervariable V3 and V4 regions of 16S rRNA gene were amplified and sequenced using the Illumina MiSeq platform. No significant differences in alpha diversity were observed between normal weight and obese children in terms of the Shannon Index for evenness or species richness. However, a higher intervention effect on alpha diversity was observed among normal-weight participants compared to obese. The participants' microbiome was found to fluctuate throughout the study. Analysis of the taxa at species level showed an increase in Bacteroides ovatus among the normal weight cohort. Genus-level comparison revealed a rise in genus Lachnospira and Ruminococcus in the overweight participants after intervention, compared to the normal-weight participants. The probiotics intervention causes an alteration in gut microbiota composition in both normal and overweight children. Though the association could not be defined statistically, this study has provided an improved understanding of the intervention effect of probiotics on gut microbiome dysbiosis in an underrepresented population.
    Matched MeSH terms: Gastrointestinal Microbiome
  10. Koo SH, Deng J, Ang DSW, Hsiang JC, Lee LS, Aazmi S, et al.
    Singapore Med J, 2019 Oct;60(10):512-521.
    PMID: 30488079 DOI: 10.11622/smedj.2018152
    INTRODUCTION: The objectives of this study were to examine the effects of ethnicity, gender and a proton pump inhibitor (PPI), omeprazole, on the human gut microbiome. PPIs are commonly used for the treatment of acid-related disorders. We hypothesised that PPI therapy might perturb microbial communities and alter the gut microbiome.

    METHODS: Healthy subjects of Chinese (n = 12), Malay (n = 12) and Indian (n = 10) ancestry, aged 21-37 years, were enrolled. They provided a baseline stool sample (Day 1) and were then given a course of omeprazole at therapeutic dose (20 mg daily) for seven days. Stool samples were collected again on Day 7 and 14 (one week after stopping omeprazole). Microbial DNA was extracted from the stool samples, followed by polymerase chain reaction, library construction, 16S rRNA sequencing using Illumina MiSeq, and statistical and bioinformatics analyses.

    RESULTS: The findings showed an increase in species richness (p = 0.018) after omeprazole consumption on Day 7, which reverted to baseline on Day 14. There were significant increases in the relative abundance of Streptococcus vestibularis (p = 0.0001) and Veillonella dispar (p = 0.0001) on Day 7, which diminished on Day 14. Faecalibacterium prausnitzii, Sutterella stercoricanis and Bacteroides denticanum were characteristic of Chinese, Malays and Indians, respectively. Lactobacillaceae and Bacteroides xylanisolvens were the signature taxa of male and female subjects, respectively.

    CONCLUSION: The study demonstrated alterations in the gut microbiome following omeprazole treatment. This may explain the underlying pathology of increased risk of Clostridium difficile infections associated with omeprazole therapy.

    Matched MeSH terms: Gastrointestinal Microbiome/drug effects*
  11. Oh L, Ab Rahman S, Dubinsky K, Azanan MS, Ariffin H
    Technol Cancer Res Treat, 2023;22:15330338221149799.
    PMID: 36624625 DOI: 10.1177/15330338221149799
    Recent studies have identified causal links between altered gut microbiome, chronic inflammation, and inflammation-driven conditions such as diabetes and cardiovascular disease. Childhood cancer survivors (CCS) show late effects of therapy in the form of inflammaging-related disorders as well as microbial dysbiosis, supporting a hypothesis that the conditions are interconnected. Given the susceptibility of the gut microbiome to alteration, a number of therapeutic interventions have been investigated for the treatment of inflammatory conditions, though not within the context of cancer survivorship in children and adolescents. Here, we evaluate the potential for these interventions, which include probiotic supplementation, prebiotics/fiber-rich diet, exercise, and fecal microbiota transplantation for prevention and treatment of cancer treatment-related microbial dysbiosis in survivors. We also make recommendations to improve adherence and encourage long-term lifestyle changes for maintenance of healthy gut microbiome in CCS as a potential strategy to mitigate treatment-related late effects.
    Matched MeSH terms: Gastrointestinal Microbiome*
  12. Chua LL, Rajasuriar R, Lim YAL, Woo YL, Loke P, Ariffin H
    BMC Cancer, 2020 Feb 24;20(1):151.
    PMID: 32093640 DOI: 10.1186/s12885-020-6654-5
    BACKGROUND: Alteration in gut microbiota has been recently linked with childhood leukemia and the use of chemotherapy. Whether the perturbed microbiota community is restored after disease remission and cessation of cancer treatment has not been evaluated. This study examines the chronological changes of gut microbiota in children with acute lymphoblastic leukemia (ALL) prior to the start-, during-, and following cessation of chemotherapy.

    METHODOLOGY: We conducted a longitudinal observational study in gut microbiota profile in a group of paediatric patients diagnosed with ALL using 16 s ribosomal RNA sequencing and compared these patients' microbiota pattern with age and ethnicity-matched healthy children. Temporal changes of gut microbiota in these patients with ALL were also examined at different time-points in relation to chemotherapy.

    RESULTS: Prior to commencement of chemotherapy, gut microbiota in children with ALL had larger inter-individual variability compared to healthy controls and was enriched with bacteria belonging to Bacteroidetes phylum and Bacteroides genus. The relative abundance of Bacteroides decreased upon commencement of chemotherapy. Restitution of gut microbiota composition to resemble that of healthy controls occurred after cessation of chemotherapy. However, the microbiota composition (beta diversity) remained distinctive and a few bacteria were different in abundance among the patients with ALL compared to controls despite completion of chemotherapy and presumed restoration of normal health.

    CONCLUSION: Our findings in this pilot study is the first to suggest that gut microbiota profile in children with ALL remains marginally different from healthy controls even after cessation of chemotherapy. These persistent microbiota changes may have a role in the long-term wellbeing in childhood cancer survivors but the impact of these changes in subsequent health perturbations in these survivors remain unexplored.

    Matched MeSH terms: Gastrointestinal Microbiome/genetics*
  13. Liou JM, Malfertheiner P, Lee YC, Sheu BS, Sugano K, Cheng HC, et al.
    Gut, 2020 12;69(12):2093-2112.
    PMID: 33004546 DOI: 10.1136/gutjnl-2020-322368
    OBJECTIVE: A global consensus meeting was held to review current evidence and knowledge gaps and propose collaborative studies on population-wide screening and eradication of Helicobacter pylori for prevention of gastric cancer (GC).

    METHODS: 28 experts from 11 countries reviewed the evidence and modified the statements using the Delphi method, with consensus level predefined as ≥80% of agreement on each statement. The Grading of Recommendation Assessment, Development and Evaluation (GRADE) approach was followed.

    RESULTS: Consensus was reached in 26 statements. At an individual level, eradication of H. pylori reduces the risk of GC in asymptomatic subjects and is recommended unless there are competing considerations. In cohorts of vulnerable subjects (eg, first-degree relatives of patients with GC), a screen-and-treat strategy is also beneficial. H. pylori eradication in patients with early GC after curative endoscopic resection reduces the risk of metachronous cancer and calls for a re-examination on the hypothesis of 'the point of no return'. At the general population level, the strategy of screen-and-treat for H. pylori infection is most cost-effective in young adults in regions with a high incidence of GC and is recommended preferably before the development of atrophic gastritis and intestinal metaplasia. However, such a strategy may still be effective in people aged over 50, and may be integrated or included into national healthcare priorities, such as colorectal cancer screening programmes, to optimise the resources. Reliable locally effective regimens based on the principles of antibiotic stewardship are recommended. Subjects at higher risk of GC, such as those with advanced gastric atrophy or intestinal metaplasia, should receive surveillance endoscopy after eradication of H. pylori.

    CONCLUSION: Evidence supports the proposal that eradication therapy should be offered to all individuals infected with H. pylori. Vulnerable subjects should be tested, and treated if the test is positive. Mass screening and eradication of H. pylori should be considered in populations at higher risk of GC.

    Matched MeSH terms: Gastrointestinal Microbiome
  14. Abu Nor N, Zamri-Saad M, Md Yasin IS, Salleh A, Mustaffa-Kamal F, Matori MF, et al.
    Vaccines (Basel), 2020 Dec 04;8(4).
    PMID: 33291587 DOI: 10.3390/vaccines8040734
    Vibrio harveyi causes vibriosis in various commercial marine fish species. The infection leads to significant economic losses for aquaculture farms, and vaccination is an alternative approach for the prevention and control of fish diseases for aquaculture sustainability. This study describes the use of formalin-killed Vibrio harveyi (FKVh) strain Vh1 as a vaccine candidate to stimulate innate and adaptive immunities against vibriosis in a marine red hybrid tilapia model. Tilapia are fast growing; cheap; resistant to diseases; and tolerant to adverse environmental conditions of fresh water, brackish water, and marine water and because of these advantages, marine red hybrid tilapia is a suitable candidate as a model to study fish diseases and vaccinations against vibriosis. A total of 180 healthy red hybrid tilapias were gradually adapted to the marine environment before being divided into two groups, with 90 fish in each group and were kept in triplicate with 30 fish per tank. Group 1 was vaccinated intraperitoneally with 100 µL of FKVh on week 0, and a booster dose was similarly administered on week 2. Group 2 was similarly injected with PBS. Skin mucus, serum, and gut lavage were collected weekly for enzyme-linked immunosorbent assay (ELISA) and a lysozyme activity assay from a total of 30 fish of each group. On week 4, the remaining 60 fish of Groups 1 and 2 were challenged with 108 cfu/fish of live Vibrio harveyi. The clinical signs were monitored while the survival rate was recorded for 48 h post-challenge. Vaccination with FKVh resulted in a significantly (p < 0.05) higher rate of survival (87%) compared to the control (20%). The IgM antibody titer and lysozyme activities of Group 1 were significantly (p < 0.05) higher than the unvaccinated Groups 2 in most weeks throughout the experiment. Therefore, the intraperitoneal exposure of marine red hybrid tilapia to killed V. harveyi enhanced the resistance and antibody response of the fish against vibriosis.
    Matched MeSH terms: Gastrointestinal Microbiome
  15. Naomi R, Embong H, Othman F, Ghazi HF, Maruthey N, Bahari H
    Nutrients, 2021 Dec 22;14(1).
    PMID: 35010895 DOI: 10.3390/nu14010020
    Alzheimer's disease (AD) is the most common form of neurodegenerative disorders affecting mostly the elderly. It is characterized by the presence of Aβ and neurofibrillary tangles (NFT), resulting in cognitive and memory impairment. Research shows that alteration in gut microbial diversity and defects in gut brain axis are linked to AD. Probiotics are known to be one of the best preventative measures against cognitive decline in AD. Numerous in vivo trials and recent clinical trials have proven the effectiveness of selected bacterial strains in slowing down the progression of AD. It is proven that probiotics modulate the inflammatory process, counteract with oxidative stress, and modify gut microbiota. Thus, this review summarizes the current evidence, diversity of bacterial strains, defects of gut brain axis in AD, harmful bacterial for AD, and the mechanism of action of probiotics in preventing AD. A literature search on selected databases such as PubMed, Semantic Scholar, Nature, and Springer link have identified potentially relevant articles to this topic. However, upon consideration of inclusion criteria and the limitation of publication year, only 22 articles have been selected to be further reviewed. The search query includes few sets of keywords as follows. (1) Probiotics OR gut microbiome OR microbes AND (2) Alzheimer OR cognitive OR aging OR dementia AND (3) clinical trial OR in vivo OR animal study. The results evidenced in this study help to clearly illustrate the relationship between probiotic supplementation and AD. Thus, this systematic review will help identify novel therapeutic strategies in the future as probiotics are free from triggering any adverse effects in human body.
    Matched MeSH terms: Gastrointestinal Microbiome/drug effects*
  16. Liu J, Chen J, Wang S, Xie J, Wang Y, Chai TT, et al.
    Food Chem, 2022 May 30;377:132000.
    PMID: 34999460 DOI: 10.1016/j.foodchem.2021.132000
    The aim of this study was to investigate the digestion and fermentation properties of fish protein fermented by Monascus. Semi-dried fish was fermented by applying Monascus purpureus Went M 3.439. Our results show that the Monascus fermentation of the fish protein enriched the free amino acids and achieved a relatively higher glutamate content than the control group. The Monascus treatment promoted the decomposition of the fish protein during in vitro digestion, reduced the ammonia and indole content and tended to increase the propionic acid content during in vitro fermentation. The Monascus treatment considerably changed the gut microbiota composition, and particularly increased the relative abundance of Parabacteroides in the in vitro fermentation model of human distal colon. Consumption of Monascus fermented fish protein could result in positive changes in fermentation metabolites and gut microbiota, which brings potential health benefits.
    Matched MeSH terms: Gastrointestinal Microbiome*
  17. Vignesh R, Swathirajan CR, Tun ZH, Rameshkumar MR, Solomon SS, Balakrishnan P
    Front Immunol, 2020;11:607734.
    PMID: 33569053 DOI: 10.3389/fimmu.2020.607734
    Matched MeSH terms: Gastrointestinal Microbiome*
  18. Basit MA, Kadir AA, Loh TC, Abdul Aziz S, Salleh A, Zakaria ZA, et al.
    Animals (Basel), 2020 Nov 19;10(11).
    PMID: 33227911 DOI: 10.3390/ani10112150
    The current experiment was designed to estimate the comparative efficacy of selected phytobiotics Persicaria odorata leaf meal (POLM) and Piper betle leaf meal (PBLM) with halquinol, and tetracycline in broiler chickens. The 150-day-old broiler chickens were randomly assigned to five dietary groups. The dietary supplementation groups were the basal diet (BD), which served as the negative control (NC), and BD + 0.2 g/kg tetracycline, which served as the positive control (PC); BD + 0.03 g/kg halquinol (HAL), BD + 8 g/kg POLM (Po8), and BD + 4 g/kg PBLM (Pb4) were the treatment groups. Growth performance, gut morphology, ileal digestibility, and cecal microbiota composition were measured. On day 21, the body weight gain (BWG) was enhanced (p < 0.05) in the broiler chickens fed on phytobiotics (Po8 and Pb4) relative to the NC group, however, on day 42 and in terms of overall growth performance, BWG was enhanced (p < 0.05 in diets (Po8, Pb4, HAL and PC) in comparison with the NC group. Conversely, feed conversion ratio (FCR) was recorded reduced (p < 0.05) in Pb4, Po8, HAL, and PC group in comparison with the NC group. Supplementation of phytobiotics (Po8 and Pb4), HAL and PC, positively improved the gut morphology compared to the NC group. Furthermore, the maximum (p < 0.05) villus height (VH) in duodenum and jejunum was observed in broilers fed on diet Pb4. Supplementation of phytobiotics, HAL and PC, improved (p < 0.05) the digestibility of dry matter (DM) (except for HAL), organic matter (OM), crude protein (CP), ether extract (EE), and ash compared to the NC group. Dietary supplementation of phytobiotics (Po8 and Pb4), HAL and PC, significantly reduced the E. coli, Salmonella, and Staphylococcus aureus (except for HAL) counts compared to the NC group. However, supplementation of Pb4 resulted in significantly decreased total anaerobic bacteria and Clostridium spp. counts compared to the NC group. In addition, supplementation of phytobiotics significantly increased the Lactobacillus count compared to HAL, PC, and NC groups. In conclusion, dietary supplementation of phytobiotics improved the gut morphology, positively modulated and maintained the dynamics of cecal microbiota with enhanced nutrient digestibility, thus, increased the growth performance. Based on current results, phytobiotics could be used as an alternative to AGPs for sustainable broiler chicken production.
    Matched MeSH terms: Gastrointestinal Microbiome
  19. Firouzi S, Majid HA, Ismail A, Kamaruddin NA, Barakatun-Nisak MY
    Eur J Nutr, 2017 Jun;56(4):1535-1550.
    PMID: 26988693 DOI: 10.1007/s00394-016-1199-8
    AIM: Evidence of a possible connection between gut microbiota and several physiological processes linked to type 2 diabetes is increasing. However, the effect of multi-strain probiotics in people with type 2 diabetes remains unclear. This study investigated the effect of multi-strain microbial cell preparation-also refers to multi-strain probiotics-on glycemic control and other diabetes-related outcomes in people with type 2 diabetes.

    DESIGN: A randomized, double-blind, parallel-group, controlled clinical trial.

    SETTING: Diabetes clinic of a teaching hospital in Kuala Lumpur, Malaysia.

    PARTICIPANTS: A total of 136 participants with type 2 diabetes, aged 30-70 years, were recruited and randomly assigned to receive either probiotics (n = 68) or placebo (n = 68) for 12 weeks.

    OUTCOMES: Primary outcomes were glycemic control-related parameters, and secondary outcomes were anthropomorphic variables, lipid profile, blood pressure and high-sensitivity C-reactive protein. The Lactobacillus and Bifidobacterium quantities were measured before and after intervention as an indicator of successful passage of the supplement through gastrointestinal tract.

    STATISTICAL ANALYSIS: Intention-to-treat (ITT) analysis was performed on all participants, while per-protocol (PP) analysis was performed on those participants who had successfully completed the trial with good compliance rate.

    RESULTS: With respect to primary outcomes, glycated hemoglobin decreased by 0.14 % in the probiotics and increased by 0.02 % in the placebo group in PP analysis (p 

    Matched MeSH terms: Gastrointestinal Microbiome
  20. Asnicar F, Leeming ER, Dimidi E, Mazidi M, Franks PW, Al Khatib H, et al.
    Gut, 2021 09;70(9):1665-1674.
    PMID: 33722860 DOI: 10.1136/gutjnl-2020-323877
    BACKGROUND AND AIMS: Gut transit time is a key modulator of host-microbiome interactions, yet this is often overlooked, partly because reliable methods are typically expensive or burdensome. The aim of this single-arm, single-blinded intervention study is to assess (1) the relationship between gut transit time and the human gut microbiome, and (2) the utility of the 'blue dye' method as an inexpensive and scalable technique to measure transit time.

    METHODS: We assessed interactions between the taxonomic and functional potential profiles of the gut microbiome (profiled via shotgun metagenomic sequencing), gut transit time (measured via the blue dye method), cardiometabolic health and diet in 863 healthy individuals from the PREDICT 1 study.

    RESULTS: We found that gut microbiome taxonomic composition can accurately discriminate between gut transit time classes (0.82 area under the receiver operating characteristic curve) and longer gut transit time is linked with specific microbial species such as Akkermansia muciniphila, Bacteroides spp and Alistipes spp (false discovery rate-adjusted p values <0.01). The blue dye measure of gut transit time had the strongest association with the gut microbiome over typical transit time proxies such as stool consistency and frequency.

    CONCLUSIONS: Gut transit time, measured via the blue dye method, is a more informative marker of gut microbiome function than traditional measures of stool consistency and frequency. The blue dye method can be applied in large-scale epidemiological studies to advance diet-microbiome-health research. Clinical trial registry website https://clinicaltrials.gov/ct2/show/NCT03479866 and trial number NCT03479866.

    Matched MeSH terms: Gastrointestinal Microbiome/physiology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links