Displaying publications 1 - 20 of 41 in total

Abstract:
Sort:
  1. MUMTAZUDDIN AHMED M, MOHIUDDIN A
    Med J Malaya, 1963 Mar;17:199-208.
    PMID: 13936588
    Matched MeSH terms: Glycosaminoglycans*
  2. Baie SH, Sheikh KA
    J Ethnopharmacol, 2000 Nov;73(1-2):15-30.
    PMID: 11025135
    Haruan has been proved to influence the different phases of wound healing process. The current research focuses on the effects of haruan on the different constituents of extracellular matrix of healing wounds in normal and diabetic rats. Anaesthetized normal and streptozotocin induced diabetic rats were provided with excision wounds at the back and then animals were divided into four groups as: group 1, wounds treated with cetrimide+haruan cream; group 2, wounds treated with haruan cream; group 3, wounds treated with cetrimide (commercial) cream; and group 4, wounds untreated and served as control. Animals were sacrificed after 3, 6, 9 and 12 days. These wounds were used to determine the hexosamine, protein, uronic acid and glycosaminoglycan contents and the wound contraction. The results suggested a marked increase (P<0.05) in the uronic acid, hexosamine and dermatan sulfate contents on day 3 of group 1 when compared with groups 2-4. Wound contraction of group 1 was also markedly enhanced of group 1 (P<0.01) when compared with groups 2- 4. On the basis of these results, we conclude that haruan enhances the synthesis of different glycosaminoglycans in healing wounds, which are the first component of extracellular matrix to be synthesized during the wound healing process. The enhanced levels of glycosaminoglycans may help in the formation of a resistant scar and enhanced wound contraction represents the positive influence of haruan on the fibroplastic phase of wound healing.
    Matched MeSH terms: Glycosaminoglycans/metabolism*
  3. Bhaskar HN, Udupa SL, Udupa AL
    Indian J Exp Biol, 2005 Mar;43(3):294-6.
    PMID: 15816421
    Effect of two calcium channel blockers (CCBs) nifedipine and amlodipine, was studied on normal and steroid depressed wound healing in albino rats, using the dead space wound model. The drugs enhanced normal healing as evidenced by increase in tensile strength of 10 days old granulation tissue. There was neither a significant change in the hydroxyproline level (or collagen) nor a change in the glycosaminoglycan content in granulation tissue. However, lysyloxidase level was increased significantly. The increase in tensile strength could thus be attributed to better cross-linking and maturation of collagen rather than collagen synthesis per se. The drugs were also able to overcome steroid depressed wound healing. It is likely that the prohealing effects may be related to the improved antioxidant status too, since superoxide dismutase levels were observed to be higher in the CCB- treated animals.
    Matched MeSH terms: Glycosaminoglycans/metabolism
  4. Aniza, I., Syed Mohamed Aljunid, Jamsiah, M.
    MyJurnal
    Skim Sistem Saraan Malaysia (SSM) telah diperkenalkan pada tahun 2002 menggantikan skim Sistem Saraan Baru (SSB) kepada kakitangan sektor awam. Satu kajian keratan rentas telah dijalankan ke atas Pakar Perubatan Kesihatan Awam (PPKA) pada 2004 yang bertujuan untuk mendapatkan persepsi mereka mengenai skim SSM. Semua PPKA yang berdaftar dengan Persatuan Pakar Perubatan Kesihatan Awam (PPPKA) yang berkhidmat dengan Kementerian Kesihatan Malaysia (KKM) dipilih sebagai responden. Kajian ini menggunakan borang soalselidik yang diisi sendiri oleh responden. Kadar respon kajian ini ialah 70.0% iaitu 217 responden. Kajian ini mendapati sebanyak 80.6% PPKA tidak bersetuju dengan pelaksanaan SSM, hanya 7.4% bersetuju dan sebanyak 12.0% berkecuali. Kelemahan-kelemahan utama SSM yang dikenalpasti oleh responden yang tidak bersetuju dengan SSM ialah prosedur atau skim perkhidmatan yang kabur(83.9%), peperiksaan Tahap Kecekapan yang tidak releven (54.1%) dan kenaikan pangkat terjejas (40.5%). Hasil kajian ini dapat membantu pihak-pihak yang terlibat memperbaiki kelemahan-kelemahan SSM supaya pelaksanaannya menjadi lebih mantap dan dapat menangani kelemahan yang wujud di dalam skim tersebut.
    Matched MeSH terms: Glycosaminoglycans
  5. Jamsiah, M., Md Idris, M.N., Sharifa Ezat, W.P., Norfazilah, A.
    MyJurnal
    Satu kajian keratan rentas telah dijalankan ke atas 285 orang penduduk yang berumur 18 tahun dan ke atas di Kg. Bangi Daerah Hulu langat, Selangor D.E. dari 6-12 Mac 2006. Objektif kajian ini adalah untuk melihat prevalens senaman dan faktor yang mempunyai hubungan dengannya. Kaedah persampelan universal telah digunakan dan pengumpulan data melalui borang soalselidik berpandu. Alatan yang digunakan termasuk penimbang berat Seca dan sfigmomanometer yang telah di kalibrasi, stateskop dan pita pengukur ketinggian. Hasil kajian menunjukkan hanya 13.7% daripada responden yang di kaji di dalam kategori cukup bersenam mengikut definisi kajian. Antara faktor-faktor yang mempunyai hubungan yang signifikan dengan prevalens cukup bersenam adalah jantina (p=0.004), tahap pendidikan (p=0.02) dan status perkahwinan (p
    Matched MeSH terms: Glycosaminoglycans
  6. Munirah S, Kim SH, Ruszymah BH, Khang G
    Eur Cell Mater, 2008 Feb 21;15:41-52.
    PMID: 18288632
    Our preliminary results indicated that fibrin and poly(lactic-co-glycolic acid) (PLGA) hybrid scaffold promoted early chondrogenesis of articular cartilage constructs in vitro. The aim of this study was to evaluate in vivo cartilaginous tissue formation by chondrocyte-seeded fibrin/PLGA hybrid scaffolds. PLGA scaffolds were soaked carefully, in chondrocyte-fibrin suspension, and polymerized by dropping thrombin-calcium chloride (CaCl2) solution. PLGA-seeded chondrocytes were used as a control. Resulting constructs were implanted subcutaneously, at the dorsum of nude mice, for 4 weeks. Macroscopic observation, histological evaluation, gene expression and sulphated-glycosaminoglycan (sGAG) analyses were performed at each time point of 1, 2 and 4 weeks post-implantation. Cartilaginous tissue formation in fibrin/PLGA hybrid construct was confirmed by the presence of lacunae and cartilage-isolated cells embedded within basophilic ground substance. Presence of proteoglycan and glycosaminoglycan (GAG) in fibrin/PLGA hybrid constructs was confirmed by positive Safranin O and Alcian Blue staining. Collagen type II exhibited intense immunopositivity at the pericellular matrices. Chondrogenic properties were further demonstrated by the expression of gene encoded cartilage-specific markers, collagen type II and aggrecan core protein. The sGAG production in fibrin/PLGA hybrid constructs was higher than in the PLGA group. In conclusion, fibrin/PLGA hybrid scaffold promotes cartilaginous tissue formation in vivo and may serve as a potential cell delivery vehicle and a structural basis for articular cartilage tissue-engineering.
    Matched MeSH terms: Glycosaminoglycans/biosynthesis
  7. Ab-Rahim S, Selvaratnam L, Kamarul T
    Cell Biol Int, 2008 Jul;32(7):841-7.
    PMID: 18479947 DOI: 10.1016/j.cellbi.2008.03.016
    Articular cartilage extracellular matrix (ECM) plays a crucial role in regulating chondrocyte functions via cell-matrix interaction, cytoskeletal organization and integrin-mediated signaling. Factors such as interleukins, basic fibroblast growth factor (bFGF), bone morphogenic proteins (BMPs) and insulin-like growth factor (IGF) have been shown to modulate the synthesis of extracellular matrix in vitro. However, the effects of TGF-beta1 and beta-estradiol in ECM regulation require further investigation, although there have been suggestions that these factors do play a positive role. To establish the role of these factors on chondrocytes derived from articular joints, a study was conducted to investigate the effects of TGF-beta1 and beta-estradiol on glycosaminoglycan secretion and type II collagen distribution (two major component of cartilage ECM in vivo). Thus, chondrocyte cultures initiated from rabbit articular cartilage were treated with 10ng/ml of TGF-beta1, 10nM of beta-estradiol or with a combination of both factors. Sulphated glycosaminoglycan (GAG) and type II collagen levels were then measured in both these culture systems. The results revealed that the synthesis of GAG and type II collagen was shown to be enhanced in the TGF-beta1 treated cultures. This increase was also noted when TGF-beta1 and beta-estradiol were both used as culture supplements. However, beta-estradiol alone did not appear to affect GAG or type II collagen deposition. There was also no difference between the amount of collagen type II and GAG being expressed when chondrocyte cultures were treated with TGF-beta1 when compared with cultures treated with combined factors. From this, we conclude that although TGF-beta1 appears to stimulate chondrocyte ECM synthesis, beta-estradiol fails to produce similar effects. The findings of this study confirm that contrary to previous claims, beta-estradiol has little or no effect on chondrocyte ECM synthesis. Furthermore, the use of TGF-beta1 may be useful in future studies looking into biological mechanisms by which ECM synthesis in chondrocyte cultures can be augmented, particularly for clinical application.
    Matched MeSH terms: Glycosaminoglycans/metabolism*
  8. Kamarul T, Selvaratnam L, Masjuddin T, Ab-Rahim S, Ng C, Chan KY, et al.
    J Orthop Surg (Hong Kong), 2008 Aug;16(2):230-6.
    PMID: 18725678
    To compare the efficacy of autologous chondrocyte transplantation (ACT) versus non-operative measures for cartilage repair in rabbits.
    Matched MeSH terms: Glycosaminoglycans/metabolism
  9. Nor A, Zabedah MY, Norsiah MD, Ngu LH, Suhaila AR
    Malays J Pathol, 2010 Jun;32(1):35-42.
    PMID: 20614724
    Mucopolysaccharidoses (MPS) are a group of inherited disorders caused by the deficiency of specific lysosomal enzymes involved in glycosaminoglycans (GAGs) degradation. Currently, there are 11 enzyme deficiencies resulting in seven distinct MPS clinical syndromes and their subtypes. Different MPS syndromes cannot be clearly distinguished clinically due to overlapping signs and symptoms. Measurement of GAGs content in urine and separation of GAGs using high-resolution electrophoresis (HRE) are very useful initial screening tests for isotyping of MPS before specific enzyme diagnostics. In this study, we measured total urinary GAGs by a method using dimethylmethylene blue (DMB), and followed by isolation and separation of GAGs using high resolution electrophoresis (HRE) technique. Of 760 urine samples analyzed, 40 have abnormal GAGs HRE patterns. Thirty-five of these 40 cases have elevated urinary GAGs levels as well. These abnormal HRE patterns could be classified into 4 patterns: Pattern A (elevated DS and HS; suggestive of MPS I, II or VII; 16 cases), Pattern B (elevated HS and CS; suggestive of MPS III; 17 cases), and Pattern C (elevated KS and CS; suggestive of MPS IV, 5 cases), and Pattern D (elevated DS; suggestive of MPS VI; 2 cases). Based on the GAGs HRE pattern and a few discriminating clinical signs, we performed selective enzymatic investigation in 16 cases. In all except one case with MPS VII, the enzymatic diagnosis correlated well with the provisional MPS type as suggested by the abnormal HRE pattern. Our results showed that GAGs HRE is a useful, inexpensive and practical first-line screening test when MPS is suspected clinically, and it provides an important guide to further enzymatic studies on a selective basis.
    Matched MeSH terms: Glycosaminoglycans/urine*
  10. Tan SL, Sulaiman S, Pingguan-Murphy B, Selvaratnam L, Tai CC, Kamarul T
    Cell Tissue Bank, 2011 Feb;12(1):59-70.
    PMID: 19953328 DOI: 10.1007/s10561-009-9164-x
    This study investigates the feasibility of processed human amnion (HAM) as a substrate for chondrogenic differentiation of mesenchymal stem cells (MSCs). HAM preparations processed by air drying (AD) and freeze drying (FD) underwent histological examination and MSC seeding in chondrogenic medium for 15 days. Monolayer cultures were used as control for chondrogenic differentiation and HAMs without cell seeding were used as negative control. Qualitative observations were made using scanning electron microscopy analysis and quantitative analyses were based on the sulfated glycosaminoglycans (GAG) assays performed on day 1 and day 15. Histological examination of HAM substrates before seeding revealed a smooth surface in AD substrates, while the FD substrates exhibited a porous surface. Cell attachment to AD and FD substrates on day 15 was qualitatively comparable. GAG were significantly highly expressed in cells seeded on FD HAM substrates. This study indicates that processed HAM is a potentially valuable material as a cell-carrier for MSC differentiation.
    Matched MeSH terms: Glycosaminoglycans/metabolism
  11. Dashtdar H, Rothan HA, Tay T, Ahmad RE, Ali R, Tay LX, et al.
    J Orthop Res, 2011 Sep;29(9):1336-42.
    PMID: 21445989 DOI: 10.1002/jor.21413
    Chondrogenic differentiated mesenchymal stem cells (CMSCs) have been shown to produce superior chondrogenic expression markers in vitro. However, the use of these cells in vivo has not been fully explored. In this study, in vivo assessment of cartilage repair potential between allogenic-derived chondrogenic pre-differentiated mesenchymal stem cells and undifferentiated MSCs (MSCs) were compared. Bilateral full thickness cartilage defects were created on the medial femoral condyles of 12 rabbits (n = 12). Rabbits were divided into two groups. In one group, the defects in the right knees were repaired using alginate encapsulated MSCs while in the second group, CMSCs were used. The animals were sacrificed and the repaired and control knees were assessed at 3 and 6 months after implantation. Quantitative analysis was performed by measuring the Glycosaminoglycans (GAGs)/total protein content. The mean Brittberg score was higher in the transplanted knees as compared to the untreated knee at 6 months (p  0.05). This study demonstrates that the use of either MSC or CMSC produced superior healing when compared to cartilage defects that were untreated. However, both cells produced comparable treatment outcomes.
    Matched MeSH terms: Glycosaminoglycans/metabolism
  12. Krishnamurithy G, Shilpa PN, Ahmad RE, Sulaiman S, Ng CL, Kamarul T
    J Biomed Mater Res A, 2011 Dec 01;99(3):500-6.
    PMID: 21913317 DOI: 10.1002/jbm.a.33184
    Human amniotic membrane (HAM) is an established biomaterial used in many clinical applications. However, its use for tissue engineering purposes has not been fully realized. A study was therefore conducted to evaluate the feasibility of using HAM as a chondrocyte substrate/carrier. HAMs were obtained from fresh human placenta and were process to produced air dried HAM (AdHAM) and freeze dried HAM (FdHAM). Rabbit chondrocytes were isolated and expanded in vitro and seeded onto these preparations. Cell proliferation, GAG expression and GAG/cell expression were measured at days 3, 6, 9, 12, 15, 21, and 28. These were compared to chondrocytes seeded onto plastic surfaces. Histological analysis and scanning electron microscopy was performed to observe cell attachment. There was significantly higher cell proliferation rates observed between AdHAM (13-51%, P=0.001) or FdHAM (18-48%, p = 0.001) to chondrocytes in monolayer. Similarly, GAG and GAG/cell expressed in AdHAM (33-82%, p = 0.001; 22-60%, p = 0.001) or FdHAM (41-81%, p = 0.001: 28-60%, p = 0.001) were significantly higher than monolayer cultures. However, no significant differences were observed in the proliferation rates (p = 0.576), GAG expression (p = 0.476) and GAG/cell expression (p = 0.135) between AdHAM and FdHAM. The histology and scanning electron microscopy assessments demonstrates good chondrocyte attachments on both HAMs. In conclusion, both AdHAM and FdHAM provide superior chondrocyte proliferation, GAG expression, and attachment than monolayer cultures making it a potential substrate/carrier for cell based cartilage therapy and transplantation.
    Matched MeSH terms: Glycosaminoglycans/metabolism
  13. Tay LX, Ahmad RE, Dashtdar H, Tay KW, Masjuddin T, Ab-Rahim S, et al.
    Am J Sports Med, 2012 Jan;40(1):83-90.
    PMID: 21917609 DOI: 10.1177/0363546511420819
    Mesenchymal stem cells (MSCs) represent a promising alternative form of cell-based therapy for cartilage injury. However, the capacity of MSCs for chondrogenesis has not been fully explored. In particular, there is presently a lack of studies comparing the effectiveness of MSCs to conventional autologous chondrocyte (autoC) treatment for regeneration of full-thickness cartilage defects in vivo.
    Matched MeSH terms: Glycosaminoglycans/metabolism
  14. Chong PP, Selvaratnam L, Abbas AA, Kamarul T
    J Orthop Res, 2012 Apr;30(4):634-42.
    PMID: 21922534 DOI: 10.1002/jor.21556
    The use of mesenchymal stem cells (MSCs) for cartilage repair has generated much interest owing to their multipotentiality. However, their significant presence in peripheral blood (PB) has been a matter of much debate. The objectives of this study are to isolate and characterize MSCs derived from PB and, compare their chondrogenic potential to MSC derived from bone marrow (BM). PB and BM derived MSCs from 20 patients were isolated and characterized. From 2 ml of PB and BM, 5.4 ± 0.6 million and 10.5 ± 0.8 million adherent cells, respectively, were obtained by cell cultures at passage 2. Both PB and BM derived MSCs were able to undergo tri-lineage differentiation and showed negative expression of CD34 and CD45, but positively expressed CD105, CD166, and CD29. Qualitative and quantitative examinations on the chondrogenic potential of PB and BM derived MSCs expressed similar cartilage specific gene (COMP) and proteoglycan levels, respectively. Furthermore, the s-GAG levels expressed by chondrogenic MSCs in cultures were similar to that of native chondrocytes. In conclusion, this study demonstrates that MSCs from PB maintain similar characteristics and have similar chondrogenic differentiation potential to those derived from BM, while producing comparable s-GAG expressions to chondrocytes.
    Matched MeSH terms: Glycosaminoglycans/metabolism
  15. Pingguan-Murphy B, Nawi I
    Clinics (Sao Paulo), 2012 Aug;67(8):939-44.
    PMID: 22948463
    OBJECTIVES: The promotion of extracellular matrix synthesis by chondrocytes is a requisite part of an effective cartilage tissue engineering strategy. The aim of this in vitro study was to determine the effect of bi-axial cyclic mechanical loading on cell proliferation and the synthesis of glycosaminoglycans by chondrocytes in three-dimensional cultures.

    METHOD: A strain comprising 10% direct compression and 1% compressive shear was applied to bovine chondrocytes seeded in an agarose gel during two 12-hour conditioning periods separated by a 12-hour resting period.

    RESULTS: The bi-axial-loaded chondrocytes demonstrated a significant increase in glycosaminoglycan synthesis compared with samples exposed to uni-axial or no loading over the same period (p<0.05). The use of a free-swelling recovery period prior to the loading regime resulted in additional glycosaminoglycan production and a significant increase in DNA content (p<0.05), indicating cell proliferation.

    CONCLUSIONS: These results demonstrate that the use of a bi-axial loading regime results in increased matrix production compared with uni-axial loading.

    Matched MeSH terms: Glycosaminoglycans/biosynthesis*
  16. Masre SF, Yip GW, Sirajudeen KN, Ghazali FC
    Nat Prod Res, 2012;26(7):684-9.
    PMID: 21859370 DOI: 10.1080/14786419.2010.545354
    Stichopus hermanni and Stichopus vastus are sea cucumber species from the Stichopodidae family within the coastal waters of Malaysia. The integument of these invertebrates is hypothesised to contain abundant glycosaminoglycans (GAGs). GAGs are divided into non-sulphated and sulphated GAGs. Sulphated GAGs have various chemico-biological functions that are beneficial to humans. This study quantitatively analysed N-, O-sulphated and total sulphated GAG content from three different anatomical regions (integument, internal organs and coelomic fluid) of S. hermanni and S. vastus. The integument revealed the highest content of total, O- and N-sulphated GAGs, followed by the internal organs and the coelomic fluid for both species of sea cucumbers. The percentage division of O- and N-sulphated GAGs suggested that anatomical parts of both species showed higher levels of O-sulphated GAGs compared to N-sulphated GAGs. In conclusion, these findings indicate that the integument body wall of S. hermanni and S. vastus is a rich source of sulphated GAGs.
    Matched MeSH terms: Glycosaminoglycans/analysis*; Glycosaminoglycans/isolation & purification
  17. Tan CW, Poh CL, Sam IC, Chan YF
    J Virol, 2013 Jan;87(1):611-20.
    PMID: 23097443 DOI: 10.1128/JVI.02226-12
    Enterovirus 71 (EV-71) infections are usually associated with mild hand, foot, and mouth disease in young children but have been reported to cause severe neurological complications with high mortality rates. To date, four EV-71 receptors have been identified, but inhibition of these receptors by antagonists did not completely abolish EV-71 infection, implying that there is an as yet undiscovered receptor(s). Since EV-71 has a wide range of tissue tropisms, we hypothesize that EV-71 infections may be facilitated by using receptors that are widely expressed in all cell types, such as heparan sulfate. In this study, heparin, polysulfated dextran sulfate, and suramin were found to significantly prevent EV-71 infection. Heparin inhibited infection by all the EV-71 strains tested, including those with a single-passage history. Neutralization of the cell surface anionic charge by polycationic poly-d-lysine and blockage of heparan sulfate by an anti-heparan sulfate peptide also inhibited EV-71 infection. Interference with heparan sulfate biosynthesis either by sodium chlorate treatment or through transient knockdown of N-deacetylase/N-sulfotransferase-1 and exostosin-1 expression reduced EV-71 infection in RD cells. Enzymatic removal of cell surface heparan sulfate by heparinase I/II/III inhibited EV-71 infection. Furthermore, the level of EV-71 attachment to CHO cell lines that are variably deficient in cell surface glycosaminoglycans was significantly lower than that to wild-type CHO cells. Direct binding of EV-71 particles to heparin-Sepharose columns under physiological salt conditions was demonstrated. We conclude that EV-71 infection requires initial binding to heparan sulfate as an attachment receptor.
    Matched MeSH terms: Glycosaminoglycans/metabolism*
  18. Ab-Rahim S, Selvaratnam L, Raghavendran HR, Kamarul T
    Mol Cell Biochem, 2013 Apr;376(1-2):11-20.
    PMID: 23238871 DOI: 10.1007/s11010-012-1543-0
    Tissue engineering approaches often require expansion of cell numbers in vitro to accelerate tissue regenerative processes. Although several studies have used this technique for therapeutic purposes, a major concern involving the use of isolated chondrocyte culture is the reduction of extracellular matrix (ECM) protein expressed due to the transfer of cells from the normal physiological milieu to the artificial 2D environment provided by the cell culture flasks. To overcome this issue, the use of alginate hydrogel beads as a substrate in chondrocyte cultures has been suggested. However, the resultant characteristics of cells embedded in this bead is elusive. To elucidate this, a study using chondrocytes isolated from rabbit knee articular cartilage expanded in vitro as monolayer and chondrocyte-alginate constructs was conducted. Immunohistochemical evaluation and ECM distribution was examined with or without transforming growth factor (TGF-β1) supplement to determine the ability of cells to express major chondrogenic proteins in these environments. Histological examination followed by transmission electron microscopy and scanning electron microscopy was performed to determine the morphology and the ultrastructural characteristics of these cells. Results demonstrated a significant increase in glycosaminoglycan/mg protein levels in chondrocyte cultures grown in alginate construct than in monolayer cultures. In addition, an abundance of ECM protein distribution surrounding chondrocytes cultured in alginate hydrogel was observed. In conclusion, the current study demonstrates that the use of alginate hydrogel beads in chondrocyte cultures with or without TGF-β1 supplement provided superior ECM expression than monolayer cultures.
    Matched MeSH terms: Glycosaminoglycans/metabolism
  19. Lee SY, Kamarul T
    Int J Biol Macromol, 2014 Mar;64:115-22.
    PMID: 24325858 DOI: 10.1016/j.ijbiomac.2013.11.039
    In this study, a chitosan co-polymer scaffold was prepared by mixing poly(vinyl alcohol) (PVA), NO, carboxymethyl chitosan (NOCC) and polyethylene glycol (PEG) solutions to obtain desirable properties for chondrocyte cultivation. Electron beam (e-beam) radiation was used to physically cross-link these polymers at different doses (30 kGy and 50 kGy). The co-polymers were then lyophilized to form macroporous three-dimensional (3-D) matrix. Scaffold morphology, porosity, swelling properties, biocompatibility, expression of glycosaminoglycan (GAG) and type II collagen following the seeding of primary chondrocytes were studied up to 28 days. The results demonstrate that irradiation of e-beam at 50 kGy increased scaffold porosity and pore sizes subsequently enhanced cell attachment and proliferation. Scanning electron microscopy and transmission electron microscopy revealed extensive interconnected microstructure of PVA-PEG-NOCC, demonstrated cellular activities on the scaffolds and their ability to maintain chondrocyte phenotype. In addition, the produced PVA-PEG-NOCC scaffolds showed superior swelling properties, and increased GAG and type II collagen secreted by the seeded chondrocytes. In conclusion, the results suggest that by adding NOCC and irradiation cross-linking at 50 kGy, the physical and biological properties of PVA-PEG blend can be further enhanced thereby making PVA-PEG-NOCC a potential scaffold for chondrocytes.
    Matched MeSH terms: Glycosaminoglycans/biosynthesis
  20. Naveen SV, Ahmad RE, Hui WJ, Suhaeb AM, Murali MR, Shanmugam R, et al.
    Int J Med Sci, 2014;11(1):97-105.
    PMID: 24396291 DOI: 10.7150/ijms.6964
    Monosodium -iodoacetate (MIA)-induced animal model of osteoarthritis (OA) is under-utilised despite having many inherent advantages. At present, there is lack of studies that directly compare the degenerative changes induced by MIA with the surgical osteoarthritis induction method and human osteoarthritis, which would further verify a greater use of this model. Therefore, we compared the histological, biochemical and biomechanical characteristics in rat model using MIA against the anterior cruciate ligament transection (ACLT) and human cartilage with clinically established osteoarthritis. The right knees of Sprague-Dawley rats were subjected to either MIA or ACLT (n=18 in each group). Six rats were used as controls. Human cartilage samples were collected and compared from patients clinically diagnosed with (n=7) and without osteoarthritis (n=3). Histological, biochemical (Glycosaminoglycans/total protein) and biomechanical (cartilage stiffness) evaluations were performed at the end of the 1(st) and 2(nd) week after OA induction. For human samples, evaluations were performed at the time of sampling. Histopathological changes in the MIA group were comparable to that observed in the ACLT group and human OA. The Mankin scores of the 3 groups were comparable (MIA: 11.5 ± 1.0; ACLT: 10.1 ± 1.1; human OA: 13.2 ± 0.8). Comparable reduction in Glycosaminoglycan/total protein content in the intervention groups were observed (MIA: 7 ± 0.6; ACLT: 6.6 ± 0.5; human OA: 3.1 ± 0.7). Cartilage stiffness score were 24.2 ± 15.3 Mpa for MIA, 25.3 ± 4.8 for ACLT and 0.5 ± 0.0 Mpa for human OA. The MIA model produces comparable degenerative changes to ACLT and human OA with the advantage of being rapid, minimally invasive and reproducible. Therefore, wider utilisation of MIA as animal translational OA model should perhaps be advocated.
    Matched MeSH terms: Glycosaminoglycans/metabolism*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links