Displaying publications 1 - 20 of 262 in total

Abstract:
Sort:
  1. Azrina, M.R., Saedah Ali, Mohd Nikman Ahmad, Nik Abdullah, N.M., Ziyadi Mohd Ghazali
    MyJurnal
    Introduction and Objectives: The intensive care unit (ICU) is an uncomfortable and stressful environment for patients. The use of adequate sedation and analgesia is important to reduce stress to patients. The aim of this study was to compare a relatively new sedative agent, dexmedetomidine to current sedative agent used, propofol in the provision of sedation and analgesia, their effects on haemodynamic and respiratory parameters and cost involved on post open heart surgery patients. Materials and Methods: A prospective, randomized single-blinded trial was conducted on post open heart surgery patients in the ICU of the Hospital Universiti Sains Malaysia (HUSM). Thirty two patients were randomized to dexmedetomidine or propofol groups. Analgesic requirement, haemodynamic and respiratory parameters, and extubation time were measured and compared. Mean rate of infusion to achieve adequate sedation were used to calculate the cost involved in the use of these two agents. Results: Patients sedated with dexmedetomidine required significantly lower dose of morphine compared to propofol [mean (sd): 12.80 (2.61) versus 15.86 (1.87) mg/kg/min, p=0.00]. Mean heart rate was also significantly lower in dexmedetomidine group compared to propofol group [mean (CI): 74.48 (70.38,78.59) versus 83.85 (79.61,88.09) per minutes, p=0.00]. However there were no significant differences in the other parameters between the two groups. Cost involved the use of dexmedetomidine was slightly higher compared to propofol (RM 9.57 versus RM8.94 per hour). Discussion and Conclusions: Dexmedetomidine is comparable to propofol in the provision of sedation, and its effect on haemodynamic and respiratory parameters. However it has added advantages in the provision of analgesia, and caused a significant reduction in heart rate. This is beneficial in these patients by reducing myocardial oxygen demand, and hence subsequent ischaemia and infarction. However, further larger studies are needed to evaluate the effect of dexmedetomidine on perioperative cardiac morbidity and mortality.
    Matched MeSH terms: Heart Rate
  2. Ullah A, Rehman SU, Tu S, Mehmood RM, Fawad, Ehatisham-Ul-Haq M
    Sensors (Basel), 2021 Feb 01;21(3).
    PMID: 33535397 DOI: 10.3390/s21030951
    Electrocardiogram (ECG) signals play a vital role in diagnosing and monitoring patients suffering from various cardiovascular diseases (CVDs). This research aims to develop a robust algorithm that can accurately classify the electrocardiogram signal even in the presence of environmental noise. A one-dimensional convolutional neural network (CNN) with two convolutional layers, two down-sampling layers, and a fully connected layer is proposed in this work. The same 1D data was transformed into two-dimensional (2D) images to improve the model's classification accuracy. Then, we applied the 2D CNN model consisting of input and output layers, three 2D-convolutional layers, three down-sampling layers, and a fully connected layer. The classification accuracy of 97.38% and 99.02% is achieved with the proposed 1D and 2D model when tested on the publicly available Massachusetts Institute of Technology-Beth Israel Hospital (MIT-BIH) arrhythmia database. Both proposed 1D and 2D CNN models outperformed the corresponding state-of-the-art classification algorithms for the same data, which validates the proposed models' effectiveness.
    Matched MeSH terms: Heart Rate
  3. Bibbo D, Klinkovsky T, Penhaker M, Kudrna P, Peter L, Augustynek M, et al.
    Sensors (Basel), 2020 Jul 25;20(15).
    PMID: 32722397 DOI: 10.3390/s20154139
    In this paper, a new approach for the periodical testing and the functionality evaluation of a fetal heart rate monitor device based on ultrasound principle is proposed. The design and realization of the device are presented, together with the description of its features and functioning tests. In the designed device, a relay element, driven by an electric signal that allows switching at two specific frequencies, is used to simulate the fetus and the mother's heartbeat. The simulator was designed to be compliant with the standard requirements for accurate assessment and measurement of medical devices. The accuracy of the simulated signals was evaluated, and it resulted to be stable and reliable. The generated frequencies show an error of about 0.5% with respect to the nominal one while the accuracy of the test equipment was within ±3% of the test signal set frequency. This value complies with the technical standard for the accuracy of fetal heart rate monitor devices. Moreover, the performed tests and measurements show the correct functionality of the developed simulator. The proposed equipment and testing respect the technical requirements for medical devices. The features of the proposed device make it simple and quick in testing a fetal heart rate monitor, thus providing an efficient way to evaluate and test the correlation capabilities of commercial apparatuses.
    Matched MeSH terms: Heart Rate; Heart Rate, Fetal*
  4. Sarker MR, Mohamed A, Mohamed R
    Micromachines (Basel), 2016 Sep 23;7(10).
    PMID: 30404344 DOI: 10.3390/mi7100171
    This paper presents a new method for a vibration-based piezoelectric energy harvesting system using a backtracking search algorithm (BSA)-based proportional-integral (PI) voltage controller. This technique eliminates the exhaustive conventional trial-and-error procedure for obtaining optimized parameter values of proportional gain (Kp), and integral gain (Ki) for PI voltage controllers. The generated estimate values of Kp and Ki are executed in the PI voltage controller that is developed through the BSA optimization technique. In this study, mean absolute error (MAE) is used as an objective function to minimize output error for a piezoelectric energy harvesting system (PEHS). The model for the PEHS is designed and analyzed using the BSA optimization technique. The BSA-based PI voltage controller of the PEHS produces a significant improvement in minimizing the output error of the converter and a robust, regulated pulse-width modulation (PWM) signal to convert a MOSFET switch, with the best response in terms of rise time and settling time under various load conditions.
    Matched MeSH terms: Heart Rate
  5. Wu M, Lu Y, Yang W, Wong SY
    Front Comput Neurosci, 2020;14:564015.
    PMID: 33469423 DOI: 10.3389/fncom.2020.564015
    Cardiovascular diseases (CVDs) are the leading cause of death today. The current identification method of the diseases is analyzing the Electrocardiogram (ECG), which is a medical monitoring technology recording cardiac activity. Unfortunately, looking for experts to analyze a large amount of ECG data consumes too many medical resources. Therefore, the method of identifying ECG characteristics based on machine learning has gradually become prevalent. However, there are some drawbacks to these typical methods, requiring manual feature recognition, complex models, and long training time. This paper proposes a robust and efficient 12-layer deep one-dimensional convolutional neural network on classifying the five micro-classes of heartbeat types in the MIT- BIH Arrhythmia database. The five types of heartbeat features are classified, and wavelet self-adaptive threshold denoising method is used in the experiments. Compared with BP neural network, random forest, and other CNN networks, the results show that the model proposed in this paper has better performance in accuracy, sensitivity, robustness, and anti-noise capability. Its accurate classification effectively saves medical resources, which has a positive effect on clinical practice.
    Matched MeSH terms: Heart Rate
  6. Lim E, Chan GS, Dokos S, Ng SC, Latif LA, Vandenberghe S, et al.
    PLoS One, 2013;8(10):e77357.
    PMID: 24204817 DOI: 10.1371/journal.pone.0077357
    A lumped parameter model of the cardiovascular system has been developed and optimized using experimental data obtained from 13 healthy subjects during graded head-up tilt (HUT) from the supine position to [Formula: see text]. The model includes descriptions of the left and right heart, direct ventricular interaction through the septum and pericardium, the systemic and pulmonary circulations, nonlinear pressure volume relationship of the lower body compartment, arterial and cardiopulmonary baroreceptors, as well as autoregulatory mechanisms. A number of important features, including the separate effects of arterial and cardiopulmonary baroreflexes, and autoregulation in the lower body, as well as diastolic ventricular interaction through the pericardium have been included and tested for their significance. Furthermore, the individual effect of parameter associated with heart failure, including LV and RV contractility, baseline systemic vascular resistance, pulmonary vascular resistance, total blood volume, LV diastolic stiffness and reflex gain on HUT response have also been investigated. Our fitted model compares favorably with our experimental measurements and published literature at a range of tilt angles, in terms of both global and regional hemodynamic variables. Compared to the normal condition, a simulated congestive heart failure condition produced a blunted response to HUT with regards to the percentage changes in cardiac output, stroke volume, end diastolic volume and effector response (i.e., heart contractility, venous unstressed volume, systemic vascular resistance and heart rate) with progressive tilting.
    Matched MeSH terms: Heart Rate/physiology
  7. Nagesh Chodankar N., Vinoth Kumar, Urban John Arnold D’Souza, Ahmad Faris Abdullah
    MyJurnal
    Introduction: Aerobic power reflects the physical fitness of the individual. Evidences support differences in phys-iological responses to exercise. There is less data on VO2 max among common ethnic population of Sabah. Ob-jective of this study was to investigate VO2 max among Kadazan, Dusun, Brunei Melayu, Bugis, Murut and others of Sabah in male and female young adult population. Methods: A total of 385 participants were randomly selected. Monark 894 E leg bicycle ergo meter was used to measure aerobic power VO2 max. Based on the heart rate male and female respectively 450 & 300 kilogram-force meter/minute was chosen. Based on Astrand rhyming nomogram (age correction factor included-VO2 Max multiplied by 1.05) calculations Vo2Max was calculated in l/min. The age correction done VO2 Max (l/min) was multiplied by 1000 and later divided by the body weight to derive the actual VO2Max in ml/kg/min. The recovery heart rate after 1 minute was taken and the difference were calculated for the further analysis. Data was tabulated and analysed by one way ANOVA test - Hocherberg’s GT2. Results: There was no significant difference in VO2 max between the common ethnic young adult population both in males and fe-males. Conclusion: There is no significant difference in VO2 max among the common ethnic adult but have a similar aerobic capacity in the study group.
    Matched MeSH terms: Heart Rate
  8. Jaafar Z, Lim YZ
    J Sports Med Phys Fitness, 2023 Feb;63(2):310-318.
    PMID: 35620954 DOI: 10.23736/S0022-4707.22.13958-7
    BACKGROUND: Heart rate recovery (HRR) has been used as a prognostication marker of health. A slower drop in HRR is linked to a higher risk of cardiovascular diseases and all-cause mortality. Since aerobic exercise has been shown to have favorable effects on HRR, we aimed to compare the effects of two different aerobic exercise doses on HRR among a sedentary adult population.

    METHODS: A pragmatic randomised controlled trial was conducted on 29 healthy sedentary adults (seven males and 22 females) in a 12-week exercise program. They were randomly assigned to group A (75 min/week, N.=15) or group B (150 min/week, N.=14) of moderate intensity aerobic exercise groups. HRR at 1-minute (HRR1), HRR at 2-minute (HRR2), and peak oxygen uptake (VO2peak) were measured pre- and post-intervention.

    RESULTS: The improvements of HRR1 and HRR2 were seen in both groups but was only significant (P<0.05) for group A with HRR1, -4.07 bpm (post 24.47±6.42 - pre 20.40±5.51, P=0.018) and HHR2, -3.93 bpm (post 43.40±13.61 - pre 39.47±10.68, P=0.046). Group B showed increment of HRR1, -1.14 bpm (post 21.14±5.35 - pre 20.00±6.30, P=0.286) and HRR2, -2.5 bpm, (post 39.36±8.01 - pre 36.86±9.57, P=0.221). Improvement of the VO2peak was only significant in group B with an increment of 1.52±2.61 (P=0.049).

    CONCLUSIONS: In conclusion, our study suggests that improvements in heart rate recovery (HRR1 and HRR2) among sedentary healthy adults can be achieved by engaging in moderate intensity exercise at a dose lower than the current recommended guidelines. The lower dose seems to be more attainable and may encourage exercise compliance. Future studies should further explore the effects of different exercise volumes on HRR in a larger sample size and also by controlling for BMI or gender.

    Matched MeSH terms: Heart Rate/physiology
  9. Chiu CL, Chan YK, Ong GS, Delilkan AE
    Singapore Med J, 2000 Nov;41(11):530-3.
    PMID: 11284610
    To compare the maintenance and recovery characteristics of sevoflurane and isoflurane anaesthesia in Malaysian patients.
    Matched MeSH terms: Heart Rate/drug effects
  10. Acharya UR, Oh SL, Hagiwara Y, Tan JH, Adam M, Gertych A, et al.
    Comput Biol Med, 2017 10 01;89:389-396.
    PMID: 28869899 DOI: 10.1016/j.compbiomed.2017.08.022
    The electrocardiogram (ECG) is a standard test used to monitor the activity of the heart. Many cardiac abnormalities will be manifested in the ECG including arrhythmia which is a general term that refers to an abnormal heart rhythm. The basis of arrhythmia diagnosis is the identification of normal versus abnormal individual heart beats, and their correct classification into different diagnoses, based on ECG morphology. Heartbeats can be sub-divided into five categories namely non-ectopic, supraventricular ectopic, ventricular ectopic, fusion, and unknown beats. It is challenging and time-consuming to distinguish these heartbeats on ECG as these signals are typically corrupted by noise. We developed a 9-layer deep convolutional neural network (CNN) to automatically identify 5 different categories of heartbeats in ECG signals. Our experiment was conducted in original and noise attenuated sets of ECG signals derived from a publicly available database. This set was artificially augmented to even out the number of instances the 5 classes of heartbeats and filtered to remove high-frequency noise. The CNN was trained using the augmented data and achieved an accuracy of 94.03% and 93.47% in the diagnostic classification of heartbeats in original and noise free ECGs, respectively. When the CNN was trained with highly imbalanced data (original dataset), the accuracy of the CNN reduced to 89.07%% and 89.3% in noisy and noise-free ECGs. When properly trained, the proposed CNN model can serve as a tool for screening of ECG to quickly identify different types and frequency of arrhythmic heartbeats.
    Matched MeSH terms: Heart Rate*
  11. Meera Thalayasingam, Shek, Lynette Pei-Chi
    MyJurnal
    Anaphylaxis in the operating room although infrequent can be potentially fatal. The diagnosis of perioperative anaphylaxis is complex due to a multitude of factors. Firstly, patients under anesthesia cannot verbalize their complaints, the anesthetic agents themselves can alter vital parameters (e.g. heart rate and blood pressure) and cutaneous signs in a completely draped patient may be missed. Secondly, the differential diagnosis of intraoperative anaphylaxis is wide. Conditions such as asthma exacerbation, arrhythmia, hemorrhage, angioedema, mastocytosis, acute myocardial infarction, drug overdose, pericardial tamponade, pulmonary edema, pulmonary embolus, sepsis, tension pneumothorax, vasovagal reaction, venous air embolism, laryngospasm, blood transfusion reaction and malignant hyperthermia need to be considered. Thirdly, the diagnostic workup is challenging due to the multiple medications administered and other exposures encountered such as latex and chlorhexidene. However, through a timely allergy consultation and a systematic approach, identification of the culprit agent and safe alternatives can be established to prevent future occurrences as illustrated in the case below.
    Matched MeSH terms: Heart Rate
  12. Neesha Sundramoorthy, Khaiteri R., Jer Ming Low, Chan Soon Thim Darren
    MyJurnal
    Introduction: Artemether and lumefantrine was registered as Riamet in Switzerland in 1999 and is commonly used in Keningau Hospital for managing uncomplicated malaria. Riamet works at the food vacoule of the malarial parasite, where they interfere with the conversion of heme into haemozoin. Case description: We report a case of Riamet induced prolonged corrected QT interval (QTc) in a 37 year old gentleman admitted for severe malaria (hypotension) with normal QTc of 420msc on presentation. Upon starting Riamet, he developed bradycardia and ECG showed sinus bradycardia with prolonged QTc of 551msec and no arrythmias. Echocardiography showed no structural heart abnormalities. All electrolytes were within normal range. He was monitored in cardiac care unit with decision to complete 6 doses of Riamet. Patient was started on Dopamine infusion which maintained his blood pressure and heart rate within normal range. 5 days post Riamet completion, his heart rate improved and dopamine infusion was tapered off and QTc normalized to 407msc. Discussion: The most common mechanism of drugs causing QT inter-val prolongation is by blocking the human ether-à-go-go related gene (hERG) potassium channel. Blockage of the hEGR channel lengthens ventricular re-polarization and duration of ventricular action potential which is reflected in ECG as prolonged QT interval. In the in-vitro whole cell patch clamp study, lumefantrine and its metabolite desbu-tyl-lumefantrine showed a concentration-dependent inhibition of the hERG current. The period of QTc prolongation was 3.5 to 4 days after the last dose of the standard 6 dose regimen. Conclusion: Riamet induced prolonged QTc is a very rare complication. A baseline electrocardiography is therefore imminent for every patient prior to initiation of this medication to avoid cardiac arrythmias.
    Matched MeSH terms: Heart Rate
  13. Suhaida SS, Engkasan JP
    Med J Malaysia, 2012 Dec;67(6):616-7.
    PMID: 23770957 MyJurnal
    A 48-year-old male with complete tetraplegia C6 presented with sweating and flushing of the right half of the face and neck that recurred when lying in supine and left lateral positions. The symptoms subsided immediately upon sitting upright or lying in a right lateral position. The symptoms were associated with occasional mild head discomfort rather than headache and were accompanied by marked elevation of blood pressure, which was 190-200/120-130 mmHg compared to his previous baseline blood pressure of 80-90/50-70 mmHg, and he had a heart rate of 60-70 beats per minute. We believe that post-traumatic syringomyelia, found upon further investigation, was the cause of the Autonomic dysreflexia (AD) in this patient. He was advised to avoid the positions causing the symptoms and the progression of symptoms was monitored regularly. AD might not have been diagnosed in this patient because of the atypical and unusual presentations. Therefore, knowledge and a heightened level of awareness of this possible complication are important when treating individuals with spinal cord injury (SCI).
    Matched MeSH terms: Heart Rate
  14. Faust O, Razaghi H, Barika R, Ciaccio EJ, Acharya UR
    Comput Methods Programs Biomed, 2019 Jul;176:81-91.
    PMID: 31200914 DOI: 10.1016/j.cmpb.2019.04.032
    BACKGROUND AND OBJECTIVE: Sleep is an important part of our life. That importance is highlighted by the multitude of health problems which result from sleep disorders. Detecting these sleep disorders requires an accurate interpretation of physiological signals. Prerequisite for this interpretation is an understanding of the way in which sleep stage changes manifest themselves in the signal waveform. With that understanding it is possible to build automated sleep stage scoring systems. Apart from their practical relevance for automating sleep disorder diagnosis, these systems provide a good indication of the amount of sleep stage related information communicated by a specific physiological signal.

    METHODS: This article provides a comprehensive review of automated sleep stage scoring systems, which were created since the year 2000. The systems were developed for Electrocardiogram (ECG), Electroencephalogram (EEG), Electrooculogram (EOG), and a combination of signals.

    RESULTS: Our review shows that all of these signals contain information for sleep stage scoring.

    CONCLUSIONS: The result is important, because it allows us to shift our research focus away from information extraction methods to systemic improvements, such as patient comfort, redundancy, safety and cost.

    Matched MeSH terms: Heart Rate*
  15. Al-Yousif S, Jaenul A, Al-Dayyeni W, Alamoodi A, Jabori I, Md Tahir N, et al.
    PeerJ Comput Sci, 2021;7:e452.
    PMID: 33987454 DOI: 10.7717/peerj-cs.452
    Context: The interpretations of cardiotocography (CTG) tracings are indeed vital to monitor fetal well-being both during pregnancy and childbirth. Currently, many studies are focusing on feature extraction and CTG classification using computer vision approach in determining the most accurate diagnosis as well as monitoring the fetal well-being during pregnancy. Additionally, a fetal monitoring system would be able to perform detection and precise quantification of fetal heart rate patterns.

    Objective: This study aimed to perform a systematic review to describe the achievements made by the researchers, summarizing findings that have been found by previous researchers in feature extraction and CTG classification, to determine criteria and evaluation methods to the taxonomies of the proposed literature in the CTG field and to distinguish aspects from relevant research in the field of CTG.

    Methods: Article search was done systematically using three databases: IEEE Xplore digital library, Science Direct, and Web of Science over a period of 5 years. The literature in the medical sciences and engineering was included in the search selection to provide a broader understanding for researchers.

    Results: After screening 372 articles, and based on our protocol of exclusion and inclusion criteria, for the final set of articles, 50 articles were obtained. The research literature taxonomy was divided into four stages. The first stage discussed the proposed method which presented steps and algorithms in the pre-processing stage, feature extraction and classification as well as their use in CTG (20/50 papers). The second stage included the development of a system specifically on automatic feature extraction and CTG classification (7/50 papers). The third stage consisted of reviews and survey articles on automatic feature extraction and CTG classification (3/50 papers). The last stage discussed evaluation and comparative studies to determine the best method for extracting and classifying features with comparisons based on a set of criteria (20/50 articles).

    Discussion: This study focused more on literature compared to techniques or methods. Also, this study conducts research and identification of various types of datasets used in surveys from publicly available, private, and commercial datasets. To analyze the results, researchers evaluated independent datasets using different techniques.

    Conclusions: This systematic review contributes to understand and have insight into the relevant research in the field of CTG by surveying and classifying pertinent research efforts. This review will help to address the current research opportunities, problems and challenges, motivations, recommendations related to feature extraction and CTG classification, as well as the measurement of various performance and various data sets used by other researchers.

    Matched MeSH terms: Heart Rate, Fetal
  16. Chinitz L, Ritter P, Khelae SK, Iacopino S, Garweg C, Grazia-Bongiorni M, et al.
    Heart Rhythm, 2018 09;15(9):1363-1371.
    PMID: 29758405 DOI: 10.1016/j.hrthm.2018.05.004
    BACKGROUND: Micra is a leadless pacemaker that is implanted in the right ventricle and provides rate response via a 3-axis accelerometer (ACC). Custom software was developed to detect atrial contraction using the ACC enabling atrioventricular (AV) synchronous pacing.

    OBJECTIVE: The purpose of this study was to sense atrial contractions from the Micra ACC signal and provide AV synchronous pacing.

    METHODS: The Micra Accelerometer Sensor Sub-Study (MASS) and MASS2 early feasibility studies showed intracardiac accelerations related to atrial contraction can be measured via ACC in the Micra leadless pacemaker. The Micra Atrial TRacking Using A Ventricular AccELerometer (MARVEL) study was a prospective multicenter study designed to characterize the closed-loop performance of an AV synchronous algorithm downloaded into previously implanted Micra devices. Atrioventricular synchrony (AVS) was measured during 30 minutes of rest and during VVI pacing. AVS was defined as a P wave visible on surface ECG followed by a ventricular event <300 ms.

    RESULTS: A total of 64 patients completed the MARVEL study procedure at 12 centers in 9 countries. Patients were implanted with a Micra for a median of 6.0 months (range 0-41.4). High-degree AV block was present in 33 patients, whereas 31 had predominantly intrinsic conduction during the study. Average AVS during AV algorithm pacing was 87.0% (95% confidence interval 81.8%-90.9%), 80.0% in high-degree block patients and 94.4% in patients with intrinsic conduction. AVS was significantly greater (P

    Matched MeSH terms: Heart Rate/physiology*
  17. Field AP, Gill N, Macadam P, Plews D
    Sports (Basel), 2019 Aug 01;7(8).
    PMID: 31375020 DOI: 10.3390/sports7080187
    The aim of this study was to determine the acute metabolic effects of different magnitudes of wearable resistance (WR) attached to the thigh during submaximal running. Twenty endurance-trained runners (40.8 ± 8.2 years, 1.77 ± 0.7 m, 75.4 ± 9.2 kg) completed six submaximal eight-minute running trials unloaded and with WRs of 1%, 2%, 3%, 4% and 5% body mass (BM), in a random order. The use of a WR resulted in a 1.6 ± 0.6% increase in oxygen consumption (VO2) for every 1% BM of additional load. Inferential based analysis found that the loading of ≥3% BM was needed to elicit any substantial responses in VO2, with an increase that was likely to be moderate in scale (effect size (ES) ± 90% confidential interval (CI): 0.24 ± 0.07). Using heart rate data, a training load score was extrapolated to quantify the amount of internal stress. For every 1% BM of WR, there is an extra 0.17 ± 0.06 estimated increase in training load. A WR ≥3% of BM was needed to elicit substantial responses in lactate production, with an increase which was very likely to be large in scale (ES ± 90% CI: 0.41 ± 0.18). A thigh-positioned WR provides a running-specific overload with loads ≥3% BM, resulting in substantial changes in metabolic responses.
    Matched MeSH terms: Heart Rate
  18. Idrose AM
    Acute medicine & surgery, 2015 07;2(3):147-157.
    PMID: 29123713 DOI: 10.1002/ams2.104
    Thyroid hormones affect all organ systems and, in excess, can cause increased metabolic rate, heart rate, ventricle contractility, and gastrointestinal motility as well as muscle and central nervous system excitability. Thyroid storm is the extreme manifestation of thyrotoxicosis with an estimated incidence of 0.20 per 100,000 per year among hospitalized patients in Japan. The mortality of thyroid storm without treatment ranges from 80% to 100%; but with treatment, the mortality rate is between 10% and 50%. The diagnostic strategy for thyroid storm may take into consideration Burch-Wartofsky scoring or Akamizu's diagnostic criteria. Multiple treatment aims need to be addressed in managing thyroid storm effectively. This paper puts together all aspects to be considered for the management of hyperthyroidism and thyroid storm during the acute and emergency phase as well as consideration of special populations.
    Matched MeSH terms: Heart Rate
  19. Malik AA, Williams CA, Bond B, Weston KL, Barker AR
    Eur J Sport Sci, 2017 Nov;17(10):1335-1342.
    PMID: 28859545 DOI: 10.1080/17461391.2017.1364300
    This study aimed to examine adolescents' acute cardiorespiratory and perceptual responses during high-intensity interval exercise (HIIE) and enjoyment responses following HIIE and work-matched continuous moderate intensity exercise (CMIE). Fifty-four 12- to 15-year olds (27 boys) completed 8 × 1-min cycling at 90% peak power with 75-s recovery (HIIE) and at 90% of the gas exchange threshold (CMIE). Absolute oxygen uptake ([Formula: see text]), percentage of maximal [Formula: see text] (%[Formula: see text]), heart rate (HR), percentage of maximal HR (%HRmax) and ratings of perceived exertion (RPE) were collected during HIIE. Enjoyment was measured using the physical activity enjoyment scale (PACES) following HIIE and CMIE. Boys elicited higher absolute [Formula: see text] during HIIE work (p  1.22) and recovery (p  0.51) intervals but lower %[Formula: see text] during HIIE recovery intervals compared to girls (p  0.67). No sex differences in HR and %HRmaxwere evident during HIIE and 48 participants attained ≥90% HRmax. Boys produced higher RPE at intervals 6 (p = .004, ES = 1.00) and 8 (p = .003, ES = 1.00) during HIIE. PACES was higher after HIIE compared with CMIE (p = .003, ES = 0.58). Items from PACES "I got something out of it", "It's very exciting" and "It gives me a strong feeling of success" were higher after HIIE (all p  0.32). The items "I feel bored" and "It's not at all interesting" were higher after CMIE (all p  0.46). HIIE elicits a maximal cardiorespiratory response in most adolescents. Greater enjoyment after HIIE was due to elevated feelings of reward, excitement and success and may serve as a strategy to promote health in youth.
    Matched MeSH terms: Heart Rate
  20. Nur Khairunisa Abu Talip, Zulkifli Abdul Kadir
    MyJurnal
    Resistance training (RT) refers to a method of physical conditioning of complex programming which consists of progressive and various training techniques to achieve the desired training goals. An appropriate programme design is the key to success; where exercise selection is one of the critical factors. The selection of exercise will expose different stimulation as in the application of the specific adaptation on imposed demand principle. The option of choosing either bilateral (BI) or unilateral (UNI) exercise is an important decision to perform in the construction of any strength or RT programme. This study aimed to investigate the physiological responses of unilateral versus bilateral acute RT on heart rate (HR), blood pressure (BP) and rate of perceived exertion (RPE). Sixteen (n = 16) trained women with mean age of 23.31 (SD = 1.35) years old went through a total body exercise session for each unilateral and bilateral protocols which both consisted of major muscles group for 80% 1RM, 10 repetitions to maximal effort for 3 sets. The results revealed that all variables examined including HR, systolic blood pressure (SBP), diastolic blood pressure (DBP) and RPE were statistically changed (p < .001) across the times. Apart from that, unilateral and bilateral RT imposed significantly different stimulus on SBP (p < .05).
    Matched MeSH terms: Heart Rate
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links