Displaying publications 1 - 20 of 67 in total

Abstract:
Sort:
  1. Yang J, Lu J, Zhu Q, Tao Y, Zhu Q, Guo C, et al.
    J Biosci Bioeng, 2021 Aug;132(2):161-166.
    PMID: 33972168 DOI: 10.1016/j.jbiosc.2020.12.016
    As one of Lianyungang's most famous specialties, Acanthogobius hasta is delicious and nutritious fish, but is extremely susceptible to spoilage during transportation and storage. In this study, Lactobacillus plantarum MMB-07 was isolated from traditional fermented sour fish to reduce losses and improve the utilization and food value of A. hasta. L. plantarum MMB-07 had good ability of acid production and acid resistance. Moreover, it could also inhibit common pathogens in food or aquatic products to ensure the safety of fermented products. MMB-07 was used to ferment A. hasta and obtain fermented Suanyu rich in nutrition value and good flavor. The volatile base nitrogen was 18.44 mg/100 g and the fermented fish meat maintained second-grade freshness. Thiobarbituric acid assay was 0.90 mg/kg and fat in fish meat was oxidized to a low degree. The studies indicated that MMB-07 has a high application prospect in low salt fermented fish.
    Matched MeSH terms: Lactobacillus plantarum*
  2. Wu Y, Li S, Tao Y, Li D, Han Y, Show PL, et al.
    Food Chem, 2021 Jun 30;348:129083.
    PMID: 33517000 DOI: 10.1016/j.foodchem.2021.129083
    In this study, three potential probiotic strains were selected to ferment blueberry and blackberry juices. The viable cell counts of selected strains were increased by 0.4-0.7 log CFU/mL in berry juices environments after 48-h fermentation. Meanwhile, the contents of cyanindin-3-glucoside and peonidin-3-glucoside decreased over 30%. Heatmap presented an upgrade trend of syringic acid, ferulic acid, gallic acid and lactic acid during fermentation. However, the contents of p-coumaric acid, protocatechuic acid, chlorogenic acid, critic acid and malic acid showed downgrade trend. The metabolism of phenolics probably contributed to the enhancement of the ABTS radical scavenging activity (40%-60%) in fermented berry juices. Moreover, the three strains presented different capacities on changing the quality of berry juices according to the PCA and LDA analysis. The contents of individual organic acids had positive correlations with sensory quality, especially for sourness. Overall, probiotic fermentation could improve the sensory quality of berry juices.
    Matched MeSH terms: Lactobacillus plantarum/metabolism
  3. Wang H, Tao Y, Li Y, Wu S, Li D, Liu X, et al.
    Ultrason Sonochem, 2021 May;73:105486.
    PMID: 33639530 DOI: 10.1016/j.ultsonch.2021.105486
    In this work, low-intensity ultrasonication (58.3 and 93.6 W/L) was performed at lag, logarithmic and stationary growth phases of Lactobacillus plantarum in apple juice fermentation, separately. Microbial responses to sonication, including microbial growth, profiles of organic acids profile, amino acids, phenolics, and antioxidant capacity, were examined. The results revealed that obvious responses were made by Lactobacillus plantarum to ultrasonication at lag and logarithmic phases, whereas sonication at stationary phase had a negligible impact. Sonication at lag and logarithmic phases promoted microbial growth and intensified biotransformation of malic acid to lactic acid. For example, after sonication at lag phase for 0.5 h, microbial count and lactic acid content in the ultrasound-treated samples at 58.3 W/L reached 7.91 ± 0.01 Log CFU/mL and 133.70 ± 7.39 mg/L, which were significantly higher than that in the non-sonicated samples. However, the ultrasonic effect on microbial growth and metabolism of organic acids attenuated with fermentation. Moreover, ultrasonication at lag and logarithmic phases had complex influences on the metabolism of apple phenolics such as chlorogenic acid, caffeic acid, procyanidin B2, catechin and gallic acid. Ultrasound could positively affect the hydrolysis of chlorogenic acid to caffeic acid, the transformation of procyanidin B2 and decarboxylation of gallic acid. The metabolism of organic acids and free amino acids in the sonicated samples was statistically correlated with phenolic metabolism, implying that ultrasound may benefit phenolic derivation by improving the microbial metabolism of organic acids and amino acids.
    Matched MeSH terms: Lactobacillus plantarum/growth & development*
  4. Ooi MF, Foo HL, Loh TC, Mohamad R, Rahim RA, Ariff A
    Sci Rep, 2021 Apr 07;11(1):7617.
    PMID: 33828119 DOI: 10.1038/s41598-021-87081-6
    Postbiotic RS5, produced by Lactiplantibacillus plantarum RS5, has been identified as a promising alternative feed supplement for various livestock. This study aimed to lower the production cost by enhancing the antimicrobial activity of the postbiotic RS5 by improving the culture density of L. plantarum RS5 and reducing the cost of growth medium. A combination of conventional and statistical-based approaches (Fractional Factorial Design and Central Composite Design of Response Surface Methodology) was employed to develop a refined medium for the enhancement of the antimicrobial activity of postbiotic RS5. A refined medium containing 20 g/L of glucose, 27.84 g/L of yeast extract, 5.75 g/L of sodium acetate, 1.12 g/L of Tween 80 and 0.05 g/L of manganese sulphate enhanced the antimicrobial activity of postbiotic RS5 by 108%. The cost of the production medium was reduced by 85% as compared to the commercially available de Man, Rogosa and Sharpe medium that is typically used for Lactobacillus cultivation. Hence, the refined medium has made the postbiotic RS5 more feasible and cost-effective to be adopted as a feed supplement for various livestock industries.
    Matched MeSH terms: Lactobacillus plantarum/growth & development*; Lactobacillus plantarum/metabolism
  5. Danial AM, Medina A, Magan N
    World J Microbiol Biotechnol, 2021 Feb 24;37(4):57.
    PMID: 33625606 DOI: 10.1007/s11274-021-03020-7
    The objective was to screen and evaluate the anti-fungal activity of lactic acid bacteria (LABs) isolated from Malaysian fermented foods against two Trichophyton species. A total of 66 LAB strains were screened using dual culture assays. This showed that four LAB strains were very effective in inhibiting growth of T. rubrum but not T. interdigitale. More detailed studies with Lactobacillus plantarum strain HT-W104-B1 showed that the supernatant was mainly responsible for inhibiting the growth of T. rubrum. The minimum inhibitory concentration (MIC), inhibitory concentration, the 50% growth inhibition (IC50) and minimum fungicide concentration (MFC) were 20 mg/mL, 14 mg/mL and 30 mg/mL, respectively. A total of six metabolites were found in the supernatant, with the two major metabolites being L-lactic acid (19.1 mg/g cell dry weight (CDW)) and acetic acid (2.2 mg/g CDW). A comparative study on keratin agar media showed that the natural mixture in the supernatants predominantly contained L-lactic and acetic acid, and this significantly controlled the growth of T. rubrum. The pure two individual compounds were less effective. Potential exists for application of the natural mixture of compounds for the treatment of skin infection by T. rubrum.
    Matched MeSH terms: Lactobacillus plantarum/isolation & purification; Lactobacillus plantarum/metabolism*
  6. Ranjith FH, Muhialdin BJ, Yusof NL, Mohammed NK, Miskandar MH, Hussin ASM
    Plants (Basel), 2021 Feb 03;10(2).
    PMID: 33546183 DOI: 10.3390/plants10020285
    BACKGROUND: the antagonism activity of lactic acid bacteria metabolites has the potential to prevent fungal growth on mango.

    METHODS: the potential of developing natural disinfectant while using watermelon rinds (WR), pineapple (PP), orange peels (OP), palm kernel cake (PKC), and rice bran (RB), via lacto-fermentation was investigated. The obtained lactic acid bacteria (LAB) metabolites were then employed and the in vitro antifungal activity toward five spoilage fungi of mango was tested through liquid and solid systems. Besides, the effect of the produced disinfectant on the fungal growth inhibition and quality of mango was investigated.

    RESULTS: the strains Lactobacillus plantarum ATCC8014 and Lactobacillus fermentum ATCC9338 growing in the substrates PKC and PP exhibited significantly higher in vitro antifungal activity against Colletotrichum gloeosporioides and Botryodiplodia theobromae as compared to other tested LAB strains and substrates. The in-situ results demonstrated that mango samples that were treated with the disinfectant produced from PKC fermented with L. plantarum and L. fermentum had the lowest disease incidence and disease severity index after 16 days shelf life, as well as the lowest conidial concentration. Furthermore, PKC that was fermented by L. fermentum highly maintained the quality of the mango.

    CONCLUSIONS: lactic acid fermentation of PKC by L. fermentum demonstrated a high potential for use as a natural disinfectant to control C. gloeosporioides and B. theobromae on mango.

    Matched MeSH terms: Lactobacillus plantarum
  7. Elliecpearl Jasca J, Annita Seok KY, Suraini L, Chun YA, Julian R, Sano M, et al.
    Biocontrol Sci, 2021;26(4):201-205.
    PMID: 35013016 DOI: 10.4265/bio.26.201
    Pathogenic marine fungi, Lagenidium thermophilum is known causative agent in the crustacean industry. Current disinfection practice in hatchery has risks and negative impacts which prompts suitable substitute to synthetic antifungal agents. Thus, this study was conducted to evaluate the antifungal potential of postbiotic from four potential probiotics towards marine oomycetes, L. thermophilum IPMB 1401. The screening test showed that the Lactobacillus plantarum GS12 and Bacillus cereus GS15 postbiotics were positive for antifungal activity on L. thermophilum IPMB 1401. These two bacterial extracts have minimum inhibitory concentration (MIC) at 50%. The toxicity assay on MIC level of the postbiotic revealed that the cumulative mortality of brine shrimp nauplii exposed to B. cereus postbiotic was significantly lower compared to L. plantarum GS12 postbiotic and formalin. This indicates a high potential of B. cereus GS15 as a prospect for alternative control method for fungal infections in the crustacean culture industry.
    Matched MeSH terms: Lactobacillus plantarum*
  8. Zaydi AI, Lew LC, Hor YY, Jaafar MH, Chuah LO, Yap KP, et al.
    Benef Microbes, 2020 Dec 02;11(8):753-766.
    PMID: 33245015 DOI: 10.3920/BM2019.0200
    Aging processes affect the brain in many ways, ranging from cellular to functional levels which lead to cognitive decline and increased oxidative stress. The aim of this study was to investigate the potentials of Lactobacillus plantarum DR7 on brain health including cognitive and memory functions during aging and the impacts of high fat diet during a 12-week period. Male Sprague-Dawley rats were separated into six groups: (1) young animals on normal diet (ND, (2) young animals on a high fat diet (HFD), (3) aged animals on ND, (4) aged animals on HFD, (5) aged animals on HFD and L. plantarum DR7 (109 cfu/day) and (6) aged animals receiving HFD and lovastatin. To induce ageing, all rats in group 3 to 6 were injected sub-cutaneously at 600 mg/kg/day of D-galactose daily. The administration of DR7 has reduced anxiety accompanied by enhanced memory during behavioural assessments in aged-HFD rats (P<0.05). Hippocampal concentration of all three pro-inflammatory cytokines were increased during aging but reduced upon administration of both statin and DR7. Expressions of hippocampal neurotransmitters and apoptosis genes showed reduced expressions of indoleamine dioxygenase and P53 accompanied by increased expression of TPH1 in aged- HFD rats administered with DR7, indicating potential effects of DR7 along the pathways of serotonin and oxidative senescence. This study provided an insight into potentials of L. plantarum DR7 as a prospective dietary strategy to improve cognitive functions during aging. This study provided an insight into potentials of L. plantarum DR7 as a prospective dietary strategy to improve cognitive functions during aging.
    Matched MeSH terms: Lactobacillus plantarum/metabolism*
  9. Mohd Yusof H, Abdul Rahman N, Mohamad R, Zaidan UH, Samsudin AA
    Sci Rep, 2020 Nov 17;10(1):19996.
    PMID: 33204003 DOI: 10.1038/s41598-020-76402-w
    This study aims to utilize the cell-biomass (CB) and supernatant (CFS) of zinc-tolerant Lactobacillus plantarum TA4 as a prospective nanofactory to synthesize ZnO NPs. The surface plasmon resonance for the biosynthesized ZnO NPs-CFS and ZnO NPs-CB was 349 nm and 351 nm, respectively, thereby confirming the formation of ZnO NPs. The FTIR analysis revealed the presence of proteins, carboxyl, and hydroxyl groups on the surfaces of both the biosynthesized ZnO NPs that act as reducing and stabilizing agents. The DLS analysis revealed that the poly-dispersity indexes was less than 0.4 for both ZnO NPs. In addition, the HR-TEM micrographs of the biosynthesized ZnO NPs revealed a flower-like pattern for ZnO NPs-CFS and an irregular shape for ZnO NPs-CB with particles size of 291.1 and 191.8 nm, respectively. In this study, the biosynthesized ZnO NPs exhibited antibacterial activity against pathogenic bacteria in a concentration-dependent manner and showed biocompatibility with the Vero cell line at specific concentrations. Overall, CFS and CB of L. plantarum TA4 can potentially be used as a nanofactory for the biological synthesis of ZnO NPs.
    Matched MeSH terms: Lactobacillus plantarum/metabolism*
  10. Lim PS, Loke CF, Ho YW, Tan HY
    J Appl Microbiol, 2020 Nov;129(5):1374-1388.
    PMID: 32356362 DOI: 10.1111/jam.14678
    AIMS: To determine the mechanism underlying the serum cholesterol reduction effect by probiotics isolated from local fermented tapioca (Tapai).

    METHODS AND RESULTS: Lactic acid bacteria strains were isolated and examined for acid tolerance, bile salt resistance and hypocholesterolemic properties. Among the isolates, Lactobacillus plantarum TAR4 showed the highest cholesterol reduction ability (48·01%). The focus in the in vivo trial was to elucidate the cholesterol balance from findings pertaining to serum cholesterol reduction in rat model fed with high fat diet via oral administration. Rats fed with high-cholesterol diet supplemented with Lact. plantarum TAR4 showed significant reduction in serum total cholesterol (29·55%), serum triglyceride (45·31%) and liver triglyceride (23·44%) as compared to high-cholesterol diet (HCD) group. There was a significant increment in faecal triglyceride (45·83%) and faecal total bile acid (384·95%) as compared to HCD group.

    CONCLUSIONS: The findings showed that probiotic Lact. plantarum TAR4 supplementation reduced the absorption of bile acids for enterohepatic recycling and increased the catabolism of cholesterol to bile acids and not by suppressing the rate of cholesterol synthesis.

    SIGNIFICANCE AND IMPACT OF STUDY: Probiotic supplements could provide a new nonpharmacological alternative to reduce cardiovascular risk factors.

    Matched MeSH terms: Lactobacillus plantarum/isolation & purification; Lactobacillus plantarum/metabolism
  11. Liu G, Chong HX, Chung FY, Li Y, Liong MT
    Int J Mol Sci, 2020 Jun 29;21(13).
    PMID: 32610495 DOI: 10.3390/ijms21134608
    We have previously reported that the administration of Lactobacillus plantarum DR7 for 12 weeks reduced stress and anxiety in stressed adults as compared to the placebo group, in association with changes along the brain neurotransmitters pathways of serotonin and dopamine-norepinephrine. We now aim to evaluate the effects of DR7 on gut functions, gut microbiota compositional changes, and determine the correlations between microbiota changes and the pathways of brain neurotransmitters. The administration of DR7 prevented an increase of defecation frequency over 12 weeks as compared to the placebo (p = 0.044), modulating the increase of stress-induced bowel movement. Over 12 weeks, alpha diversity of gut microbiota was higher in DR7 than the placebo group across class (p = 0.005) and order (p = 0.018) levels, while beta diversity differed between groups at class and order levels (p < 0.001). Differences in specific bacterial groups were identified, showing consistency at different taxonomic levels that survived multiplicity correction, along the phyla of Bacteroides and Firmicutes and along the classes of Deltaproteobacteria and Actinobacteria. Bacteroidetes, Bacteroidia, and Bacteroidales which were reduced in abundance in the placebo group showed opposing correlation with gene expression of dopamine beta hydrolase (DBH, dopamine pathway; p < 0.001), while Bacteroidia and Bacteroidales showed correlation with tryptophan hydroxylase-II (TPH2, serotonin pathway; p = 0.001). A correlation was observed between DBH and Firmicutes (p = 0.002), Clostridia (p < 0.001), Clostridiales (p = 0.001), Blautia (p < 0.001), and Romboutsia (p < 0.001), which were increased in abundance in the placebo group. Blautia was also associated with TDO (p = 0.001), whereas Romboutsia had an opposing correlation with TPH2 (p < 0.001). Deltaproteobacteria and Desulfovibrionales which were decreased in abundance in the placebo group showed opposing correlation with DBH (p = 0.001), whereas Bilophila was associated with TPH2 (p = 0.001). Our present data showed that physiological changes induced by L. plantarum DR7 could be associated with changes in specific taxa of the gut microbiota along the serotonin and dopamine pathways.
    Matched MeSH terms: Lactobacillus plantarum/metabolism
  12. Mohamad Zabidi NA, Foo HL, Loh TC, Mohamad R, Abdul Rahim R
    Molecules, 2020 Jun 03;25(11).
    PMID: 32503356 DOI: 10.3390/molecules25112607
    Lactobacillus plantarum RI 11 was reported recently to be a potential lignocellulosic biomass degrader since it has the capability of producing versatile extracellular cellulolytic and hemicellulolytic enzymes. Thus, this study was conducted to evaluate further the effects of various renewable natural polymers on the growth and production of extracellular cellulolytic and hemicellulolytic enzymes by this novel isolate. Basal medium supplemented with molasses and yeast extract produced the highest cell biomass (log 10.51 CFU/mL) and extracellular endoglucanase (11.70 µg/min/mg), exoglucanase (9.99 µg/min/mg), β-glucosidase (10.43 nmol/min/mg), and mannanase (8.03 µg/min/mg), respectively. Subsequently, a statistical optimization approach was employed for the enhancement of cell biomass, and cellulolytic and hemicellulolytic enzyme productions. Basal medium that supplemented with glucose, molasses and soybean pulp (F5 medium) or with rice straw, yeast extract and soybean pulp (F6 medium) produced the highest cell population of log 11.76 CFU/mL, respectively. However, formulated F12 medium supplemented with glucose, molasses and palm kernel cake enhanced extracellular endoglucanase (4 folds), exoglucanase (2.6 folds) and mannanase (2.6 folds) specific activities significantly, indicating that the F12 medium could induce the highest production of extracellular cellulolytic and hemicellulolytic enzymes concomitantly. In conclusion, L. plantarum RI 11 is a promising and versatile bio-transformation agent for lignocellulolytic biomass.
    Matched MeSH terms: Lactobacillus plantarum/enzymology*
  13. Yap PG, Choi SB, Liong MT
    Appl Biochem Biotechnol, 2020 May;191(1):226-244.
    PMID: 32125649 DOI: 10.1007/s12010-020-03265-2
    This study aimed to evaluate the effect of probiotic administration on obese and ageing models. Sprague Dawley rats were subjected to high-fat diet (HFD) and injected with D-galactose to induce premature ageing. Upon 12 weeks of treatment, the faecal samples were collected and subjected to gas chromatography-mass spectrophotometry (GC-MS) analysis for metabolite detection. The sparse partial least squares discriminant analysis (sPLS-DA) showed a distinct clustering pattern of metabolite profile in the aged and obese rats administered with probiotics Lactobacillus plantarum DR7 and L. reuteri 8513d, particularly with a significantly higher concentration of allantoin. Molecular docking simulation showed that allantoin promoted the phosphorylation (activation) of adenosine monophosphate-activated kinase (AMPK) by lowering the substrate free energy of binding (FEB) and induced the formation of an additional hydrogen bond between Val184 and the substrate AMP. Allantoin also suppressed cholesterol biosynthesis by either inducing enzyme inhibition, occupying or blocking the putative binding site to result in non-spontaneous substrate binding, as in the cases of 3-hydroxy-methylglutaryl-coA reductase (HMGCR), mevalonate kinase (MVK) and lanosterol demethylase (LDM) where positive FEBs were reported. These results demonstrated the potential of allantoin to alleviate age-related hypercholesterolaemia by upregulating AMPK and downregulating cholesterol biosynthesis via the mevalonate pathway and Bloch pathway.
    Matched MeSH terms: Lactobacillus plantarum*
  14. Ong JS, Taylor TD, Yong CC, Khoo BY, Sasidharan S, Choi SB, et al.
    Probiotics Antimicrob Proteins, 2020 03;12(1):125-137.
    PMID: 30659503 DOI: 10.1007/s12602-018-9505-9
    This study aimed to elucidate the targets and mechanisms of anti-staphylococcal effects from bioactive metabolites produced by lactic acid bacteria. We aimed to better understand the safety and efficacy of these bioactive metabolites in in vivo systems, typically at topical sites. The cell-free supernatant and protein-rich fraction from Lactobacillus plantarum USM8613 inhibited staphyloxanthin biosynthesis, reduced (p plantarum USM8613. In vivo data using rats showed that the protein-rich fraction from L. plantarum USM8613 exerted wound healing properties via direct inhibition of S. aureus and promoted innate immunity, in which the expression of β-defensin was significantly (p plantarum USM8613 also significantly enhanced (p plantarum USM8613 exerted inhibitory activity via targeting the atl gene in S. aureus. Taken altogether, our present study illustrates the potential of L. plantarum USM8613 in aiding wound healing, suppressing of S. aureus infection at wound sites and promoting host innate immunity.
    Matched MeSH terms: Lactobacillus plantarum/metabolism*
  15. Tan FHP, Liu G, Lau SA, Jaafar MH, Park YH, Azzam G, et al.
    Benef Microbes, 2020 Feb 19;11(1):79-89.
    PMID: 32066253 DOI: 10.3920/BM2019.0086
    Alzheimer's disease (AD) is a progressive disease and one of the most common forms of neurodegenerative disorders. Emerging evidence is supporting the use of various strategies that modulate gut microbiota to exert neurological and psychological changes. This includes the utilisation of probiotics as a natural and dietary intervention for brain health. Here, we showed the potential AD-reversal effects of Lactobacillus probiotics through feeding to our Drosophila melanogaster AD model. The administration of Lactobacillus strains was able to rescue the rough eye phenotype (REP) seen in AD-induced Drosophila, with a more prominent effect observed upon the administration of Lactobacillus plantarum DR7 (DR7). Furthermore, we analysed the gut microbiota of the AD-induced Drosophila and found elevated levels of Wolbachia. The administration of DR7 restored the gut microbiota diversity of AD-induced Drosophila with a significant reduction in Wolbachia's relative abundance, accompanied by an increase of Stenotrophomonas and Acetobacter. Through functional predictive analyses, Wolbachia was predicted to be positively correlated with neurodegenerative disorders, such as Parkinson's, Huntington's and Alzheimer's diseases, while Stenotrophomonas was negatively correlated with these neurodegenerative disorders. Altogether, our data exhibited DR7's ability to ameliorate the AD effects in our AD-induced Drosophila. Thus, we propose that Wolbachia be used as a potential biomarker for AD.
    Matched MeSH terms: Lactobacillus plantarum*
  16. Mohd Yusof H, Mohamad R, Zaidan UH, Rahman NA
    Microb Cell Fact, 2020 Jan 15;19(1):10.
    PMID: 31941498 DOI: 10.1186/s12934-020-1279-6
    BACKGROUND: The use of microorganisms in the biosynthesis of zinc oxide nanoparticles (ZnO NPs) has recently emerged as an alternative to chemical and physical methods due to its low-cost and eco-friendly method. Several lactic acid bacteria (LAB) have developed mechanisms in tolerating Zn2+ through prevention against their toxicity and the production of ZnO NPs. The LAB's main resistance mechanism to Zn2+ is highly depended on the microorganisms' ability to interact with Zn2+ either through biosorption or bioaccumulation processes. Besides the inadequate studies conducted on biosynthesis with the use of zinc-tolerant probiotics, the understanding regarding the mechanism involved in this process is not clear. Therefore, this study determines the features of probiotic LAB strain TA4 related to its resistance to Zn2+. It also attempts to illustrate its potential in creating a sustainable microbial cell nanofactory of ZnO NPs.

    RESULTS: A zinc-tolerant probiotic strain TA4, which was isolated from local fermented food, was selected based on the principal component analysis (PCA) with the highest score of probiotic attributes. Based on the 16S rRNA gene analysis, this strain was identified as Lactobacillus plantarum strain TA4, indicating its high resistance to Zn2+ at a maximum tolerable concentration (MTC) value of 500 mM and its capability of producing ZnO NPs. The UV-visible spectroscopy analysis proved the formations of ZnO NPs through the notable absorption peak at 380 nm. It was also found from the dynamic light scattering (DLS) analysis that the Z-average particle size amounted to 124.2 nm with monodisperse ZnO NPs. Studies on scanning electron microscope (SEM), energy-dispersive X-ray (EDX) spectroscopy, and Fourier-transform infrared spectroscopy (FT-IR) revealed that the main mechanisms in ZnO NPs biosynthesis were facilitated by the Zn2+ biosorption ability through the functional groups present on the cell surface of strain TA4.

    CONCLUSIONS: The strong ability of zinc-tolerant probiotic of L. plantarum strain TA4 to tolerate high Zn2+ concentration and to produce ZnO NPs highlights the unique properties of these bacteria as a natural microbial cell nanofactory for a more sustainable and eco-friendly practice of ZnO NPs biosynthesis.

    Matched MeSH terms: Lactobacillus plantarum/metabolism*
  17. Lew LC, Hor YY, Yusoff NAA, Choi SB, Yusoff MSB, Roslan NS, et al.
    Clin Nutr, 2019 10;38(5):2053-2064.
    PMID: 30266270 DOI: 10.1016/j.clnu.2018.09.010
    BACKGROUND & AIMS: To investigate the effects of probiotic in alleviation of stress in stressed adults, along our focus to identify and justify strain specificity on selected health benefits with a precisely targeted population.

    METHODS: This 12-weeks randomized, double-blind and placebo-controlled study investigated the effects of a probiotic (Lactobacillus plantarum P8; 10 log CFU daily) on psychological, memory and cognition parameters in one hundred and three (P8 n = 52, placebo n = 51) stressed adults with mean age of 31.7 ± 11.1 years old. All subjects fulfilled the criteria of moderate stress upon diagnosis using the PSS-10 questionnaire.

    RESULTS: At the end of study, subjects on P8 showed reduced scores of stress (mean difference 2.94; 95% CI 0.08 to 5.73; P = 0.048), anxiety (mean difference 2.82; 95% CI 0.35 to 5.30; P = 0.031) and total score (mean difference 8.04; 95% CI 0.73 to 15.30; P = 0.041) as compared to placebo after 4-weeks, as assessed by the DASS-42 questionnaire. Although plasma cortisol levels were only marginally different between placebo and P8 (mean difference 3.28 ug/dl; 95% CI -7.09 to 0.52; P = 0.090), pro-inflammatory cytokines such as IFN-γ (mean difference 8.07 pg/ml; 95% CI -11.2 to -4.93; P plantarum P8 is a feasible and natural intervention for the alleviation of selected stress, anxiety, memory and cognitive symptoms in stressed adults.

    TRIAL REGISTRATION: Approved by the JEPeM-USM Review Panel on Clinical Studies (Approval number USM/JEPeM/16050195) and was registered at ClinicalTrials.gov (identifier number NCT03268447).

    Matched MeSH terms: Lactobacillus plantarum*
  18. Izuddin WI, Loh TC, Samsudin AA, Foo HL, Humam AM, Shazali N
    BMC Vet Res, 2019 Sep 02;15(1):315.
    PMID: 31477098 DOI: 10.1186/s12917-019-2064-9
    BACKGROUND: Postbiotics have been established as potential feed additive to be used in monogastric such as poultry and swine to enhance health and growth performance. However, information on the postbiotics as feed additive in ruminants is very limited. The aim of this study was to elucidate the effects of supplementation of postbiotics in newly-weaned lambs on growth performance, digestibility, rumen fermentation characteristics and microbial population, blood metabolite and expression of genes related to growth and volatile fatty acid transport across the rumen epithelium.

    RESULTS: Postbiotic supplementation increased weight gain, feed intake, nutrient intake and nutrient digestibility of the lambs. No effect on ruminal pH and total VFA, whereas butyrate and ruminal ammonia-N concentration were improved. The lambs fed with postbiotics had higher blood total protein, urea nitrogen and glucose. However, no difference was observed in blood triglycerides and cholesterol levels. Postbiotics increased the population of fibre degrading bacteria but decreased total protozoa and methanogens in rumen. Postbiotics increased the mRNA expression of hepatic IGF-1 and ruminal MCT-1.

    CONCLUSIONS: The inclusion of postbiotics from L. plantarum RG14 in newly-weaned lambs improved growth performance, nutrient intake and nutrient digestibility reflected from better rumen fermentation and microbial parameters, blood metabolites and upregulation of growth and nutrient intake genes in the post-weaning lambs.

    Matched MeSH terms: Lactobacillus plantarum
  19. Harnentis H, Nurmiati N, Marlida Y, Adzitey F, Huda N
    Vet World, 2019 Aug;12(8):1352-1357.
    PMID: 31641319 DOI: 10.14202/vetworld.2019.1352-1357
    Aim: This study aimed at optimizing γ-aminobutyric acid (GABA) production using lactic acid bacteria (LAB) of an Indonesian indigenous fermented buffalo milk (dadih) origin. This study utilized LAB previously cultured from dadih that has the ability to produce GABA.

    Materials and Methods: The study started with the identification of selected LAB by 16S rRNA, followed by optimization of GABA production by culture conditions using different initial pH, temperature, glutamate concentration, incubation time, carbon, and nitrogen sources. 16S rRNA polymerase chain reaction and analysis by phylogenetic were used to identify Lactobacillus plantarum (coded as N5) responsible for the production of GABA.

    Results: GABA production by high-performance liquid chromatography was highest at pH of 5.5, temperature of 36°C, glutamate concentration of 500 mM, and incubation time of 84 h. Peptone and glucose served as the nitrogen and carbon sources, respectively, whereas GABA was produced at optimum fermentation condition of 211.169 mM.

    Conclusion: Production of GABA by L. plantarum N5 was influenced by initial pH of 5.5, glutamic acid concentration, nitrogen source, glucose as carbon source, and incubation temperature and time.

    Matched MeSH terms: Lactobacillus plantarum
  20. Ong JS, Taylor TD, Wong CB, Khoo BY, Sasidharan S, Choi SB, et al.
    J Biotechnol, 2019 Jul 20;300:20-31.
    PMID: 31095980 DOI: 10.1016/j.jbiotec.2019.05.006
    Increasing levels of antibiotic resistance in pathogens, including Staphylococcus aureus, remains a serious problem for public health, leading to the need for better alternative antimicrobial strategies. The antimicrobial proteins produced by Lactobacillus plantarum USM8613 attributed to its anti-staphylococcal activity were identified as extracellular transglycosylase and glyceraldehyde-3-phosphate dehydrogenase (GADPH), both with different mechanisms of action. Extracellular transglycosylase, which contains a LysM domain, exerts a cell wall-mediated killing mechanism, while GADPH penetrates into S. aureus cells and subsequently induces the overexpression of autolysis regulators, resulting in S. aureus autolysis. Both extracellular transglycosylase and GADPH exert anti-inflammatory effects in S. aureus-infected HaCaT cells by reducing the expression and production of TLR-2, hBDs and various pro-inflammatory cytokines (IL-1α, IL-1β, IL-6, TNF-α, and IL-8). Taken together, extracellular transglycosylase and GADPH produced by L. plantarum USM8613 could potentially be applied as an alternative therapeutic agent to treat S. aureus skin infections and promote skin health.
    Matched MeSH terms: Lactobacillus plantarum/enzymology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links