Displaying publications 1 - 20 of 48 in total

Abstract:
Sort:
  1. Thiagarajan SK, Mok SY, Ogawa S, Parhar IS, Tang PY
    Int J Mol Sci, 2023 Feb 17;24(4).
    PMID: 36835497 DOI: 10.3390/ijms24044088
    Several theories have been proposed to explain the mechanisms of substance use in schizophrenia. Brain neurons pose a potential to provide novel insights into the association between opioid addiction, withdrawal, and schizophrenia. Thus, we exposed zebrafish larvae at 2 days post-fertilization (dpf) to domperidone (DPM) and morphine, followed by morphine withdrawal. Drug-induced locomotion and social preference were assessed, while the level of dopamine and the number of dopaminergic neurons were quantified. In the brain tissue, the expression levels of genes associated with schizophrenia were measured. The effects of DMP and morphine were compared to vehicle control and MK-801, a positive control to mimic schizophrenia. Gene expression analysis revealed that α1C, α1Sa, α1Aa, drd2a, and th1 were up-regulated after 10 days of exposure to DMP and morphine, while th2 was down-regulated. These two drugs also increased the number of positive dopaminergic neurons and the total dopamine level but reduced the locomotion and social preference. The termination of morphine exposure led to the up-regulation of th2, drd2a, and c-fos during the withdrawal phase. Our integrated data implicate that the dopamine system plays a key role in the deficits in social behavior and locomotion that are common in the schizophrenia-like symptoms and opioid dependence.
    Matched MeSH terms: Locomotion/drug effects
  2. Burrows M, Ghosh A, Sutton GP, Yeshwanth HM, Rogers SM, Sane SP
    J Exp Biol, 2021 12 01;224(23).
    PMID: 34755862 DOI: 10.1242/jeb.243361
    Lantern bugs are amongst the largest of the jumping hemipteran bugs, with body lengths reaching 44 mm and masses reaching 0.7 g. They are up to 600 times heavier than smaller hemipterans that jump powerfully using catapult mechanisms to store energy. Does a similar mechanism also propel jumping in these much larger insects? The jumping performance of two species of lantern bugs (Hemiptera, Auchenorrhyncha, family Fulgoridae) from India and Malaysia was therefore analysed from high-speed videos. The kinematics showed that jumps were propelled by rapid and synchronous movements of both hind legs, with their trochantera moving first. The hind legs were 20-40% longer than the front legs, which was attributable to longer tibiae. It took 5-6 ms to accelerate to take-off velocities reaching 4.65 m s-1 in the best jumps by female Kalidasa lanata. During these jumps, adults experienced an acceleration of 77 g, required an energy expenditure of 4800 μJ and a power output of 900 mW, and exerted a force of 400 mN. The required power output of the thoracic jumping muscles was 21,000 W kg-1, 40 times greater than the maximum active contractile limit of muscle. Such a jumping performance therefore required a power amplification mechanism with energy storage in advance of the movement, as in their smaller relatives. These large lantern bugs are near isometrically scaled-up versions of their smaller relatives, still achieve comparable, if not higher, take-off velocities, and outperform other large jumping insects such as grasshoppers.
    Matched MeSH terms: Locomotion
  3. Sharma N, Khurana N, Muthuraman A, Utreja P
    Eur J Pharmacol, 2021 Jul 15;903:174112.
    PMID: 33901458 DOI: 10.1016/j.ejphar.2021.174112
    In the present study, we investigated the anti-Parkinson's effect of vanillic acid (VA) (12 mg/kg, 25 mg/kg, 50 mg/kg p.o.) against rotenone (2 mg/kg s.c.) induced Parkinson's disease (PD) in rats. The continuous administration of rotenone for 35 days resulted in rigidity in muscles, catalepsy, and decrease in locomotor activity, body weight, and rearing behaviour along with the generation of oxidative stress in the brain (rise in the TBARS, and SAG level and reduced CAT, and GSH levels). Co-treatment of VA and levodopa-carbidopa (100 mg/kg + 25 mg/kg p.o.) lead to a significant (P 
    Matched MeSH terms: Locomotion/drug effects
  4. Sadiq MB, Ramanoon SZ, Mansor R, Syed-Hussain SS, Shaik Mossadeq WM
    Animals (Basel), 2020 Aug 27;10(9).
    PMID: 32867064 DOI: 10.3390/ani10091515
    Lameness resulting from claw lesions remains a pressing welfare issue in dairy cows. Claw trimming (CT) is a common practice for prevention and management of clinically lame cows. This review summarizes the results of studies that have investigated various claw trimming (CT) methods, their application in lameness management, and associations with the welfare and production of dairy cows. The papers included in this review fulfilled the following inclusion criteria: published in peer review journal or book chapter within the last 20 years (1999-2019), written in English, and focused on the application of CT for lameness management and the association with either welfare or production variables. Databases used included Google scholar, Web of Science and PubMed. A total of 748 records were assessed and 61 papers were eligible for inclusion and the main objectives and results were used to categorize the results under six topics: CT techniques, association between CT and claw overgrowth/specific claw lesions, timing and frequency of CT, association between CT and behavioral variables, association between CT and physiological parameters, and association between CT and production. The literature findings showed the existence of various CT methods with the common types including the Dutch Five-step, White Line, White Line Atlas, and Kansas techniques. There is data paucity on the efficacy of these techniques in lameness management; however, the slight procedural difference yields varying sole thicknesses and presentations which may influence their prophylactic use. Results regarding the impact of CT on welfare and production were discussed in relation to potential short and long-term benefits. Depending on the lesion type and severity level, CT may induce immediate painful sensation, stress, changes in lying down activities and reduction in milk yield, but the positive impacts were more evident at later stages of lactation following improvement in locomotion score. The majority of the reviewed studies were lacking a detailed description of CT techniques and claw health of the studied animals; thus, reducing the strength of demonstrating CT-related benefits. However, electronic recording of claw health data during every CT visit provides the basis for monitoring hoof health and could assist in curtailing some of these challenges. To elucidate CT-related benefits, certain areas requiring further research were highlighted such as ascertaining the appropriate timing for preventive CT and identifying cows that will benefit more from such intervention during lactation.
    Matched MeSH terms: Locomotion
  5. Taufik M, Amin-Safwan A, Mohd Nordin AR, Shahrul I, Abol-Munafi AB, Ikhwanuddin M
    Data Brief, 2020 Apr;29:105232.
    PMID: 32099875 DOI: 10.1016/j.dib.2020.105232
    The present datasets were conducted to investigate glucose concentration in hemolymph, energy levels at selected body parts (hepatopancreas, muscle, gonad), and feces among different sexes of crabs cultured at four different water velocities (0, 20, 40, and 60 cm/s) during a 60-day culture period. A total of 102 immature crabs (51 males, and 51 females) were sampled from Kuala Muda, Kedah coastal water, Peninsular Malaysia (5°39'N 100°19'E) from April to November of 2018. Results indicated that glucose concentration was the highest at water velocity of 60 cm/s for both male and female crabs (♂: 3.76 ± 0.08 mmol/L; ♀: 3.63 ± 0.06 mmol/L), whereas at 0 cm/s, the lowest levels of glucose concentration (♂: 0.13 ± 0.08 mmol/L; ♀: 0.19 ± 0.06 mmol/L) were recorded. As for energy analysis in hepatopancreas, results showed that both male and female crabs recorded the highest levels at 0 cm/s (no flow) with 37.919 ± 0.07 KJ/g and 34.636 ± 0.50 KJ/g, respectively. Energy for locomotion (muscle) of male crabs recorded the highest at 0 cm/s (♂: 26.823 ± 0.06 KJ/g), meanwhile for females, the highest was recorded at 20 cm/s (26.607 ± 0.34 KJ/g). Energy for reproduction of males could not be compared due to an insufficient available amount of testes/vas deferens, whereas female crabs recorded the highest energy usage at 20 cm/s water velocity (♀: 37.895 ± 0.08 KJ/g). For feces, both male and female crabs recorded the lowest energy at 60 cm/s (♂: 5.841 ± 0.03 KJ/g; ♀: 5.393 ± 0.01 KJ/g). Glucose assessment showed a direct relationship between increased velocity and glucose secretion in hemolymph at high velocity of 60 cm/s (stress condition) compared to other treatments. Regarding energy analysis, this research improved the mechanism of hepatopancreas, gonad, muscle and feces functions in development and reproduction, while it shed light on the influence of velocity on energy metabolism of S. olivacea.
    Matched MeSH terms: Locomotion
  6. Ooi TC, Ahmad Munawar M, Mohd Rosli NH, Abdul Malek SNA, Rosli H, Ibrahim FW, et al.
    PMID: 32382294 DOI: 10.1155/2020/5126457
    This study aimed to determine the effects of tropical fruit juice mixture (pomegranate, white guava, and Roselle) on biochemical, behavioral, and histopathological changes of β-amyloid- (Aβ-) induced rats. Formulation 8 (F8) of tropical fruit juice mixture was chosen for this present study due to its high phenolic content and antioxidant capacity. Forty Wistar male rats were divided into five groups: dPBS (sham-operated control), dAβ (Aβ control), JPBS (F8 and PBS), JAβ (F8 and Aβ), and IBFAβ (ibuprofen and Aβ). F8 (5 ml/kg BW), and ibuprofen (10 ml/kg BW) was given orally daily for four weeks before the intracerebroventricular infusion of Aβ for two weeks. Histological analysis and neuronal count of hippocampus tissue in the Cornu Ammonis (CA1) region showed that supplementation with F8 was able to prevent Aβ-induced tissue damage and neuronal shrinkage. However, no significant difference in locomotor activity and novel object recognition (NOR) percentage was detected among different groups at day 7 and day 14 following Aβ infusion. Only effect of time differences (main effect of day) was observed at day 7 as compared to day 14, where reduction in locomotor activity and NOR percentage was observed in all groups, with F (1, 7) = 6.940, p < 0.05 and F (1, 7) = 7.152, p < 0.05, respectively. Besides, the MDA level of the JAβ group was significantly lower (p < 0.01) than that of the dPBS group. However, no significant changes in SOD activity were detected among different groups. Significant reduction in plasma CRH level (p < 0.05) and iNOS expression (p < 0.01) in the brain was detected in the JAβ group as compared to the dAβ group. Hence, our current findings suggest that the tropical fruit juice mixture (F8) has the potential to protect the rats from Aβ-induced neurotoxicity in brain hippocampus tissue possibly via its antioxidant properties and the suppression of iNOS expression and CRH production.
    Matched MeSH terms: Locomotion
  7. Narayanan SN, Jetti R, Kesari KK, Kumar RS, Nayak SB, Bhat PG
    Environ Sci Pollut Res Int, 2019 Oct;26(30):30693-30710.
    PMID: 31463749 DOI: 10.1007/s11356-019-06278-5
    The primary objective of mobile phone technology is to achieve communication with any person at any place and time. In the modern era, it is impossible to ignore the usefulness of mobile phone technology in cases of emergency as many lives have been saved. However, the biological effects they may have on humans and other animals have been largely ignored and not been evaluated comprehensively. One of the reasons for this is the speedy uncontrollable growth of this technology which has surpassed our researching ability. Initiated with the first generation, the mobile telephony currently reaches to its fifth generation without being screened extensively for any biological effects that they may have on humans or on other animals. Mounting evidences suggest possible non-thermal biological effects of radiofrequency electromagnetic radiation (RF-EMR) on brain and behavior. Behavioral studies have particularly concentrated on the effects of RF-EMR on learning, memory, anxiety, and locomotion. The literature analysis on behavioral effects of RF-EMR demonstrates complex picture with conflicting observations. Nonetheless, numerous reports suggest a possible behavioral effect of RF-EMR. The scientific findings about this issue are presented in the current review. The possible neural and molecular mechanisms for the behavioral effects have been proposed in the light of available evidences from the literature.
    Matched MeSH terms: Locomotion/radiation effects
  8. Muhammad T, Ismail S, Ikhwanuddin M, Abol-Munafi AB
    Data Brief, 2019 Aug;25:104205.
    PMID: 31338400 DOI: 10.1016/j.dib.2019.104205
    The data collected in the present work correspond to the behavioral, Hepatosomatic Index (HSI), Gonadosomatic Index (GSI) and total lipid analysis between male and female mud crabs, Scylla olivacea at different water velocities. A total of 56 immature male and female crabs were used in this data article. The important criteria for estimating the selective habitat facing by S. olivacea is a considerate of (1) the behavioral range in response to abiotic factors (and how it adapt ontogenetically) and (2) the movement of the crab under wild velocities situations. This work purposes to recognize the performance, locomotion rate and escaping capability of S. olivacea under stagnant and flowing water situations and to discuss the significance of horizontal walking to habitat choice. The collective outcomes clearly show that the locomotor activities and escaping capabilities of S. olivacea were influenced by water flow in the mangrove habitats. For the HSI data, velocities of 20 cm/s were the highest increased mean HSI percentage and highest mean HSI percentage in males and females was recorded on the end of the experiment. For GSI percentage of male and female crabs, 20 cm/s dominates the highest increases mean GSI, followed by 60, 40 and 0 cm/s. For total lipid percentage, the results showed that, the mean total lipid of hepatopancrease, muscle and gonad were increased at the beginning and decreased at the final in each water velocities except for 20 cm/s over a culture period of 60 days. Velocities of 20 cm/s were the highest increased mean total lipid percentage followed by 40, 60, and lastly 0 cm/s. The high flow velocities inhibit the production of hepatopancrease and gonad, in terms of nutrients from food used to endeavor the stress condition faced.
    Matched MeSH terms: Locomotion
  9. Choo BKM, Kundap UP, Johan Arief MFB, Kumari Y, Yap JL, Wong CP, et al.
    PMID: 30844417 DOI: 10.1016/j.pnpbp.2019.02.014
    Epilepsy is marked by seizures that are a manifestation of excessive brain activity and is symptomatically treatable by anti-epileptic drugs (AEDs). Unfortunately, the older AEDs have many side effects, with cognitive impairment being a major side effect that affects the daily lives of people with epilepsy. Thus, this study aimed to determine if newer AEDs (Zonisamide, Levetiracetam, Perampanel, Lamotrigine and Valproic Acid) also cause cognitive impairment, using a zebrafish model. Acute seizures were induced in zebrafish using pentylenetetrazol (PTZ) and cognitive function was assessed using the T-maze test of learning and memory. Neurotransmitter and gene expression levels related to epilepsy as well as learning and memory were also studied to provide a better understanding of the underlying processes. Ultimately, impaired cognitive function was seen in AED treated zebrafish, regardless of whether seizures were induced. A highly significant decrease in γ-Aminobutyric Acid (GABA) and glutamate levels was also discovered, although acetylcholine levels were more variable. The gene expression levels of Brain-Derived Neurotrophic Factor (BDNF), Neuropeptide Y (NPY) and Cyclic Adenosine Monophosphate (CAMP) Responsive Element Binding Protein 1 (CREB-1) were not found to be significantly different in AED treated zebrafish. Based on the experimental results, a decrease in brain glutamate levels due to AED treatment appears to be at least one of the major factors behind the observed cognitive impairment in the treated zebrafish.
    Matched MeSH terms: Locomotion/drug effects
  10. Wei J, Yang F, Gong C, Shi X, Wang G
    J Biochem Mol Toxicol, 2019 Jun;33(6):e22319.
    PMID: 30897277 DOI: 10.1002/jbt.22319
    Oxidative stress is performing an essential role in developing Alzheimer's disease (AD), and age-related disorder and other neurodegenerative diseases. In existing research, we have aimed at investigating the daidzein (4',7-dihydroxyisoflavone) effect (10 and 20 mg/kg of body weight), as a free radical scavenger and antioxidant in streptozotocin (STZ) infused AD in rat model. Daidzein treatment led to significant improvement in intracerebroventricular-streptozotocin (ICV-STZ)-induced memory and learning impairments that was evaluated by Morris water maze test and spontaneous locomotor activity. It significantly restored the alterations in malondialdehyde, catalase, superoxide dismutase, and reduced glutathione levels. In addition, histopathological observations in cerebral cortex and hippocampal areas confirmed the neuroprotective effect of daidzein. These outcomes provide experimental proof showing preventive effect of daidzein on memory, learning dysfunction and oxidative stress in case of ICV-STZ rats. In conclusion, daidzein offers a potential treatment module for various neurodegenerative disorders with regard to mental deficits like AD.
    Matched MeSH terms: Locomotion
  11. Wong JH, Muthuraju S, Reza F, Senik MH, Zhang J, Mohd Yusuf Yeo NAB, et al.
    Biomed Pharmacother, 2019 Feb;110:168-180.
    PMID: 30469081 DOI: 10.1016/j.biopha.2018.11.044
    Centella asiatica (CA) is a widely used traditional herb, notably for its cognitive enhancing effect and potential to increase synaptogenesis. The α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) and N-methyl-D-aspartate receptors (NMDARs) mediate fast excitatory neurotransmission with key roles in long-term potentiation which is believed to be the cellular mechanism of learning and memory. Improved learning and memory can be an indication to the surface expression level of these receptors. Our previous study demonstrated that administration of CA extract improved learning and memory and enhanced expression of AMPAR GluA1 subunit while exerting no significant effects on GABAA receptors of the hippocampus in rats. Hence, to further elucidate the effects of CA, this study investigated the effects of CA extract in recognition memory and spatial memory, and its effects on AMPAR GluA1 and GluA2 subunit and NMDAR GluN2 A and GluN2B subunit expression in the entorhinal cortex (EC) and hippocampal subfields CA1 and CA3. The animals were administered with saline, 100 mg/kg, 300 mg/kg, and 600 mg/kg of CA extract through oral gavage for 14 days, followed by behavioural analysis through Open Field Test (OFT), Novel Object Recognition Task (NORT), and Morris Water Maze (MWM) and lastly morphological and immunohistochemical analysis of the surface expression of AMPAR and NMDAR subunits were performed. The results showed that 14 days of administration of 600 mg/kg of CA extract significantly improved memory assessed through NORT while 300 mg/kg of CA extract significantly improved memory of the animals assessed through MWM. Immunohistochemical analysis revealed differential modulation effects on the expressions of receptor subunits across CA1, CA3 and EC. The CA extract at the highest dose (600 mg/kg) significantly enhanced the expression of AMPAR subunit GluA1 and GluA2 in CA1, CA3 and EC, and NMDAR subunit GluN2B in CA1 and CA3 compared to control. At 300 mg/kg, CA significantly increased expression of AMPAR GluA1 in CA1 and EC, and GluA2 in CA1, CA3 and EC while 100 mg/kg of CA significantly increased expression of only AMPAR subunit GluA2 in CA3 and EC. Expression of NMDAR subunit GluN2 A was significantly reduced in the CA3 (at 100, 300, and 600 mg/kg) while no significant changes of subunit expression was observed in CA1 and EC compared to control. The results suggest that the enhanced learning and memory observed in animals administered with CA was mainly mediated through increased expression of AMPAR GluA1 and GluA2 subunits and differential expression of NMDAR GluN2 A and GluN2B subunits in the hippocampal subfields and EC. With these findings, the study revealed a new aspect of cognitive enhancing effect of CA and its therapeutic potentials through modulating receptor subunit expression.
    Matched MeSH terms: Locomotion/drug effects; Locomotion/physiology
  12. Azra MN, Ikhwanuddin M, Abol-Munafi AB
    Data Brief, 2019 Feb;22:998-1002.
    PMID: 30740484 DOI: 10.1016/j.dib.2019.01.026
    This article investigated how crabs responded to different culture temperatures especially dislocation before molting using a combination of large recording files and computer software. In this novel approach of video recording portunid crab behavioral data, crab culture was recorded at five different acclimation temperatures of 20, 24, 28, 32 and 36 °C. Crabs were reared until the instar stage before being acclimatized for video recording. Large video files (MPEG-TS) were then analyzed using the latest version of Solomon Coder software developed by A. Peter and programmed with Embarcadero® Delphi® XE [1]. Recorded data was analyzed by calculating and marking movements of crabs using the time sequence tool. Additionally, a total movement was counted 30 min before crabs molted from instar stage 8 to instar stage 9. Part of the data is associated with the research article "Thermal tolerance and locomotor activity of blue swimmer crab Portunus pelagicus instar reared at different temperatures" (Azra et al., 2018) [2] and provided here as raw data of Supplementary materials.
    Matched MeSH terms: Locomotion
  13. Chellian R, Pandy V
    Biomed Pharmacother, 2018 Dec;108:1591-1595.
    PMID: 30372861 DOI: 10.1016/j.biopha.2018.09.137
    Alpha-asarone is one of the bioactive phytochemicals present in the rhizomes of Acorus species and demonstrated its anticonvulsant activity in rodents. Alpha-asarone protected mice from the gamma-aminobutyric acid (GABA) type A receptor antagonist or N-methyl-d-aspartate (NMDA) receptor agonist-induced seizures. In our recent study, α-asarone attenuated the nicotine withdrawal-induced depression-like behavior in mice. The seizures induced by nicotine is mediated through the activation of nicotinic acetylcholine receptors (nAChRs) and stimulation of NMDA receptors. Therefore, we hypothesized that α-asarone might be effective against nicotine-induced seizures. Also, the interaction of α-asarone with nAChRs is unknown. In this study, we investigated the effect of α-asarone on the locomotor activity and body temperature in mice. In addition, we studied the effect of α-asarone on nicotine-induced seizures in mice. Finally, we assessed in vivo pharmacodynamic interaction of α-asarone with nAChRs using nicotine-induced hypomotility and hypothermia tests in mice. The results of this study showed that the α-asarone (50-200 mg/kg, i.p.) and diazepam (5 mg/kg, i.p.) treatment significantly decreased the locomotor activity and body temperature in mice. Furthermore, α-asarone (50-200 mg/kg, i.p.) and diazepam (5 mg/kg, i.p.) pretreatment significantly prolonged the onset time of nicotine-induced seizures in mice. However, α-asarone (30 and 50 mg/kg, i.p.) pretreatment did not inhibit the nicotine-induced hypomotility or hypothermia in mice. Conversely, mecamylamine (1 mg/kg, s.c.) pretreatment completely blocked the nicotine-induced seizures and significantly prevents the nicotine-induced hypomotility and hypothermia in mice. Overall, these results suggest that the protective effect of α-asarone against nicotine-induced seizures did not mediate through the antagonism of nAChRs. We also postulated that the GABAergic and glutamatergic activities of α-asarone could be involved in its protective effect against nicotine-induced seizures and based on this aspect further studies are required.
    Matched MeSH terms: Locomotion/drug effects; Locomotion/physiology
  14. Narayanan SN, Kumar RS
    Acta. Biol. Hung., 2018 Dec;69(4):371-384.
    PMID: 30587025 DOI: 10.1556/018.69.2018.4.1
    In the behavioral science field, many of the oldest tests have still most frequently been used almost in the same way for decades. The subjective influence of human observer and the large inter-observer and interlab differences are substantial among these tests. This necessitates the possibility of using technological innovations for behavioral science to obtain new parameters, results and insights as well. The light-dark box (LDB) test is a characteristic tool used to assess anxiety in rodents. A complete behavioral analysis (including both anxiety and locomotion parameters) is not possible by performing traditional LDB test protocol, as it lacks the usage of a real-time video recording of the test. In the current report, we describe an improved approach to conduct LDB test using a real-time video tracking system.
    Matched MeSH terms: Locomotion*
  15. Venkataraman VV, Yegian AK, Wallace IJ, Holowka NB, Tacey I, Gurven M, et al.
    Proc Biol Sci, 2018 11 07;285(1890).
    PMID: 30404871 DOI: 10.1098/rspb.2018.1492
    The convergent evolution of the human pygmy phenotype in tropical rainforests is widely assumed to reflect adaptation in response to the distinct ecological challenges of this habitat (e.g. high levels of heat and humidity, high pathogen load, low food availability, and dense forest structure), yet few precise adaptive benefits of this phenotype have been proposed. Here, we describe and test a biomechanical model of how the rainforest environment can alter gait kinematics such that short stature is advantageous in dense habitats. We hypothesized that environmental constraints on step length in rainforests alter walking mechanics such that taller individuals are expected to walk more slowly due to their inability to achieve preferred step lengths in the rainforest. We tested predictions from this model with experimental field data from two short-statured populations that regularly forage in the rainforest: the Batek of Peninsular Malaysia and the Tsimane of the Bolivian Amazon. In accordance with model expectations, we found stature-dependent constraints on step length in the rainforest and concomitant reductions in walking speed that are expected to compromise foraging efficiency. These results provide the first evidence that the human pygmy phenotype is beneficial in terms of locomotor performance and highlight the value of applying laboratory-derived biomechanical models to field settings for testing evolutionary hypotheses.
    Matched MeSH terms: Locomotion*
  16. Damodaran T, Tan BWL, Liao P, Ramanathan S, Lim GK, Hassan Z
    J Ethnopharmacol, 2018 Oct 05;224:381-390.
    PMID: 29920356 DOI: 10.1016/j.jep.2018.06.020
    ETHNOPHARMACOLOGICAL RELEVANCE: Clitoria ternatea L. (CT), commonly known as Butterfly pea, is used in Indian Ayurvedic medicine to promote brain function and treat mental disorders. Root of CT has been proven to enhance memory, but its role in an animal model of chronic cerebral hypoperfusion (CCH), which has been considered as a major cause of brain disorders, has yet to be explored.

    AIM OF THE STUDY: To assess the motor and cognitive effects of acute oral administration of CT root methanolic extract and hippocampal long-term plasticity in the CA1 region of the CCH rat model.

    MATERIALS AND METHODS: Male Sprague Dawley rats (200-300 g) were subjected to permanent bilateral occlusion of common carotid arteries (PBOCCA) or sham operation. Then, these rats were given oral administration of CT root extract at doses of 100, 200 or 300 mg/kg on day 28 post-surgery and tested using behavioural tests (open-field test, passive avoidance task, and Morris water maze) and electrophysiological recordings (under urethane anaesthesia).

    RESULTS: Treatment with CT root extract at the doses of 200 and 300 mg/kg resulted in a significant enhancement in memory performance in CCH rats induced by PBOCCA. Furthermore, CCH resulted in inhibition of long-term potentiation (LTP) formation in the hippocampus, and CT root extract rescued the LTP impairment. The CT root extract was confirmed to improve the glutamate-induced calcium increase via calcium imaging using primary cultured rat neurons. No significance difference was found in the CaMKII expression. These results demonstrated that CT root extract ameliorates synaptic function, which may contribute to its improving effect on cognitive behaviour.

    CONCLUSIONS: Our findings demonstrated an improving effect of CT root extract on memory in the CCH rat model suggesting that CT root extract could be a potential therapeutic strategy to prevent the progression of cognitive deterioration in vascular dementia (VaD) and Alzheimer's disease (AD) patients.

    Matched MeSH terms: Locomotion/drug effects
  17. Binti Mohd Yusuf Yeo NA, Muthuraju S, Wong JH, Mohammed FR, Senik MH, Zhang J, et al.
    Brain Behav, 2018 09;8(9):e01093.
    PMID: 30105867 DOI: 10.1002/brb3.1093
    INTRODUCTION: Centella asiatica is an herbal plant that contains phytochemicals that are widely believed to have positive effects on cognitive function. The adolescent stage is a critical development period for the maturation of brain processes that encompass changes in physical and psychological systems. However, the effect of C. asiatica has not been extensively studied in adolescents. The aim of this study was therefore to investigate the effects of a C. asiatica extract on the enhancement of learning and memory in adolescent rats.

    METHODS: The locomotor activity, learning, and memory were assessed by using open field test and water T-maze test. This study also examined changes in neuronal cell morphology using cresyl violet and apoptosis staining. We also performed immunohistochemical study to analyse the expression of the glutamate AMPA receptor (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) GluA1 subunit and the GABA receptor (γ-Aminobutyric Acid) subtype GABAA α1 subunit in the hippocampus of the same animals.

    RESULTS: We found no significant changes in locomotor activity (p > 0.05). The water T-maze data showed that 30 mg/kg dose significantly (p  0.05). Histological data revealed no neuronal morphological changes. Immunohistochemical analysis revealed increased expression of the AMPA GluA1 receptor subunit but there was no effect on GABAA receptor α1 subunit expression in the CA1 and CA2 subregions of the hippocampus.

    CONCLUSIONS: The C. asiatica extract therefore improved hippocampus-dependent spatial learning and memory in a dose-dependent manner in rats through the GluA1-containing AMPA receptor in the CA1 and CA2 sub regions of the hippocampus.

    Matched MeSH terms: Locomotion/drug effects
  18. Azra MN, Chen JC, Ikhwanuddin M, Abol-Munafi AB
    J Therm Biol, 2018 May;74:234-240.
    PMID: 29801633 DOI: 10.1016/j.jtherbio.2018.04.002
    Owing to its potential market value, the blue swimmer crab Portunus pelagicus is of great economic importance. The temperature of water significantly affects the physiological function and production efficiency of these crabs. The aim of the present study was therefore to examine the critical thermal minimum (CTMin), critical thermal maximum (CTMax), acclimation response ratio (ARR), escaping temperature (Tesc), and locomotor behavior of P. pelagicus instars at 20 °C, 24 °C, 28 °C, 32 °C, and 36 °C. The CTMax ranged from 39.05 °C to 44.38 °C, while the CTMin ranged from 13.05 °C to 19.30 °C, and both increased directly with temperature. The ARR ranged from 0.25 to 0.51. The movement of crabs (walking before molting) correlated positively with the acclimation temperature. These results indicate that the parameters evaluated varied with temperature. Furthermore, the high CTMax indicates the potential of this species to adapt to a wide range of temperatures. In addition, the implications of these findings for portunid crabs behavior and distribution in their natural habitat are also discussed.
    Matched MeSH terms: Locomotion
  19. Chellian R, Pandy V, Mohamed Z
    Eur J Pharmacol, 2018 Jan 05;818:10-16.
    PMID: 29042206 DOI: 10.1016/j.ejphar.2017.10.025
    In the present study, the effect α-asarone on nicotine withdrawal-induced depression-like behavior in mice was investigated. In this study, mice were exposed to drinking water or nicotine solution (10-200µg/ml) as a source of drinking for forty days. During this period, daily fluid consumption, food intake and body weight were recorded. The serum cotinine level was estimated before nicotine withdrawal. Naïve mice or nicotine-withdrawn mice were treated with α-asarone (5, 10 and 20mg/kg, i.p.) or bupropion (10mg/kg, i.p.) for eight consecutive days and the forced swim test (FST) or locomotor activity test was conducted. In addition, the effect of α-asarone or bupropion on the hippocampal pCREB, CREB and BDNF levels during nicotine-withdrawal were measured. Results indicated that α-asarone (5, 10 and 20mg/kg, i.p.) or bupropion (10mg/kg, i.p.) pretreatment did not significantly alter the immobility time in the FST or spontaneous locomotor activity in naïve mice. However, the immobility time of nicotine-withdrawn mice was significantly attenuated with α-asarone (5, 10 and 20mg/kg, i.p.) or bupropion (10mg/kg, i.p.) pretreatment in the FST. Besides, α-asarone (5, 10 and 20mg/kg, i.p.) or bupropion (10mg/kg, i.p.) pretreatment significantly attenuated the hippocampal pCREB levels in nicotine-withdrawn mice. Overall, the present results indicate that α-asarone treatment attenuated the depression-like behavior through the modulation of hippocampal pCREB levels during nicotine-withdrawal in mice.
    Matched MeSH terms: Locomotion/drug effects
  20. Zayer, Iman, Aris, I.B., Marhaban, M.H, Ishak, A.J
    MyJurnal
    The new millennium witnessed increasing attention to the field of robotics, especially the development of humanoid bipedal robot. Attention is noticed from the increasing number of publications as a result of a multitude of humanoid projects for commercial and academic goals. This paper briefly visits the recent activities in this field, highlighting the importance and motivation behind adopting bipedal humanoid projects, particularly underlining biologically inspired design concept, bipedal locomotion and communication. Ultimately, emphasising on power-efficient design. The problem of endurance and effective duty cycle were presented. Finally, potential future application for the humanoid robot was briefly listed.
    Matched MeSH terms: Locomotion
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links