Displaying publications 1 - 20 of 123 in total

Abstract:
Sort:
  1. Abdullah MA, Mohd Faudzi SM, Nasir NM
    Mini Rev Med Chem, 2021;21(9):1058-1070.
    PMID: 33272171 DOI: 10.2174/1389557520999201203213957
    Medicinal chemists have continuously shown interest in new curcuminoid derivatives, diarylpentadienones, owing to their enhanced stability feature and easy preparation using a one-pot synthesis. Thus far, methods such as Claisen-Schmidt condensation and Julia- Kocienski olefination have been utilised for the synthesis of these compounds. Diarylpentadienones possess a high potential as a chemical source for designing and developing new and effective drugs for the treatment of diseases, including inflammation, cancer, and malaria. In brief, this review article focuses on the broad pharmacological applications and the summary of the structure-activity relationship of molecules, which can be employed to further explore the structure of diarylpentadienone. The current methodological developments towards the synthesis of diarylpentadienones are also discussed.
    Matched MeSH terms: Malaria/drug therapy
  2. Cheo SW, Khoo TT, Tan YA, Yeoh WC, Low QJ
    Med J Malaysia, 2020 07;75(4):447-449.
    PMID: 32724015
    Malaria is a parasitic disease that is caused by the Plasmodium parasite. Worldwide, it remains a significant public health problem especially in the Africa region where it contributes to more than 90% of cases and malaria death. However, zoonotic (simian) Plasmodium knowlesi parasite is a widely prevalent cause of malaria in the South East Asian countries. It is known to cause severe human disease due to its 24hour erythrocytic cycles. Thus far, cases of severe falciparum malaria have been reported in asplenic patients. Here, we report a case of severe P.knowlesi malaria in a 51-year-old man who is a postsplenectomy patient.
    Matched MeSH terms: Malaria/drug therapy*
  3. Das S, Tripathy S, Pramanik P, Saha B, Roy S
    Cytokine, 2021 08;144:155555.
    PMID: 33992538 DOI: 10.1016/j.cyto.2021.155555
    Emergence and spread of resistant parasites to the newest chemotherapeutic anti-malarial agents are the biggest challenges against malaria control programs. Therefore, developing a novel effective treatment to reduce the overgrowing burden of multidrug resistant malaria is a pressing need. Herein, we have developed a biocompatible and biodegradable, non-toxic chitosan-tripolyphosphate-chloroquine (CS-TPP CQ) nanoparticle. CS-TPP CQ nanoparticles effectively kill the parasite through redox generation and induction of the pro- and anti-inflammatory cytokines in both sensitive and resistant parasite in vitro. The in vitro observations showed a strong inhibitory effect (p malaria control.
    Matched MeSH terms: Malaria/drug therapy*
  4. Barber BE, William T, Grigg MJ, Menon J, Auburn S, Marfurt J, et al.
    Clin Infect Dis, 2013 Feb;56(3):383-97.
    PMID: 23087389 DOI: 10.1093/cid/cis902
    Plasmodium knowlesi commonly causes severe malaria in Malaysian Borneo, with high case-fatality rates reported. We compared risk, spectrum, and outcome of severe disease from P. knowlesi, Plasmodium falciparum, and Plasmodium vivax and outcomes following introduction of protocols for early referral and intravenous artesunate for all severe malaria.
    Matched MeSH terms: Malaria/drug therapy
  5. Jamaiah I, Rohela M, Nissapatorn V, Mohamad Azlan H, Nor Adli AR, Shahrul Rizan I, et al.
    PMID: 17547040
    This was a five-year retrospective study (1999-2004) on the prevalence of malaria at the Aborigine Hospital, Gombak, Malaysia. A total of 94 malaria cases was analysed. The highest case reports were for the year 2000, with 32 cases (34%), and the lowest was in 2004, with only 1 (1%). The majority of cases reported were among the Semai tribe (44%), followed by the Temiar tribe (34%) and the unspecified tribe (s) (20%). Females (53%) were more commonly affected than males (47%). The majority of cases were within the age group 1-5 years (51%). Plasmodium falciparum was the most common species reported in this study, at 57%, followed by Plasmodium vivax (38%) and 5% mixed infection of P. falciparum and P. vivax. Most patients (27%) stayed for more than one month in hospital. Most patients came from Kuala Lipis, Pahang, (78%). The most common complication was anemia (38%) followed by splenomegaly (18%); only 2% had cerebral malaria. All patients were treated with the standard anti-malarial drugs. No deaths were reported in this study.
    Matched MeSH terms: Malaria/drug therapy
  6. Grigg MJ, William T, Dhanaraj P, Menon J, Barber BE, von Seidlein L, et al.
    BMJ Open, 2014 Aug 19;4(8):e006005.
    PMID: 25138814 DOI: 10.1136/bmjopen-2014-006005
    INTRODUCTION: Malaria due to Plasmodium knowlesi is reported throughout South-East Asia, and is the commonest cause of it in Malaysia. P. knowlesi replicates every 24 h and can cause severe disease and death. Current 2010 WHO Malaria Treatment Guidelines have no recommendations for the optimal treatment of non-severe knowlesi malaria. Artemisinin-combination therapies (ACT) and chloroquine have each been successfully used to treat knowlesi malaria; however, the rapidity of parasite clearance has not been prospectively compared. Malaysia's national policy for malaria pre-elimination involves mandatory hospital admission for confirmed malaria cases with discharge only after two negative blood films; use of a more rapidly acting antimalarial agent would have health cost benefits. P. knowlesi is commonly microscopically misreported as P. malariae, P. falciparum or P. vivax, with a high proportion of the latter two species being chloroquine-resistant in Malaysia. A unified ACT-treatment protocol would provide effective blood stage malaria treatment for all Plasmodium species.

    METHODS AND ANALYSIS: ACT KNOW, the first randomised controlled trial ever performed in knowlesi malaria, is a two-arm open-label trial with enrolments over a 2-year period at three district sites in Sabah, powered to show a difference in proportion of patients negative for malaria by microscopy at 24 h between treatment arms (clinicaltrials.gov #NCT01708876). Enrolments started in December 2012, with completion expected by September 2014. A total sample size of 228 is required to give 90% power (α 0.05) to determine the primary end point using intention-to-treat analysis. Secondary end points include parasite clearance time, rates of recurrent infection/treatment failure to day 42, gametocyte carriage throughout follow-up and rates of anaemia at day 28, as determined by survival analysis.

    ETHICS AND DISSEMINATION: This study has been approved by relevant institutional ethics committees in Malaysia and Australia. Results will be disseminated to inform knowlesi malaria treatment policy in this region through peer-reviewed publications and academic presentations.

    TRIAL REGISTRATION NUMBER: NCT01708876.

    Matched MeSH terms: Malaria/drug therapy*
  7. Naing C, Whittaker MA, Mak JW, Aung K
    Malar J, 2015;14:392.
    PMID: 26445424 DOI: 10.1186/s12936-015-0919-5
    This study aimed to synthesize the existing evidence on the efficacy and safety of a single dose artemisinin-naphthoquine (ASNQ) for treatment of uncomplicated malaria in endemic countries.
    Matched MeSH terms: Malaria/drug therapy*
  8. Lau YL, Lee WC, Tan LH, Kamarulzaman A, Syed Omar SF, Fong MY, et al.
    Malar J, 2013;12:389.
    PMID: 24180319 DOI: 10.1186/1475-2875-12-389
    Plasmodium ovale is one of the causative agents of human malaria. Plasmodium ovale infection has long been thought to be non-fatal. Due to its lower morbidity, P. ovale receives little attention in malaria research.
    Matched MeSH terms: Malaria/drug therapy
  9. Grigg MJ, William T, Barber BE, Rajahram GS, Menon J, Schimann E, et al.
    Clin Infect Dis, 2018 Jul 18;67(3):350-359.
    PMID: 29873683 DOI: 10.1093/cid/ciy065
    BACKGROUND: Plasmodium knowlesi is increasingly reported in Southeast Asia, but prospective studies of its clinical spectrum in children and comparison with autochthonous human-only Plasmodium species are lacking.

    METHODS: Over 3.5 years, we prospectively assessed patients of any age with molecularly-confirmed Plasmodium monoinfection presenting to 3 district hospitals in Sabah, Malaysia.

    RESULTS: Of 481 knowlesi, 172 vivax, and 96 falciparum malaria cases enrolled, 44 (9%), 71 (41%), and 31 (32%) children aged ≤12 years. Median parasitemia was lower in knowlesi malaria (2480/μL [interquartile range, 538-8481/μL]) than in falciparum (9600/μL; P < .001) and vivax malaria. In P. knowlesi, World Health Organization-defined anemia was present in 82% (95% confidence interval [CI], 67%-92%) of children vs 36% (95% CI, 31%-41%) of adults. Severe knowlesi malaria occurred in 6.4% (95% CI, 3.9%-8.3%) of adults but not in children; the commenst severity criterion was acute kideny injury. No patient had coma. Age, parasitemia, schizont proportion, abdominal pain, and dyspnea were independently associated with severe knowlesi malaria, with parasitemia >15000/μL the best predictor (adjusted odds ratio, 16.1; negative predictive value, 98.5%; P < .001). Two knowlesi-related adult deaths occurred (fatality rate: 4.2/1000 adults).

    CONCLUSIONS: Age distribution and parasitemia differed markedly in knowlesi malaria compared to human-only species, with both uncomplicated and severe disease occurring at low parasitemia. Severe knowlesi malaria occurred only in adults; however, anemia was more common in children despite lower parasitemia. Parasitemia independently predicted knowlesi disease severity: Intravenous artesunate is warranted initially for those with parasitemia >15000/μL.

    Matched MeSH terms: Malaria/drug therapy
  10. Kam MYY, Yap WSP
    Biotechnol Genet Eng Rev, 2020 Apr;36(1):1-31.
    PMID: 32308142 DOI: 10.1080/02648725.2020.1749818
    Artemisinin (ART) is an antimalarial compound that possesses a variety of novel biological activities. Due to the low abundance of ART in natural sources, agricultural supply has been erratic, and prices are highly volatile. While heterologous biosynthesis and semi-synthesis are advantageous in certain aspects, these approaches remained disadvantageous in terms of productivity and cost-effectiveness. Therefore, further improvement in ART production calls for approaches that should supplement the agricultural production gap, while reducing production costs and stabilising supply. The present review offers a discussion on the elicitation of plants and/or in vitro cultures as an economically feasible yield enhancement strategy to address the global problem of access to affordable ART. Deemed critical for the manipulation of biosynthetic potential, the mechanism of ART biosynthesis is reviewed. It includes a discussion on the current biotechnological solutions to ART production, focusing on semi-synthesis and elicitation. A brief commentary on the possible aspects that influence elicitation efficiency and how oxidative stress modulates ART synthesis is also presented. Based on the critical analysis of current literature, a hypothesis is put forward to explain the possible involvement of enzymes in assisting the final non-enzymatic transformation step leading to ART formation. This review highlights the critical factors limiting the success of elicitor-induced modulation of ART metabolism, that will help inform strategies for future improvement of ART production. Additionally, new avenues for future research based on the proposed hypothesis will lead to exciting perspectives in this research area and continue to enhance our understanding of this intricate metabolic process.
    Matched MeSH terms: Malaria/drug therapy
  11. Suhaini S, Liew SZ, Norhaniza J, Lee PC, Jualang G, Embi N, et al.
    Trop Biomed, 2015 Sep;32(3):419-33.
    PMID: 26695202 MyJurnal
    Gleichenia truncata is a highland fern from the Gleicheniaceae family known for its traditional use among indigenous communities in Asia to treat fever. The scientific basis of its effect has yet to be documented. A yeast-based kinase assay conducted in our laboratory revealed that crude methanolic extract (CME) of G. truncata exhibited glycogen synthase kinase-3 (GSK3)-inhibitory activity. GSK3β is now recognized to have a pivotal role in the regulation of inflammatory response during bacterial infections. We have also previously shown that lithium chloride (LiCl), a GSK3 inhibitor suppressed development of Plasmodium berghei in a murine model of malarial infection. The present study is aimed at evaluating G. truncata for its anti-malarial and anti-inflammatory effects using in vivo malarial and melioidosis infection models respectively. In a four-day suppressive test, intraperitoneal injections of up to 250 mg/kg body weight (bw) G. truncata CME into P.berghei-infected mice suppressed parasitaemia development by >60%. Intraperitoneal administration of 150 mg/kg bw G. truncata CME into Burkholderia pseudomallei-infected mice improved survivability by 44%. G. truncata CME lowered levels of pro-inflammatory cytokines (TNF-α, IFN-γ) in serum and organs of B. pseudomallei-infected mice. In both infections, increased phosphorylations (Ser9) of GSK3β were detected in organ samples of animals administered with G. truncata CME compared to controls. Taken together, results from this study strongly suggest that the anti-malarial and anti-inflammatory effects elicited by G. truncata in part were mediated through inhibition of GSK3β. The findings provide scientific basis for the ethnomedicinal use of this fern to treat inflammation-associated symptoms.
    Matched MeSH terms: Malaria/drug therapy*
  12. Hassan WRM, Basir R, Ali AH, Embi N, Sidek HM
    Trop Biomed, 2019 Sep 01;36(3):776-791.
    PMID: 33597499
    Malarial pathogenesis involves among others, uncontrolled or excessive cytokine production arising from dysregulated immune responses mounted by the host to eliminate the plasmodial parasite. The ubiquitous serine/threonine kinase, glycogen synthase kinase3β (GSK3β) is a crucial regulator of the balance between pro- and anti-inflammatory cytokine productions in the inflammatory response to pathogenic infections. Andrographolide, a bioactive compound in Andrographis paniculata, displays GSK3- inhibitory effects. A previous study elsewhere has shown that this compound has antimalarial activity but the molecular basis of its action is yet to be elucidated. Here we aimed to study the anti-malarial activity of andrographolide in a murine model of malarial infection to investigate whether its mechanism of action involves cytokine modulation and inhibition of GSK3β. Andrographolide showed strong and selective anti-plasmodial activity (IC50 = 13.70±0.71 µM; SI = 30.43) when tested against cultures of P. falciparum 3D7. Intraperitoneal administration of andrographolide (5 mg/kg body weight (bw)) into P. berghei NK65-infected ICR mice resulted in chemo-suppression of 60.17±2.12%, and significantly (P<0.05) improved median survival time of infected mice compared to nontreated control. In addition, andrographolide treatment significantly (P<0.05) decreased the level of serum pro-inflammatory cytokine, IFN-γ (1.4-fold) whilst the anti-inflammatory cytokines, IL-10 and IL-4 were increased 2.3- and 2.6-fold respectively. Western blot analyses revealed that andrographolide treatment of P. berghei NK65-infected mice resulted in an increased level of phosphorylated GSK3β (Ser9) in liver of infected mice. Andrographolide administration also decreased the levels of phosphorylated NF-κB p65 (Ser536) and phosphorylated Akt (Ser473) in liver of malaria- infected animals. Taken together, our findings demonstrate that the cytokine-modulating effect of andrographolide in experimental malarial infection involves at least in part inhibition of NF-κB activation as a consequence of GSK3β inhibition. Based on its cytokine-modulating effects, andrographolide is thus a plausible candidate for adjunctive therapy in malaria subject to clinical evaluations.
    Matched MeSH terms: Malaria/drug therapy*
  13. Lambros C, Davis DR, Lewis GE
    Am J Trop Med Hyg, 1989 Jul;41(1):3-8.
    PMID: 2669543 DOI: 10.4269/ajtmh.1989.41.1.TM0410010003
    The drug susceptibility of 70 isolates of Plasmodium falciparum to standard and experimental antimalarials was evaluated using a radioisotope microdilution method. All isolates were from forest fringe dwelling Orang Asli, the aborigines of Peninsular Malaysia. The geometric mean IC50 values were: chloroquine, 10 ng/ml; amodiaquine, 4.7 ng/ml; mefloquine, 2.8 ng/ml; quinine, 40.5 ng/ml; halofantrine, 1.5 ng/ml; enpiroline, 3 ng/ml; and pyrimethamine, 21 ng/ml. Four isolates exhibited decreased susceptibility to chloroquine (IC50 greater than 60 ng/ml), and one exhibited decreased susceptibility to quinine (IC50 = 161 ng/ml). Three isolates showed decreased susceptibility to mefloquine (IC50 = 10-11 ng/ml). The lack of drug pressure may account for the high prevalence of P. falciparum isolates susceptible to chloroquine.
    Matched MeSH terms: Malaria/drug therapy
  14. Mohd Ridzuan MA, Ruenruetai U, Noor Rain A, Khozirah S, Zakiah I
    Trop Biomed, 2006 Dec;23(2):140-6.
    PMID: 17322815 MyJurnal
    Malaria is a disease which is still endemic and has become a disastrous scourge because of the emergence of antimalarial drug resistant Plasmodium falciparum. A new approach in addressing this is in developing a combination drug. This study is to show the enhancement of antimalarial properties, when single compound, goniothalamin combine with standard drug, chloroquine. Based on 4 Day Test, percentage of parasite growth on treated infected mice were determined. Oral treatment with 1 mg/kg BW of chloroquine on experimental mice suppressed 70% and 76.7% of both Plasmodium yoelii and Plasmodium berghei, respectively. The infection of P. berghei in mice was inhibited less than 50% by goniothalamin individual treatment at all doses in this study. About 27.8% and 18.5% inhibition of infection were observed in P. yoelii infected mice treated with 30 mg/kg and 60 mg/kg of goniothalamin respectively and the suppression exceed more than 50% at higher doses (90 and 120 mg/kg). Combination of 1 mg/kg chloroquine with either 30 mg/kg or 60 mg/kg of goniothalamin decreased the parasitemia of P. yoelii infected mice more than 90% and prolong the survival up to 100% after treatment. Similar treatment to P. berghei infected mice only shows about 60% reduction of parasitemia. The study findings showed that antimalarial property of goniothalamin was enhanced by combination with chloroquine at lower dose of each drug.
    Matched MeSH terms: Malaria/drug therapy*
  15. Nasrullah AA, Zahari A, Mohamad J, Awang K
    Molecules, 2013 Jul 08;18(7):8009-17.
    PMID: 23884132 DOI: 10.3390/molecules18078009
    A dichloromethane extract of the stem bark of Cryptocarya nigra showed strong in vitro inhibition of Plasmodium falciparum growth, with an IC50 value of 2.82 μg/mL. The phytochemical study of this extract has led to the isolation and characterization of four known alkaloids: (+)-N-methylisococlaurine (1), atherosperminine (2), 2-hydroxyathersperminine (3), and noratherosperminine (4). Structural elucidation of all alkaloids was accomplished by means of high field 1D- and 2D-NMR, IR, UV and LCMS spectral data. The isolated extract constituents (+)-N-methylisococlaurine (1), atherosperminine (2) and 2-hydroxy-atherosperminine (3) showed strong antiplasmodial activity, with IC50 values of 5.40, 5.80 and 0.75 μM, respectively. In addition, (+)-N-methylisocolaurine (1) and atherosperminine (2) showed high antioxidant activity in a DPPH assay with IC50 values of 29.56 ug/mL and 54.53 ug/mL respectively. Compounds 1 and 2 also both showed high antioxidant activity in the FRAP assay, with percentages of 78.54 and 70.66 respectively and in the metal chelating assay, with IC50 values of 50.08 ug/mL and 42.87 ug/mL, respectively.
    Matched MeSH terms: Malaria/drug therapy
  16. Grigg MJ, William T, Barber BE, Rajahram GS, Menon J, Schimann E, et al.
    Clin Infect Dis, 2018 Jan 06;66(2):229-236.
    PMID: 29020373 DOI: 10.1093/cid/cix779
    BACKGROUND: Plasmodium knowlesi is reported increasingly across Southeast Asia and is the most common cause of malaria in Malaysia. No randomized trials have assessed the comparative efficacy of artemether-lumefantrine (AL) for knowlesi malaria.

    METHODS: A randomized controlled trial was conducted in 3 district hospitals in Sabah, Malaysia to compare the efficacy of AL against chloroquine (CQ) for uncomplicated knowlesi malaria. Participants were included if they weighed >10 kg, had a parasitemia count <20000/μL, and had a negative rapid diagnostic test result for Plasmodium falciparum histidine-rich protein 2. Diagnosis was confirmed by means of polymerase chain reaction. Patients were block randomized to AL (total target dose, 12 mg/kg for artemether and 60 mg/kg for lumefantrine) or CQ (25 mg/kg). The primary outcome was parasite clearance at 24 hours in a modified intention-to-treat analysis.

    RESULTS: From November 2014 to January 2016, a total of 123 patients (including 18 children) were enrolled. At 24 hours after treatment 76% of patients administered AL (95% confidence interval [CI], 63%-86%; 44 of 58) were aparasitemic, compared with 60% administered CQ (47%-72%; 39 of 65; risk ratio, 1.3 [95% CI, 1.0-1.6]; P = .06). Overall parasite clearance was shorter after AL than after CQ (median, 18 vs 24 hours, respectively; P = .02), with all patients aparasitemic by 48 hours. By day 42 there were no treatment failures. The risk of anemia during follow-up was similar between arms. Patients treated with AL would require lower bed occupancy than those treated with CQ (2414 vs 2800 days per 1000 patients; incidence rate ratio, 0.86 [95% CI, .82-.91]; P < .001). There were no serious adverse events.

    CONCLUSIONS: AL is highly efficacious for treating uncomplicated knowlesi malaria; its excellent tolerability and rapid therapeutic response allow earlier hospital discharge, and support its use as a first-line artemisinin-combination treatment policy for all Plasmodium species in Malaysia.

    CLINICAL TRIALS REGISTRATION: NCT02001012.

    Matched MeSH terms: Malaria/drug therapy*
  17. Das S, Kar A, Manna S, Mandal S, Mandal S, Das S, et al.
    Sci Rep, 2021 05 11;11(1):9946.
    PMID: 33976269 DOI: 10.1038/s41598-021-89295-0
    Artemisinin is the frontline fast-acting anti-malarial against P. falciparum. Emergence and spread of resistant parasite in eastern-India poses a threat to national malaria control programs. Therefore, the objective of our study is to evaluate the artesunate-sulfadoxine-pyrimethamine efficacy in Central India. 180 monoclonal P. falciparum-infected patients received standard ASSP therapy during August 2015-January 2017, soon after diagnosis and monitored over next 42-days. Artemisinin-resistance was assessed through in-vivo parasite clearance half-life (PC1/2), ex-vivo ring-stage survivability (RSA), and genome analysis of kelch13 and other candidate gene (pfcrt, pfmdr1, pfatpase 6, pfdhfr and pfdhps). Of 180 P. falciparum positive patients, 9.5% showed increased PC1/2 (> 5.5 h), among them eleven isolates (6.1%) showed reduced sensitivity to RSA. In 4.4% of cases, parasites were not cleared by 72 h and showed prolonged PC1/2(5.6 h) (P 
    Matched MeSH terms: Malaria/drug therapy
  18. Grigg MJ, William T, Menon J, Dhanaraj P, Barber BE, Wilkes CS, et al.
    Lancet Infect Dis, 2016 Feb;16(2):180-188.
    PMID: 26603174 DOI: 10.1016/S1473-3099(15)00415-6
    BACKGROUND: The zoonotic parasite Plasmodium knowlesi has become the most common cause of human malaria in Malaysia and is present throughout much of southeast Asia. No randomised controlled trials have been done to identify the optimum treatment for this emerging infection. We aimed to compare artesunate-mefloquine with chloroquine to define the optimum treatment for uncomplicated P knowlesi malaria in adults and children.

    METHODS: We did this open-label, randomised controlled trial at three district hospitals in Sabah, Malaysia. Patients aged 1 year or older with uncomplicated P knowlesi malaria were randomly assigned, via computer-generated block randomisation (block sizes of 20), to receive oral artesunate-mefloquine (target dose 12 mg/kg artesunate and 25 mg/kg mefloquine) or chloroquine (target dose 25 mg/kg). Research nursing staff were aware of group allocation, but allocation was concealed from the microscopists responsible for determination of the primary endpoint, and study participants were not aware of drug allocation. The primary endpoint was parasite clearance at 24 h. Analysis was by modified intention to treat. This study is registered with ClinicalTrials.gov, number NCT01708876.

    FINDINGS: Between Oct 16, 2012, and Dec 13, 2014, we randomly assigned 252 patients to receive either artesunate-mefloquine (n=127) or chloroquine (n=125); 226 (90%) patients comprised the modified intention-to-treat population. 24 h after treatment, we recorded parasite clearance in 97 (84% [95% CI 76-91]) of 115 patients in the artesunate-mefloquine group versus 61 (55% [45-64]) of 111 patients in the chloroquine group (difference in proportion 29% [95% CI 18·0-40·8]; p<0·0001). Parasite clearance was faster in patients given artesunate-mefloquine than in those given chloroquine (18·0 h [range 6·0-48·0] vs 24·0 h [6·0-60·0]; p<0·0001), with faster clearance of ring stages in the artesunate-mefloquine group (mean time to 50% clearance of baseline parasites 8·6 h [95% CI 7·9-9·4] vs 13·8 h [12·1-15·4]; p<0·0001). Risk of anaemia within 28 days was lower in patients in the artesunate-mefloquine group (71 [62%; 95% CI 52·2-70·6]) than in those in the chloroquine group (83 [75%; 65·6-82·5]; p=0·035). Gametocytaemia as detected by PCR for pks25 was present in 44 (86%) of 51 patients in the artesunate-mefloquine group and 41 (84%) of 49 patients in the chloroquine group at baseline, and in three (6%) of 49 patients and two (4%) of 48 patients, respectively, at day 7. Fever clearance was faster in the artesunate-mefloquine group (mean 11·5 h [95% CI 8·3-14·6]) than in the chloroquine group (14·8 h [11·7-17·8]; p=0·034). Bed occupancy was 2426 days per 1000 patients in the artesunate-mefloquine group versus 2828 days per 1000 patients in the chloroquine group (incidence rate ratio 0·858 [95% CI 0·812-0·906]; p<0·0001). One (<1%) patient in the artesunate-mefloquine group had a serious neuropsychiatric event regarded as probably related to study drug.

    INTERPRETATION: Artesunate-mefloquine is highly efficacious for treatment of uncomplicated P knowlesi malaria. The rapid therapeutic response of the drug offers significant advantages compared with chloroquine monotherapy and supports a unified treatment policy for artemisinin-based combination therapy for all Plasmodium species in co-endemic areas.

    FUNDING: Malaysian Ministry of Health, Australian National Health and Medical Research Council, and Asia Pacific Malaria Elimination Network.

    Matched MeSH terms: Malaria/drug therapy*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links