Displaying publications 1 - 20 of 44 in total

Abstract:
Sort:
  1. Agarwal R, Agarwal P
    Exp Biol Med (Maywood), 2017 Feb;242(4):374-383.
    PMID: 27798117 DOI: 10.1177/1535370216675065
    Disturbances of extracellular matrix homeostasis are associated with a number of pathological conditions. The ability of extracellular matrix to provide contextual information and hence control the individual or collective cellular behavior is increasingly being recognized. Hence, newer therapeutic approaches targeting extracellular matrix remodeling are widely investigated. We reviewed the current literature showing the effects of resveratrol on various aspects of extracellular matrix remodeling. This review presents a summary of the effects of resveratrol on extracellular matrix deposition and breakdown. Mechanisms of action of resveratrol in extracellular matrix deposition involving growth factors and their signaling pathways are discussed. Involvement of phosphoinositol-3-kinase/Akt and mitogen-activated protein kinase pathways and role of transcription factors and sirtuins on the effects of resveratrol on extracellular matrix homeostasis are summarized. It is evident from the literature presented in this review that resveratrol has significant effects on both the synthesis and breakdown of extracellular matrix. The major molecular targets of the action of resveratrol are growth factors and their signaling pathways, phosphoinositol-3-kinase/Akt and mitogen-activated protein kinase pathways, transcription factors, and SIRT-1. The effects of resveratrol on extracellular matrix and the molecular targets appear to be related to experimental models, experimental environment as well as the doses.
    Matched MeSH terms: Mitogen-Activated Protein Kinases/metabolism*
  2. Tham CL, Hazeera Harith H, Wai Lam K, Joong Chong Y, Singh Cheema M, Roslan Sulaiman M, et al.
    Eur J Pharmacol, 2015 Feb 15;749:1-11.
    PMID: 25560198 DOI: 10.1016/j.ejphar.2014.12.015
    2,6-bis-(4-hydroxyl-3-methoxybenzylidine)cyclohexanone (BHMC) has been proven to selectively inhibit the synthesis of proinflammatory mediators in lipopolysaccharide-induced U937 monocytes through specific interruption of p38 Mitogen-Activated Protein Kinase enzymatic activity and improves the survival rate in a murine lethal sepsis model. The present study addressed the effects of BHMC upon lipopolysaccharide-induced endothelial dysfunction in human umbilical vein endothelial cells to determine the underlying mechanisms. The cytotoxicity effect of BHMC on HUVEC were determined by MTT assay. The effects of BHMC on endothelial dysfunction induced by lipopolysaccharide such as endothelial hyperpermeability, monocyte-endothelial adhesion, transendothelial migration, up-regulation of adhesion molecules and chemokines were evaluated. The effects of BHMC at transcriptional and post-translational levels were determined by Reverse Transcriptase-Polymerase Chain Reaction and Western Blots. The mode of action of BHMC was dissected by looking into the activation of Nuclear Factor-kappa B and Mitogen-Activated Protein Kinases. BHMC concentration-dependently reduced endothelial hyperpermeability, leukocyte-endothelial cell adhesion and monocyte transendothelial migration through inhibition of the protein expression of adhesion molecules (Intercellular Adhesion Molecule-1 and Vascular Cell Adhesion Molecule-1) and secretion of chemokines (Monocyte Chemotactic Protein-1) at the transcriptional level. BHMC restored endothelial dysfunction via selective inhibition of p38 Mitogen-Activated Protein Kinase enzymatic activity which indirectly prevents the activation of Nuclear Factor-kappaB and Activator Protein-1 transcription factors. These findings further support earlier observations on the inhibition of BHMC on inflammatory events through specific disruption of p38 Mitogen-Activated Protein Kinase enzymatic activity and provide new insights into the inhibitory effects of BHMC on lipopolysaccharide-induced endothelial dysfunction.
    Matched MeSH terms: p38 Mitogen-Activated Protein Kinases/metabolism*
  3. Haque MA, Jantan I, Harikrishnan H, Ahmad W
    BMC Complement Med Ther, 2020 Aug 06;20(1):245.
    PMID: 32762741 DOI: 10.1186/s12906-020-03039-7
    BACKGROUND: Immunomodulatory effects of Tinospora crispa have been investigated due to its traditional use to treat several inflammatory disorders associated to the immune system. The present study reports the underlying mechanisms involved in the stimulation of 80% ethanol extract of T. crispa stems on pro-inflammatory mediators release in lipopolysaccharide (LPS)-primed U937 human macrophages via MyD88-dependent pathways.

    METHODS: Release of interleukin (IL)-1β and tumor necrosis factor (TNF)-α, and production of prostaglandin E2 (PGE2) were determined by using enzyme-linked immunosorbent assay (ELISA). Immunoblot technique was executed to determine the activation of MAPKs molecules, NF-κB, PI3K-Akt and cyclooxygenase-2 (COX-2) protein. Determination of pro-inflammatory cytokines and COX-2 relative gene expression levels was by performing the real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR). A reversed-phase HPLC method was developed and validated to standardize the T. crispa extract and chemical profiling of its secondary metabolites was performed by LC-MS/MS.

    RESULTS: Qualitative and quantitative analyses of chromatographic data indicated that syringin and magnoflorine were found as the major components of the extract. T. crispa-treatment prompted activation of NF-κB by enhancing IKKα/β and NF-κB (p65) phosphorylation, and degradation of IκBα. The extract upregulated COX-2 protein expression, release of pro-inflammatory mediators and MAPKs (ERK, p38 and JNK) phosphorylation as well as Akt dose-dependently. T. crispa extract also upregulated the upstream signaling adaptor molecules, toll-like receptor 4 (TLR4) and MyD88. T. crispa-treatment also upregulated the pro-inflammatory markers mRNA expression.

    CONCLUSION: The results suggested that T. crispa extract stimulated the MyD88-dependent signaling pathways by upregulating the various immune inflammatory related parameters.

    Matched MeSH terms: Mitogen-Activated Protein Kinases/metabolism*
  4. Ng CT, Fong LY, Yong YK, Hakim MN, Ahmad Z
    Cytokine, 2018 11;111:541-550.
    PMID: 29909980 DOI: 10.1016/j.cyto.2018.06.010
    Endothelial barrier dysfunction leads to increased endothelial permeability and is an early step in the development of vascular inflammatory diseases such as atherosclerosis. Interferon-γ (IFN-γ), a proinflammatory cytokine, is known to cause increased endothelial permeability. However, the mechanisms by which IFN-γ disrupts the endothelial barrier have not been clarified. This study aimed to investigate how IFN-γ impairs the endothelial barrier integrity by specifically examining the roles of caldesmon, adherens junctions (AJs) and p38 mitogen-activated protein (MAP) kinase in IFN-γ-induced endothelial barrier dysfunction. IFN-γ exhibited a biphasic effect on caldesmon localization and both the structural organization and protein expression of AJs. In the early phase (4-8 h), IFN-γ induced the formation of peripheral caldesmon bands and discontinuous AJs, while AJ protein expression was unchanged. Interestingly, IFN-γ also stimulated caldesmon phosphorylation, resulting in actin dissociation from caldesmon at 8 h. Conversely, changes seen in the late phase (16-24 h) included cytoplasmic caldesmon dispersal, AJ linearization and junctional area reduction, which were associated with reduced membrane, cytoskeletal and total AJ protein expression. In addition, IFN-γ enhanced myosin binding to caldesmon at 12 h and persisted up to 24 h. Furthermore, inhibition of p38 MAP kinase by SB203580 did not reverse either the early or late phase changes observed. These data suggest that IFN-γ may activate signaling molecules other than p38 MAP kinase. In conclusion, our findings enhance the current understanding of how IFN-γ disrupts endothelial barrier function and reveal potential therapeutic targets, such as caldesmon and AJs, for the treatment of IFN-γ-associated vascular inflammatory diseases.
    Matched MeSH terms: p38 Mitogen-Activated Protein Kinases/metabolism
  5. Ng CT, Fong LY, Sulaiman MR, Moklas MA, Yong YK, Hakim MN, et al.
    J Interferon Cytokine Res, 2015 Jul;35(7):513-22.
    PMID: 25830506 DOI: 10.1089/jir.2014.0188
    Interferon-gamma (IFN-γ) is known to potentiate the progression of inflammatory diseases, such as inflammatory bowel disease and atherosclerosis. IFN-γ has been found to disrupt the barrier integrity of epithelial and endothelial cell both in vivo and in vitro. However, the mechanisms of IFN-γ underlying increased endothelial cell permeability have not been extensively elucidated. We reported that IFN-γ exhibits a biphasic nature in increasing endothelial permeability. The changes observed in the first phase (4-8 h) involve cell retraction and rounding in addition to condensed peripheral F-actin without a significant change in the F-/G-actin ratio. However, cell elongation, stress fiber formation, and an increased F-/G-actin ratio were noticed in the second phase (16-24 h). Consistent with our finding from the permeability assay, IFN-γ induced the formation of intercellular gaps in both phases. A delayed phase of increased permeability was observed at 12 h, which paralleled the onset of cell elongation, stress fiber formation, and increased F-/G-actin ratio. In addition, IFN-γ stimulated p38 mitogen-activated protein (MAP) kinase phosphorylation over a 24 h period. Inhibition of p38 MAP kinase by SB203580 prevented increases in paracellular permeability, actin rearrangement, and increases in the F-/G-actin ratio caused by IFN-γ. Our results suggest that p38 MAP kinase is activated in response to IFN-γ and causes actin rearrangement and altered cell morphology, which in turn mediates endothelial cell hyperpermeability. The F-/G-actin ratio might be involved in the regulation of actin distribution and cell morphology rather than the increased permeability induced by IFN-γ.
    Matched MeSH terms: p38 Mitogen-Activated Protein Kinases/metabolism*
  6. Hemmati F, Dargahi L, Nasoohi S, Omidbakhsh R, Mohamed Z, Chik Z, et al.
    Behav Brain Res, 2013 Sep 1;252:415-21.
    PMID: 23777795 DOI: 10.1016/j.bbr.2013.06.016
    Alzheimer's disease (AD) as a neurodegenerative brain disorder is the most common cause of dementia. To date, there is no causative treatment for AD and there are few preventive treatments either. The sphingosine-1-phosphate receptor modulator FTY720 (fingolimod) prevents lymphocytes from contributing to an autoimmune reaction and has been approved for multiple sclerosis treatment. In concert with other studies showing the anti-inflammatory and protective effect of FTY720 in some neurodegenerative disorders like ischemia, we have recently shown that FTY720 chronic administration prevents from impairment of spatial learning and memory in AD rats. Here FTY720 was examined on AD rats in comparison to the only clinically approved NMDA receptor antagonist, Memantine. Passive avoidance task showed significant memory restoration in AD animals received FTY720 comparable to Memantine. Upon gene profiling by QuantiGene Plex, this behavioral outcomes was concurrent with considerable alterations in some genes transcripts like that of mitogen activated protein kinases (MAPKs) and some inflammatory markers that may particularly account for the detected decline in hippocampal neural damage or memory impairment associated with AD. From a therapeutic standpoint, our findings conclude that FTY720 may suggest new opportunities for AD management probably based on several modulatory effects on genes involved in cell death or survival.
    Matched MeSH terms: Mitogen-Activated Protein Kinases/metabolism*
  7. Chye SM, Tiong YL, Yip WK, Koh RY, Len YW, Seow HF, et al.
    Environ Toxicol, 2014 Sep;29(9):981-90.
    PMID: 23172806 DOI: 10.1002/tox.21828
    para-Phenylenediamine (p-PD) is a suspected carcinogen, but it has been widely used as a component in permanent hair dyes. In this study, the mechanism of p-PD-induced cell death in normal Chang liver cells was investigated. The results demonstrated that p-PD decreased cell viability in a dose-dependent manner. Cell death via apoptosis was confirmed by enhanced DNA damage and increased cell number in the sub-G1 phase of the cell cycle, using Hoechst 33258 dye staining and flow cytometry analysis. Apoptosis via reactive oxygen species generation was detected by the dichlorofluorescin diacetate staining method. Mitogen-activated protein kinase (MAPK) activation was assessed by western blot analysis and revealed that p-PD activated not only stress-activated protein kinase (SAPK)/c-Jun N-terminal kinases (JNK) and p38 MAPK but also extracellular signal-regulated kinase (ERK). Cytotoxicity and apoptosis induced by p-PD were markedly enhanced by ERK activation and selectively inhibited by ERK inhibitor PD98059, thus indicating a negative role of ERK. In contrast, inhibition of p38 MAPK activity with the p38-specific inhibitor SB203580 moderately inhibited cytotoxicity and apoptosis induction by p-PD. Similarly, SP600125, an inhibitor of SAPK/JNK, moderately inhibited cytotoxicity and apoptosis induced by p-PD, thus implying that p38 MAPK and SAPK/JNK had a partial role in p-PD-induced apoptosis. Western blot analysis revealed that p-PD significantly increased phosphorylation of p38 and SAPK/JNK and decreased phosphorylation of ERK. In conclusion, the results demonstrated that SAPK/JNK and p38 cooperatively participate in apoptosis induced by p-PD and that a decreased ERK signal contributes to growth inhibition or apoptosis.
    Matched MeSH terms: p38 Mitogen-Activated Protein Kinases/metabolism*
  8. Sio YY, Gan WL, Ng WS, Matta SA, Say YH, Teh KF, et al.
    Int Arch Allergy Immunol, 2023;184(10):1010-1021.
    PMID: 37336194 DOI: 10.1159/000530960
    INTRODUCTION: Previous studies have indicated the ERBB2 genetic variants in the 17q12 locus might be associated with asthma; however, the functional effects of these variants on asthma risk remain inconclusive. This study aimed to characterize the functional roles of asthma-associated ERBB2 single nucleotide polymorphisms (SNPs) in asthma pathogenesis by performing genetic association and functional analysis studies.

    METHODS: This study belongs to a part of an ongoing Singapore/Malaysia cross-sectional genetics and epidemiological study (SMCSGES). Genotype-phenotype associations were assessed by performing a genotyping assay on n = 4,348 ethnic Chinese individuals from the SMCSGES cohort. The phosphorylation levels of receptors and signaling proteins in the MAPK signaling cascades, including ErbB2, EGFR, and ERK1/2, were compared across the genotypes of asthma-associated SNPs through in vitro and ex vivo approaches.

    RESULTS: The ERBB2 tag-SNP rs1058808 was significantly associated with allergic asthma, with the allele "G" identified as protective against the disease (adjusted logistic p = 6.56 × 10-9, OR = 0.625, 95% CI: 0.544-0.718). The allele "G" of rs1058808 resulted in a Pro1170Ala mutation that results in lower phosphorylation levels of ErbB2 in HaCat cells (p < 0.001), whereas the overall ERBB2 mRNA expression and the phosphorylation levels of EGFR remained unaffected. In the SMCSGES cohort, individuals carrying the genotype "GG" of rs1058808 had lower phosphorylated ERK1/2 proteins in the MAPK signaling cascade. A lower phosphorylation level of ERK1/2 was also associated with reduced asthma risk.

    CONCLUSIONS: The present findings highlighted the involvement of a functional exonic variant of ERBB2 in asthma development via modulating the MAPK signaling cascade.

    Matched MeSH terms: Mitogen-Activated Protein Kinases/metabolism
  9. Chow YY, Chin KY
    Mediators Inflamm, 2020;2020:8293921.
    PMID: 32189997 DOI: 10.1155/2020/8293921
    A joint is the point of connection between two bones in our body. Inflammation of the joint leads to several diseases, including osteoarthritis, which is the concern of this review. Osteoarthritis is a common chronic debilitating joint disease mainly affecting the elderly. Several studies showed that inflammation triggered by factors like biomechanical stress is involved in the development of osteoarthritis. This stimulates the release of early-stage inflammatory cytokines like interleukin-1 beta (IL-1β), which in turn induces the activation of signaling pathways, such as nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), phosphoinositide 3-kinase/protein kinase B (PI3K/AKT), and mitogen-activated protein kinase (MAPK). These events, in turn, generate more inflammatory molecules. Subsequently, collagenase like matrix metalloproteinases-13 (MMP-13) will degrade the extracellular matrix. As a result, anatomical and physiological functions of the joint are altered. This review is aimed at summarizing the previous studies highlighting the involvement of inflammation in the pathogenesis of osteoarthritis.
    Matched MeSH terms: Mitogen-Activated Protein Kinases/metabolism
  10. Farooq SM, Boppana NB, Devarajan A, Asokan D, Sekaran SD, Shankar EM, et al.
    PLoS One, 2014;9(4):e93056.
    PMID: 24691130 DOI: 10.1371/journal.pone.0093056
    Oxalate toxicity is mediated through generation of reactive oxygen species (ROS) via a process that is partly dependent on mitochondrial dysfunction. Here, we investigated whether C-phycocyanin (CP) could protect against oxidative stress-mediated intracellular damage triggered by oxalate in MDCK cells. DCFDA, a fluorescence-based probe and hexanoyl-lysine adduct (HEL), an oxidative stress marker were used to investigate the effect of CP on oxalate-induced ROS production and membrane lipid peroxidation (LPO). The role of CP against oxalate-induced oxidative stress was studied by the evaluation of mitochondrial membrane potential by JC1 fluorescein staining, quantification of ATP synthesis and stress-induced MAP kinases (JNK/SAPK and ERK1/2). Our results revealed that oxalate-induced cells show markedly increased ROS levels and HEL protein expression that were significantly decreased following pre-treatment with CP. Further, JC1 staining showed that CP pre-treatment conferred significant protection from mitochondrial membrane permeability and increased ATP production in CP-treated cells than oxalate-alone-treated cells. In addition, CP treated cells significantly decreased the expression of phosphorylated JNK/SAPK and ERK1/2 as compared to oxalate-alone-treated cells. We concluded that CP could be used as a potential free radical-scavenging therapeutic strategy against oxidative stress-associated diseases including urolithiasis.
    Matched MeSH terms: Mitogen-Activated Protein Kinases/metabolism
  11. Kasi RA, Moi CS, Kien YW, Yian KR, Chin NW, Yen NK, et al.
    Mol Med Rep, 2015 Mar;11(3):2262-8.
    PMID: 25411820 DOI: 10.3892/mmr.2014.2979
    para‑Phenylenediamine (p‑PD) is a potential carcinogen, and widely used in marketed hair dye formulations. In the present study, the role of the protein tyrosine kinase (PTK)/Ras/Raf/c‑Jun N‑terminal kinase (JNK) and phosphoinositide 3‑kinase (PI3k)/protein kinase B (Akt) pathways on the growth of NRK‑52E cells was investigated. The results demonstrated that p‑PD reduced cell viability in a dose‑dependent manner. The cell death due to apoptosis was confirmed by cell cycle analysis and an Annexin‑V‑fluorescein isothiocyanate binding assay. Subsequent to staining with 2',7'‑dichlorofluorescin diacetate, the treated cells demonstrated a significant increase in reactive oxygen species (ROS) generation compared with the controls. The effects of p‑PD on the signalling pathways were analysed by western blotting. p‑PD‑treated cells exhibited an upregulated phospho‑stress‑activated protein kinase/JNK protein expression level and downregulated Ras and Raf protein expression levels; however, Akt, Bcl‑2, Bcl‑XL and Bad protein expression levels were not significantly altered compared with the control. In conclusion, p‑PD induced apoptosis by a PTK/Ras/Raf/JNK‑dependent pathway and was independent of the PI3K/Akt pathway in NRK‑52E cells.
    Matched MeSH terms: JNK Mitogen-Activated Protein Kinases/metabolism
  12. Haque MA, Jantan I, Harikrishnan H, Ghazalee S
    Phytomedicine, 2019 Feb 15;54:195-205.
    PMID: 30668369 DOI: 10.1016/j.phymed.2018.09.183
    BACKGROUND: Zingiber zerumbet rhizome has been used as spices and in traditional medicine to heal various immune-inflammatory related ailments. Although the plant was reported to have potent anti-inflammatory and immunosuppressive properties by several studies, the molecular mechanisms underlying the effects have not been well justified.

    PURPOSE: The study was carried out to investigate the molecular mechanisms underlying the anti-inflammatory properties of the standardized 80% ethanol extract of Z. zerumbet through its effect on mitogen-activated protein kinase (MyD88)-dependent nuclear factor-kappa B (NF-кB), mitogen activated protein kinase (MAPK) and phosphatidylinositol 3-kinase/Akt (PI3K-Akt) signaling pathways in lipopolysaccharide (LPS)-induced U937 human macrophages.

    METHODS: Standardization of the 80% ethanol extract of Z. zerumbet was performed by using a validated reversed-phase HPLC method, while LC-MS/MS was used to profile the secondary metabolites. The release of pro-inflammatory markers, tumor necrosis factor (TNF)-α, interleukin (IL)-1β and prostaglandin E2 (PGE2) was evaluated by enzyme-linked immunosorbent assay (ELISA), while the Western blot technique was executed to elucidate the expression of mediators linked to MyD88-dependent respective signaling pathways. Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) assay was carried out to quantify the relative gene expression of cyclooxygenase (COX)-2 and pro-inflammatory mediators at the transcriptional level.

    RESULTS: The quantitative and qualitative analyses of Z. zerumbet extract showed the presence of several compounds including the major chemical marker zerumbone. Z. zerumbet extract suppressed the release of pro-inflammatory mediators, COX-2 protein expression and downregulated the mRNA expression of pro-inflammatory markers. Z. zerumbet-treatment also blocked NF-κB activation by preventing the phosphorylation of IKKα/β and NF-κB (p65) as well as the phosphorylation and degradation of IκBα. Z. zerumbet extract concentration-dependently inhibited the phosphorylation of respective MAPKs (JNK, ERK, and p38) as well as Akt. Correspondingly, Z. zerumbet extract suppressed the upstream signaling adaptor molecules, TLR4 and MyD88 prerequisite for the NF-κB, MAPKs, and PI3K-Akt activation.

    CONCLUSION: The findings suggest that Z. zerumbet has impressive role in suppressing inflammation and related immune disorders by inhibition of various pro-inflammatory markers through the imperative MyD88-dependent NF-κB, MAPKs, and PI3K-Akt activation.

    Matched MeSH terms: Mitogen-Activated Protein Kinases/metabolism
  13. Sideek MA, Smith J, Menz C, Adams JRJ, Cowin AJ, Gibson MA
    Int J Mol Sci, 2017 Oct 09;18(10).
    PMID: 28991210 DOI: 10.3390/ijms18102114
    Latent transforming growth factor-β-1 binding protein-2 (LTBP-2) belongs to the LTBP-fibrillin superfamily of extracellular proteins. Unlike other LTBPs, LTBP-2 does not covalently bind transforming growth factor-β1 (TGF-β1) but appears to be implicated in the regulation of TGF-β1 bioactivity, although the mechanisms are largely unknown. In experiments originally designed to study the displacement of latent TGF-β1 complexes from matrix storage, we found that the addition of exogenous LTBP-2 to cultured human MSU-1.1 fibroblasts caused an increase in TGF-β1 levels in the medium. However, the TGF-β1 increase was due to an upregulation of TGF-β1 expression and secretion rather than a displacement of matrix-stored TGF-β1. The secreted TGF-β1 was mainly in an inactive form, and its concentration peaked around 15 h after addition of LTBP-2. Using a series of recombinant LTBP-2 fragments, the bioactivity was identified to a small region of LTBP-2 consisting of an 8-Cys motif flanked by four epidermal growth factor (EGF)-like repeats. The LTBP-2 stimulation of TGF-β expression involved the phosphorylation of both Akt and p38 mitogen-activated protein kinase (MAPK) signalling proteins, and specific inactivation of each protein individually blocked TGF-β1 increase. The search for the cell surface receptor mediating this LTBP-2 activity proved inconclusive. Inhibitory antibodies to integrins β1 and αVβ5 showed no reduction of LTBP-2 stimulation of TGF-β1. However, TGF-β1 upregulation was partially inhibited by anti-αVβ3 integrin antibodies, suggestive of a direct or indirect role for this integrin. Overall, the study indicates that LTBP-2 can directly upregulate cellular TGF-β1 expression and secretion by interaction with cells via a short central bioactive region. This may be significant in connective tissue disorders involving aberrant TGF-β1 signalling.
    Matched MeSH terms: p38 Mitogen-Activated Protein Kinases/metabolism*
  14. Motaghed M, Al-Hassan FM, Hamid SS
    Int J Mol Med, 2014 Jan;33(1):8-16.
    PMID: 24270600 DOI: 10.3892/ijmm.2013.1563
    New drugs are continuously being developed for the treatment of patients with estrogen receptor-positive breast cancer. Thymoquinone is one of the drugs that exhibits anticancer characteristics based on in vivo and in vitro models. This study further investigates the effects of thymoquinone on human gene expression using cDNA microarray technology. The quantification of RNA samples was carried out using an Agilent 2100 Bioanalyser to determine the RNA integrity number (RIN). The Agilent Low Input Quick Amplification Labelling kit was used to generate cRNA in two-color microarray analysis. Samples with RIN >9.0 were used in this study. The universal human reference RNA was used as the common reference. The samples were labelled with cyanine-3 (cye-3) CTP dye and the universal human reference was labelled with cyanine-5 (cye-5) CTP dye. cRNA was purified with the RNeasy Plus Mini kit and quantified using a NanoDrop 2000c spectrophotometer. The arrays were scanned data analysed using Feature Extraction and GeneSpring software. Two-step qRT-PCR was selected to determine the relative gene expression using the High Capacity RNA-to-cDNA kit. The results from Gene Ontology (GO) analysis, indicated that 8 GO terms were related to biological processes (84%) and molecular functions (16%). A total of 577 entities showed >2-fold change in expression. Of these entities, 45.2% showed an upregulation and 54.7% showed a downregulation in expression. The interpretation of single experiment analysis (SEA) revealed that the cytochrome P450, family 1, subfamily A, polypeptide 1 (CYP1A1) and UDP glucuronosyltransferase 1 family, polypeptide A8 (UGT1A8) genes in the estrogen metabolic pathway were downregulated significantly by 43- and 11‑fold, respectively. The solute carrier family 7 (anionic amino acid transporter light chain, xc-system), member 11 (SLC7A11) gene in the interferon pathway, reported to be involved in the development of chemoresistance, was downregulated by 15‑fold. The interferon-induced protein with tetratricopeptide repeats (IFIT)1, IFIT2, IFIT3, interferon, α-inducible protein (IFI)6 (also known as G1P3), interferon regulatory factor 9 (IRF9, ISGF3), 2'-5'-oligoadenylate synthetase 1, 40/46 kDa (OAS1) and signal transducer and activator of transcription 1 (STAT1) genes all showed changes in expression following treatment with thymoquinone. The caspase 10, apoptosis-related cysteine peptidase (CASP10) gene was activated and the protein tyrosine phosphatase, receptor type, R (PTPRR) and myocyte enhancer factor 2C (MEF2C) genes were upregulated in the classical MAPK and p38 MAPK pathways. These findings indicate that thymquinone targets specific genes in the estrogen metabolic and interferon pathways.
    Matched MeSH terms: p38 Mitogen-Activated Protein Kinases/metabolism
  15. Haque MA, Jantan I, Harikrishnan H
    Int Immunopharmacol, 2018 Feb;55:312-322.
    PMID: 29310107 DOI: 10.1016/j.intimp.2018.01.001
    Zerumbone (ZER), isolated mainly from the Zingiber zerumbet (Z. zerumbet) rhizomes was found to be effective against numerous inflammatory and immune disorders, however, the molecular and biochemical mechanisms underlying its anti-inflammatory and immunosuppressive properties have not been well studied. This study was carried out to examine the profound effects of ZER on inflammatory mediated MyD88-dependent NF-κB/MAPK/PI3K-Akt signaling pathways in LPS-stimulated U937 human macrophages. ZER significantly suppressed the up-regulation pro-inflammatory mediators, TNF-α, IL-1β, PGE2, and COX-2 protein in LPS-induced human macrophages. Moreover, ZER significantly downregulated the phosphorylation of NF-κB (p65), IκBα, and IKKα/β as well as restored the degradation of IκBα. ZER correspondingly showed remarkable attenuation of the expression of Akt, JNK, ERK, and p38 MAPKs phosphorylation in a concentration-dependent manner. ZER also diminished the expression of upstream signaling molecules TLR4 and MyD88, which are prerequisite for the NF-κB, MAPK and PI3K-Akt activation. Additionally, quantification of relative gene expression of TNF-α, IL-1β, and COX-2 indicated that, at a higher dose (50μM), ZER significantly downregulated the elevated mRNA transcription levels of the stated pro-inflammatory markers in LPS-stimulated U937 macrophages. The strong suppressive effects of ZER on the activation of inflammatory markers in the macrophages via MyD88-dependent NF-κB/MAPK/PI3K-Akt signaling pathways suggest that ZER can be a preventive and potent therapeutic candidate for the management of various inflammatory-mediated immune disorders.
    Matched MeSH terms: Mitogen-Activated Protein Kinases/metabolism
  16. Lane SC, Camera DM, Lassiter DG, Areta JL, Bird SR, Yeo WK, et al.
    J Appl Physiol (1985), 2015 Sep 15;119(6):643-55.
    PMID: 26112242 DOI: 10.1152/japplphysiol.00857.2014
    We determined the effects of "periodized nutrition" on skeletal muscle and whole body responses to a bout of prolonged exercise the following morning. Seven cyclists completed two trials receiving isoenergetic diets differing in the timing of ingestion: they consumed either 8 g/kg body mass (BM) of carbohydrate (CHO) before undertaking an evening session of high-intensity training (HIT) and slept without eating (FASTED), or consumed 4 g/kg BM of CHO before HIT, then 4 g/kg BM of CHO before sleeping (FED). The next morning subjects completed 2 h of cycling (120SS) while overnight fasted. Muscle biopsies were taken on day 1 (D1) before and 2 h after HIT and on day 2 (D2) pre-, post-, and 4 h after 120SS. Muscle [glycogen] was higher in FED at all times post-HIT (P < 0.001). The cycling bouts increased PGC1α mRNA and PDK4 mRNA (P < 0.01) in both trials, with PDK4 mRNA being elevated to a greater extent in FASTED (P < 0.05). Resting phosphorylation of AMPK(Thr172), p38MAPK(Thr180/Tyr182), and p-ACC(Ser79) (D2) was greater in FASTED (P < 0.05). Fat oxidation during 120SS was higher in FASTED (P = 0.01), coinciding with increases in ACC(Ser79) and CPT1 as well as mRNA expression of CD36 and FABP3 (P < 0.05). Methylation on the gene promoter for COX4I1 and FABP3 increased 4 h after 120SS in both trials, whereas methylation of the PPARδ promoter increased only in FASTED. We provide evidence for shifts in DNA methylation that correspond with inverse changes in transcription for metabolically adaptive genes, although delaying postexercise feeding failed to augment markers of mitochondrial biogenesis.
    Matched MeSH terms: p38 Mitogen-Activated Protein Kinases/metabolism
  17. Ong JY, Yong PV, Lim YM, Ho AS
    Life Sci, 2015 Aug 15;135:158-64.
    PMID: 25896662 DOI: 10.1016/j.lfs.2015.03.019
    The compound 2-methoxy-1,4-naphthoquinone (MNQ) was previously shown to be cytotoxic against several cancer cell lines, but its mode of action is poorly understood. In this study, we aimed to explore the molecular mechanism of MNQ-induced cytotoxicity of A549 lung adenocarcinoma cells.
    Matched MeSH terms: p38 Mitogen-Activated Protein Kinases/metabolism*
  18. Wong SK, Chin KY, Ima-Nirwana S
    Phytomedicine, 2020 Jul 15;73:152892.
    PMID: 30902523 DOI: 10.1016/j.phymed.2019.152892
    BACKGROUND: Musculoskeletal disorders are a group of disorders that affect the joints, bones, and muscles, causing long-term disability. Berberine, an isoquinoline alkaloid, has been previously established to exhibit beneficial properties in preventing various diseases, including musculoskeletal disorders.

    PURPOSE: This review article aims to recapitulate the therapeutic potential of berberine and its mechanism of action in treating musculoskeletal disorders.

    METHODS: A wide range of literature illustrating the effects of berberine in ameliorating musculoskeletal disorders was retrieved from online electronic databases (PubMed and Medline) and reviewed.

    RESULTS: Berberine may potentially retard the progression of osteoporosis, osteoarthritis and rheumatoid arthritis. Limited studies reported the effects of berberine in suppressing the proliferation of osteosarcoma cells. These beneficial properties of berberine are mediated in part through its ability to target multiple signaling pathways, including PKA, p38 MAPK, Wnt/β-catenin, AMPK, RANK/RANKL/OPG, PI3K/Akt, NFAT, NF-κB, Hedgehog, and oxidative stress signaling. In addition, berberine exhibited anti-apoptotic, anti-inflammatory, and immunosuppressive properties.

    CONCLUSION: The current evidence indicates that berberine may be effective in preventing musculoskeletal disorders. However, findings from in vitro and in vivo investigations await further validation from human clinical trial.

    Matched MeSH terms: p38 Mitogen-Activated Protein Kinases/metabolism
  19. Tor YS, Yazan LS, Foo JB, Armania N, Cheah YK, Abdullah R, et al.
    PMID: 24524627 DOI: 10.1186/1472-6882-14-55
    Breast cancer is one of the most dreading types of cancer among women. Herbal medicine has becoming a potential source of treatment for breast cancer. Herbal plant Dillenia suffruticosa (Griff) Martelli under the family Dilleniaceae has been traditionally used to treat cancerous growth. In this study, the anticancer effect of ethyl acetate extract of D. suffruticosa (EADs) was examined on human breast adenocarcinoma cell line MCF-7 and the molecular pathway involved was elucidated.
    Matched MeSH terms: p38 Mitogen-Activated Protein Kinases/metabolism
  20. Tham CL, Lam KW, Rajajendram R, Cheah YK, Sulaiman MR, Lajis NH, et al.
    Eur J Pharmacol, 2011 Feb 10;652(1-3):136-44.
    PMID: 21114991 DOI: 10.1016/j.ejphar.2010.10.092
    We previously showed that 2,6-bis-(4-hydroxyl-3-methoxybenzylidine)cyclohexanone (BHMC), suppressed the synthesis of various proinflammatory mediators. In this study we explain the mechanism of action of BHMC in lipopolysaccharide (LPS)-induced U937 monocytes and further show that BHMC prevents lethality of CLP-induced sepsis. BHMC showed dose-dependent inhibitory effects on p38, JNK and ERK 1/2 activity as determined by inhibition of phosphorylation of downstream transcription factors ATF-2, c-Jun and Elk-1 respectively. Inhibition of these transcription factors subsequently caused total abolishment of AP-1-DNA binding. BHMC inhibited p65 NF-κB nuclear translocation and DNA binding of p65 NF-κB only at the highest concentration used (12.5μM) but failed to alter phosphorylation of JNK, ERK1/2 and STAT-1. Since the inhibition of p38 activity was more pronounced we evaluated the possibility that BHMC may bind to p38. Molecular docking experiments confirmed that BHMC fits well in the highly conserved hydrophobic pocket of p38 MAP kinase. We also show that BHMC was able to improve survival from lethal sepsis in a murine caecal-ligation and puncture (CLP) model.
    Matched MeSH terms: Mitogen-Activated Protein Kinases/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links