Displaying all 18 publications

Abstract:
Sort:
  1. Samberkar S, Gandhi S, Naidu M, Wong KH, Raman J, Sabaratnam V
    Int J Med Mushrooms, 2015;17(11):1047-54.
    PMID: 26853959
    Neurodegenerative disease is defined as a deterioration of the nervous system in the intellectual and cognitive capabilities. Statistics show that more than 80-90 million individuals age 65 and above in 2050 may be affected by neurodegenerative conditions like Alzheimer's and Parkinson's disease. Studies have shown that out of 2000 different types of edible and/or medicinal mushrooms, only a few countable mushrooms have been selected until now for neurohealth activity. Hericium erinaceus is one of the well-established medicinal mushrooms for neuronal health. It has been documented for its regenerative capability in peripheral nerve. Another mushroom used as traditional medicine is Lignosus rhinocerotis, which has been used for various illnesses. It has been documented for its neurite outgrowth potential in PC12 cells. Based on the regenerative capabilities of both the mushrooms, priority was given to select them for our study. The aim of this study was to investigate the potential of H. erinaceus and L. rhinocerotis to stimulate neurite outgrowth in dissociated cells of brain, spinal cord, and retina from chick embryo when compared to brain derived neurotrophic factor (BDNF). Neurite outgrowth activity was confirmed by the immu-nofluorescence method in all tissue samples. Treatment with different concentrations of extracts resulted in neuronal differentiation and neuronal elongation. H. erinaceus extract at 50 µg/mL triggered neurite outgrowth at 20.47%, 22.47%, and 21.70% in brain, spinal cord, and retinal cells. L. rhinocerotis sclerotium extract at 50 µg/mL induced maximum neurite outgrowth of 20.77% and 24.73% in brain and spinal cord, whereas 20.77% of neurite outgrowth was observed in retinal cells at 25 µg/mL, respectively.
    Matched MeSH terms: Neurites/drug effects*; Neurites/physiology
  2. Kushairi N, Phan CW, Sabaratnam V, Vidyadaran S, Naidu M, David P
    Int J Med Mushrooms, 2020;22(12):1171-1181.
    PMID: 33463934 DOI: 10.1615/IntJMedMushrooms.2020036938
    Pleurotus eryngii (king oyster mushroom) is a renowned culinary mushroom with various medicinal properties that may be beneficial for health maintenance and disease prevention. However, its effect on the nervous system remains elusive. In this study, hot water (PE-HWA) and ethanol (PE-ETH) extracts of P. eryngii were investigated and compared for their neuroprotective, anti-inflammatory, and neurite outgrowth activities in vitro. Based on the results, both extracts up to 400 μg/mL were nontoxic to PC12 cells and BV2 microglia (p > 0.05). Treatment with 250 μM hydrogen peroxide (H2O2) markedly (p < 0.0001) reduced the PC12 cell viability to 67.74 ± 6.47%. Coincubation with 200 μg/mL and 400 μg/mL of PE-ETH dose-dependently increased the cell viability to 85.34 ± 1.91% (p < 0.001) and 98.37 ± 6.42% (p < 0.0001) respectively, while PE-HWA showed no activity. Nitric oxide (NO) released by BV2 microglia was notably (p < 0.0001) increased by 1 μg/mL lipopolysaccharides (LPS) from 7.46 ± 0.73 μM to 80.00 ± 3.78 μM indicating an inflammatory reaction. However, coincubation with 200 and 400 μg/mL of PE-ETH significantly (p < 0.0001) reduced the NO level to 58.57 ± 6.19 μM and 52.86 ± 3.43 μM respectively, while PE-HWA was noneffective. PE-ETH and PE-HWA at 40 μg/mL significantly increased the neurite-bearing cells from 4.70 ± 3.36% to 13.12 ± 2.82% (p < 0.01) and 20.93 ± 5.37% (p < 0.0001) respectively. Pleurotus eryngii, particularly the ethanol extract (PE-ETH) and its potentially bioactive compounds, could be explored as a neurohealth promoting agent, due to its collective neuroprotective, anti-inflammatory, and neurite outgrowth activities.
    Matched MeSH terms: Neurites/drug effects*; Neurites/physiology
  3. Seow SLS, Hong SL, Lee GS, Malek SNA, Sabaratnam V
    BMC Complement Altern Med, 2017 Jun 24;17(1):334.
    PMID: 28646880 DOI: 10.1186/s12906-017-1837-6
    BACKGROUND: Ginger is a popular spice and food preservative. The rhizomes of the common ginger have been used as traditional medicine to treat various ailments. 6-Shogaol, a pungent compound isolated from the rhizomes of jahe gajah (Zingiber officinale var officinale) has shown numerous pharmacological activities, including neuroprotective and anti-neuroinflammatory activities. The aim of this study was to investigate the potential of 6-shogaol to mimic the neuritogenic activity of nerve growth factor (NGF) in rat pheochromocytoma (PC-12) cells.

    METHODS: The cytotoxic effect of 6-shogaol was determined by 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The neuritogenic activity was assessed by neurite outgrowth stimulation assay while the concentration of extracellular NGF in cell culture supernatant was assessed by enzyme-linked immunosorbent assay (ELISA). Involvement of cellular signaling pathways, mitogen-activated protein kinase kinase/extracellular signal-regulated kinase1/2 (MEK/ERK1/2) and phosphoinositide-3-kinase/protein kinase B (PI3K/AKT) in 6-shogaol-stimulated neuritogenesis were examined by using specific pharmacological inhibitors.

    RESULTS: 6-Shogaol (500 ng/ml) induced neuritogenesis that was comparable to NGF (50 ng/ml) and was not cytotoxic towards PC-12 cells. 6-Shogaol induced low level of NGF biosynthesis in PC-12 cells, showing that 6-shogaol stimulated neuritogenesis possibly by inducing NGF biosynthesis, and also acting as a substitute for NGF (NGF mimic) in PC-12 cells. The inhibitors of Trk receptor (K252a), MEK/ERK1/2 (U0126 and PD98059) and PI3K/AKT (LY294002) attenuated the neuritogenic activity of both NGF and 6-shogaol, respectively.

    CONCLUSIONS: The present findings demonstrated that 6-shogaol induced neuritogenic activity in PC-12 cells via the activation MEK/ERK1/2 and PI3K/AKT signaling pathways. This study suggests that 6-shogaol could act as an NGF mimic, which may be beneficial for preventive and therapeutic uses in neurodegenerative diseases.

    Matched MeSH terms: Neurites/drug effects*; Neurites/metabolism
  4. Phan CW, Lee GS, Hong SL, Wong YT, Brkljača R, Urban S, et al.
    Food Funct, 2014 Dec;5(12):3160-9.
    PMID: 25288148 DOI: 10.1039/c4fo00452c
    Hericium erinaceus (Bull.: Fr.) Pers. is an edible and medicinal mushroom used traditionally to improve memory. In this study, we investigated the neuritogenic effects of hericenones isolated from H. erinaceus and the mechanisms of action involved. H. erinaceus was cultivated and the secondary metabolites were elucidated by high performance liquid chromatography (HPLC), liquid chromatography-mass spectrometry (LC-MS), and nuclear magnetic resonance (NMR). The secondary metabolites were tested for neurite outgrowth activity (if any). Rat pheochromocytoma (PC12) cells were employed and the nerve growth factor (NGF) level was also determined. The signaling pathways involved in the mushroom-induced neuritogenesis were investigated using several pharmacological inhibitors. Hericenones B-E (1-4), erinacerin A (5) and isohericerin (6) were isolated from the basidiocarps of H. erinaceus. The hericenones did not promote neurite outgrowth but when induced with a low concentration of NGF (5 ng mL(-1)), the neuritogenic activity was comparable to that of the positive control (50 ng mL(-1) of NGF). Hericenone E was able to stimulate NGF secretion which was two-fold higher than that of the positive control. The neuritogenesis process was partially blocked by the tyrosine kinase receptor (Trk) inhibitor, K252a, suggesting that the neuritogenic effect was not solely due to NGF. Hericenone E also increased the phosphorylation of extracellular-signal regulated kinases (ERKs) and protein kinase B (Akt). Taken together, this study suggests that hericenone E potentiated NGF-induced neuritogenesis in PC12 cells via the MEK/ERK and PI3K/Akt pathways.
    Matched MeSH terms: Neurites/drug effects*; Neurites/enzymology; Neurites/metabolism
  5. Phan CW, David P, Naidu M, Wong KH, Sabaratnam V
    Crit Rev Biotechnol, 2015;35(3):355-68.
    PMID: 24654802 DOI: 10.3109/07388551.2014.887649
    Mushrooms have long been used not only as food but also for the treatment of various ailments. Although at its infancy, accumulated evidence suggested that culinary-medicinal mushrooms may play an important role in the prevention of many age-associated neurological dysfunctions, including Alzheimer's and Parkinson's diseases. Therefore, efforts have been devoted to a search for more mushroom species that may improve memory and cognition functions. Such mushrooms include Hericium erinaceus, Ganoderma lucidum, Sarcodon spp., Antrodia camphorata, Pleurotus giganteus, Lignosus rhinocerotis, Grifola frondosa, and many more. Here, we review over 20 different brain-improving culinary-medicinal mushrooms and at least 80 different bioactive secondary metabolites isolated from them. The mushrooms (either extracts from basidiocarps/mycelia or isolated compounds) reduced beta amyloid-induced neurotoxicity and had anti-acetylcholinesterase, neurite outgrowth stimulation, nerve growth factor (NGF) synthesis, neuroprotective, antioxidant, and anti-(neuro)inflammatory effects. The in vitro and in vivo studies on the molecular mechanisms responsible for the bioactive effects of mushrooms are also discussed. Mushrooms can be considered as useful therapeutic agents in the management and/or treatment of neurodegeneration diseases. However, this review focuses on in vitro evidence and clinical trials with humans are needed.
    Matched MeSH terms: Neurites
  6. Ismail N, Ismail M, Mazlan M, Latiff LA, Imam MU, Iqbal S, et al.
    Cell Mol Neurobiol, 2013 Nov;33(8):1159-69.
    PMID: 24101432 DOI: 10.1007/s10571-013-9982-z
    Thymoquinone (TQ), a bioactive constituent of Nigella sativa Linn (N. sativa) has demonstrated several neuropharmacological attributes. In the present study, the neuroprotective properties of TQ were investigated by studying its anti-apoptotic potential to diminish β-amyloid peptide 1-40 sequence (Aβ1-40)-induced neuronal cell death in primary cultured cerebellar granule neurons (CGNs). The effects of TQ against Aβ1-40-induced neurotoxicity, morphological damages, DNA condensation, the generation of reactive oxygen species, and caspase-3, -8, and -9 activation were investigated. Pretreatment of CGNs with TQ (0.1 and 1 μM) and subsequent exposure to 10 μM Aβ1-40 protected the CGNs against the neurotoxic effects of the latter. In addition, the CGNs were better preserved with intact cell bodies, extensive neurite networks, a loss of condensed chromatin and less free radical generation than those exposed to Aβ1-40 alone. TQ pretreatment inhibited Aβ1-40-induced apoptosis of CGNs via both extrinsic and intrinsic caspase pathways. Thus, the findings of this study suggest that TQ may prevent neurotoxicity and Aβ1-40-induced apoptosis. TQ is, therefore, worth studying further for its potential to reduce the risks of developing Alzheimer's disease.
    Matched MeSH terms: Neurites/drug effects; Neurites/metabolism; Neurites/pathology
  7. Tan YH, Lim CS, Wong KH, Sabaratnam V
    Int J Med Mushrooms, 2021;23(6):1-11.
    PMID: 34369729 DOI: 10.1615/IntJMedMushrooms.2021038578
    Neuritin is important in neuritogenesis, neurite arborization, and neurite extension. Lignosus rhinocerotis sclerotia extracts and nerve growth factor (NGF) have been well documented to possess positive neurite stimulatory effects. However, the correlation of neuritin expression with neurite outgrowth of L. rhinocerotis and NGF cotreatment of PC12 cells remains unknown. Thus, the present study investigated neuritin expression in PC12 cells treated with 5 ng/mL of NGF and L. rhinocerotis extracts (20-1280 μg/mL) concurrently for 48 h. The neurite outgrowth score was quantitated, and total protein was harvested for enzyme-linked immunosorbent assay. There was a significant difference (P = 0.051) in neuritin protein abundance in 640 μg/mL of L. rhinocerotis aqueous cotreatment with 5 ng/mL of NGF-treated cells (5 ± 0.39 ng/mL) and 50 ng/mL of NGF-treated PC12 cells (5 ± 0.48 ng/mL) compared to untreated cells (1.9 ± 0.65 ng/ mL), with an average neurite length of 98 ± 3.66, 106 ± 3.00, and 73 ± 4.79 μm, respectively. Expression of microtubule element β3 tubulin was increased in PC12 cells treated with 50 ng/mL of NGF (3.5 ± 0.21-fold) and also cells cotreated with 640 μg/mL of extract and 5 ng/mL of NGF (4.9 ± 0.29-fold) compared to untreated cells. Upregulation of β3 tubulin expression in this study confirmed the elongation of PC12 cell processes. Correlation analysis showed that neuritin protein abundance is positively proportional to the average neurite length in PC12 cells cotreated with L. rhinocerotis extract and 5 ng/mL of NGF. This study highlights that neuritin modulation is involved in neurite outgrowth induced by L. rhinocerotis treatment. To our knowledge, this is the first report to show that tiger milk mushroom extracts induce neuritin expression.
    Matched MeSH terms: Neurites
  8. Lai PL, Naidu M, Sabaratnam V, Wong KH, David RP, Kuppusamy UR, et al.
    Int J Med Mushrooms, 2013;15(6):539-54.
    PMID: 24266378
    Neurotrophic factors are important in promoting the growth and differentiation of neurons. Nerve growth factor (NGF) is essential for the maintenance of the basal forebrain cholinergic system. Hericenones and erinacines isolated from the medicinal mushroom Hericium erinaceus can induce NGF synthesis in nerve cells. In this study, we evaluated the synergistic interaction between H. erinaceus aqueous extract and exogenous NGF on the neurite outgrowth stimulation of neuroblastoma-glioma cell NG108-15. The neuroprotective effect of the mushroom extract toward oxidative stress was also studied. Aqueous extract of H. erinaceus was shown to be non-cytotoxic to human lung fibroblast MRC-5 and NG108-15 cells. The combination of 10 ng/mL NGF with 1 μg/mL mushroom extract yielded the highest percentage increase of 60.6% neurite outgrowth. The extract contained neuroactive compounds that induced the secretion of extracellular NGF in NG108-15 cells, thereby promoting neurite outgrowth activity. However, the H. erinaceus extract failed to protect NG108-15 cells subjected to oxidative stress when applied in pre-treatment and co-treatment modes. In conclusion, the aqueous extract of H. erinaceus contained neuroactive compounds which induced NGF-synthesis and promoted neurite outgrowth in NG108-15 cells. The extract also enhanced the neurite outgrowth stimulation activity of NGF when applied in combination. The aqueous preparation of H. erinaceus had neurotrophic but not neuroprotective activities.
    Matched MeSH terms: Neurites/drug effects*
  9. Seow SL, Eik LF, Naidu M, David P, Wong KH, Sabaratnam V
    Sci Rep, 2015 Nov 06;5:16349.
    PMID: 26542212 DOI: 10.1038/srep16349
    The traditional application of the sclerotium of Lignosus rhinocerotis (tiger's milk mushroom) by the indigenous folks as tonic and remedy to treat a variety of ailments has been documented in Malaysia. Indigenous communities claimed to have consumed the decoction to boost their alertness during hunting. Mental alertness is believed to be related to neuronal health and neuroactivity. In the present study, the cell viability and neuritogenic effects of L. rhinocerotis sclerotium hot aqueous and ethanolic extracts, and crude polysaccharides on rat pheochromocytoma (PC-12) cells were studied. Interestingly, the hot aqueous extract exhibited neuritogenic activity comparable to NGF in PC-12 cells. However, the extracts and crude polysaccharides stimulated neuritogenesis without stimulating the production of NGF in PC-12 cells. The involvements of the TrkA receptor and MEK/ERK1/2 pathway in hot aqueous extract-stimulated neuritogenesis were examined by Trk (K252a) and MEK/ERK1/2 (U0126 and PD98059) inhibitors. There was no significant difference in protein expression in NGF- and hot aqueous extract-treated cells for both total and phosphorylated p44/42 MAPK. The neuritogenic activity in PC-12 cells stimulated by hot aqueous and ethanolic extracts, and crude polysaccharides of L. rhinocerotis sclerotium mimicking NGF activity via the MEK/ERK1/2 signaling pathway is reported for the first time.
    Matched MeSH terms: Neurites*
  10. Phan CW, David P, Tan YS, Naidu M, Wong KH, Kuppusamy UR, et al.
    ScientificWorldJournal, 2014;2014:378651.
    PMID: 25121118 DOI: 10.1155/2014/378651
    Two strains of Pleurotus giganteus (commercial and wild) were tested for their ability to induce neurite outgrowth in rat pheochromocytoma (PC12) and mouse neuroblastoma-2a (N2a) cells. Treatment with the mushroom extracts resulted in neuronal differentiation and neuronal elongation, but not nerve growth factor (NGF) production. Linoleic acid (4.5-5.0%, w/w) which is a major fatty acid present in the ethanol extract promoted NGF biosynthesis when augmented with low concentration of NGF (5 ng/mL). The two strains of mushroom were found to be high in protein (154-192 g kg(-1)), total polysaccharides, phenolics, and flavonoids as well as vitamins B1, B2, and B3. The total phenolics present in the mushroom extracts were positively correlated to the antioxidant activity (free radical scavenging, ferric reducing power, and lipid peroxidation inhibition). To conclude, P. giganteus could potentially be used in well-balanced diet and as a source of dietary antioxidant to promote neuronal health.
    Matched MeSH terms: Neurites/drug effects*; Neurites/physiology
  11. Phan CW, David P, Naidu M, Wong KH, Sabaratnam V
    PMID: 24119256 DOI: 10.1186/1472-6882-13-261
    Mushrooms are not only regarded as gourmet cuisine but also as therapeutic agent to promote cognition health. However, little toxicological information is available regarding their safety. Therefore, the aim of this study was to screen selected ethno-pharmacologically important mushrooms for stimulatory effects on neurite outgrowth and to test for any cytotoxicity.
    Matched MeSH terms: Neurites/drug effects*; Neurites/metabolism
  12. Eik LF, Naidu M, David P, Wong KH, Tan YS, Sabaratnam V
    PMID: 22203867 DOI: 10.1155/2012/320308
    A national treasure mushroom, Lignosus rhinocerus, has been used to treat variety of ailments by local and indigenous communities in Malaysia. The aim of this study was to investigate the potential of the most valuable part of L. rhinocerus, the sclerotium, on neurite outgrowth activity by using PC-12Adh cell line. Differentiated cells with one thin extension at least double the length of the cell diameter were scored positive. Our results showed that aqueous sclerotium L. rhinocerus extract induced neurite outgrowths of 24.4% and 42.1% at 20 μg/mL (w/v) of aqueous extract alone and a combination of 20 μg/mL (w/v) aqueous extract and 30 ng/mL (w/v) of NGF, respectively. Combination of NGF and sclerotium extract had additive effects and enhanced neurite outgrowth. Neuronal differentiation was demonstrated by indirect immunofluorescence of neurofilament protein. Aqueous sclerotium extract contained neuroactive compounds that stimulated neurite outgrowth in vitro. To our knowledge this is the first report on neurite-stimulating activities of L. rhinocerus.
    Matched MeSH terms: Neurites
  13. Phan CW, Sabaratnam V, Yong WK, Abd Malek SN
    Nat Prod Res, 2018 May;32(10):1229-1233.
    PMID: 28539058 DOI: 10.1080/14786419.2017.1331226
    Chalcones are a group of compounds widely distributed in plant kingdom. The aim of this study was to assess the neurite outgrowth stimulatory activity of selected chalcones, namely helichrysetin, xanthohumol and flavokawin-C. Using adherent rat pheochromocytoma (PC12 Adh) cells, the chalcones were subjected to neurite outgrowth assay and the extracellular nerve growth factor (NGF) levels were determined. Xanthohumol (10 μg/mL) displayed the highest (p 
    Matched MeSH terms: Neurites/drug effects
  14. Phan CW, Sabaratnam V, Bovicelli P, Righi G, Saso L
    Biofactors, 2016 Nov 12;42(6):591-599.
    PMID: 27193378 DOI: 10.1002/biof.1296
    Negletein has been shown to have therapeutic potential for inflammation-associated diseases, but its effect on neurite outgrowth is still unknown. The present study showed that negletein alone did not trigger PC12 cells to differentiate and extend neurites. When compared with the cells in the untreated control, a significant (P 
    Matched MeSH terms: Neurites/drug effects; Neurites/physiology*
  15. Phan CW, David P, Wong KH, Naidu M, Sabaratnam V
    PLoS One, 2015;10(11):e0143004.
    PMID: 26565787 DOI: 10.1371/journal.pone.0143004
    Neurodegenerative diseases are linked to neuronal cell death and impairment of neurite outgrowth. An edible mushroom, Pleurotus giganteus was found to stimulate neurite outgrowth in vitro but the chemical constituents and the underlying mechanism is yet to be elucidated. The chemical constituents of P. giganteus (linoleic acid, oleic acid, cinnamic acid, caffeic acid, p-coumaric acid, succinic acid, benzoic acid, and uridine) were tested for neurite outgrowth activity. Uridine (100 μM) was found to increase the percentage of neurite-bearing cells of differentiating neuroblastoma (N2a) cells by 43.1 ± 0.5%, which was 1.8-fold higher than NGF (50 ng/mL)-treated cells. Uridine which was present in P. giganteus (1.80 ± 0.03 g/100g mushroom extract) increased the phosphorylation of extracellular-signal regulated kinases (ERKs) and protein kinase B (Akt). Further, phosphorylation of the mammalian target of rapamycin (mTOR) was also increased. MEK/ERK and PI3K-Akt-mTOR further induced phosphorylation of cAMP-response element binding protein (CREB) and expression of growth associated protein 43 (GAP43); all of which promoted neurite outgrowth of N2a cells. This study demonstrated that P. giganteus may enhance neurite outgrowth and one of the key bioactive molecules responsible for neurite outgrowth is uridine.
    Matched MeSH terms: Neurites/drug effects*; Neurites/metabolism*
  16. Tan YJ, Lee YT, Mancera RL, Oon CE
    Life Sci, 2021 Nov 01;284:119747.
    PMID: 34171380 DOI: 10.1016/j.lfs.2021.119747
    BZD9L1 was previously described as a SIRT1/2 inhibitor with anti-cancer activities in colorectal cancer (CRC), either as a standalone chemotherapy or in combination with 5-fluorouracil. BZD9L1 was reported to induce apoptosis in CRC cells; however, the network of intracellular pathways and crosstalk between molecular players mediated by BZD9L1 is not fully understood. This study aimed to uncover the mechanisms involved in BZD9L1-mediated cytotoxicity based on previous and new findings for the prediction and identification of related pathways and key molecular players. BZD9L1-regulated candidate targets (RCTs) were identified using a range of molecular, cell-based and biochemical techniques on the HCT 116 cell line. BZD9L1 regulated major cancer pathways including Notch, p53, cell cycle, NFκB, Myc/MAX, and MAPK/ERK signalling pathways. BZD9L1 also induced reactive oxygen species (ROS), regulated apoptosis-related proteins, and altered cell polarity and adhesion profiles. In silico analyses revealed that most RCTs were interconnected, and were involved in the modulation of catalytic activity, metabolism and transcription regulation, response to cytokines, and apoptosis signalling pathways. These RCTs were implicated in p53-dependent apoptosis pathway. This study provides the first assessment of possible associations of molecular players underlying the cytotoxic activity of BZD9L1, and establishes the links between RCTs and apoptosis through the p53 pathway.
    Matched MeSH terms: Neurites/drug effects; Neurites/metabolism
  17. Wang L, Wei LY, Ding R, Feng Y, Li D, Li C, et al.
    Front Physiol, 2020;11:155.
    PMID: 32174842 DOI: 10.3389/fphys.2020.00155
    Accumulating epidemiological evidence supports that chronic exposure to ambient fine particular matters of <2.5 μm (PM2.5) predisposes both children and adults to Alzheimer's disease (AD) and age-related brain damage leading to dementia. There is also experimental evidence to show that PM2.5 exposure results in early onset of AD-related pathologies in transgenic AD mice and development of AD-related and age-related brain pathologies in healthy rodents. Studies have also documented that PM2.5 exposure causes AD-linked molecular and cellular alterations, such as mitochondrial dysfunction, synaptic deficits, impaired neurite growth, neuronal cell death, glial cell activation, neuroinflammation, and neurovascular dysfunction, in addition to elevated levels of amyloid β (Aβ) and tau phosphorylation. Oxidative stress and the oxidative stress-sensitive TRPM2 channel play important roles in mediating multiple molecular and cellular alterations that underpin AD-related cognitive dysfunction. Documented evidence suggests critical engagement of oxidative stress and TRPM2 channel activation in various PM2.5-induced cellular effects. Here we discuss recent studies that favor causative relationships of PM2.5 exposure to increased AD prevalence and AD- and age-related pathologies, and raise the perspective on the roles of oxidative stress and the TRPM2 channel in mediating PM2.5-induced predisposition to AD and age-related brain damage.
    Matched MeSH terms: Neurites
  18. Phan CW, Wong WL, David P, Naidu M, Sabaratnam V
    PMID: 22812497 DOI: 10.1186/1472-6882-12-102
    Drugs dedicated to alleviate neurodegenerative diseases like Parkinson's and Alzheimer's have always been associated with debilitating side effects. Medicinal mushrooms which harness neuropharmacological compounds offer a potential possibility for protection against such diseases. Pleurotus giganteus (formerly known as Panus giganteus) has been consumed by the indigenous people in Peninsular Malaysia for many years. Domestication of this wild mushroom is gaining popularity but to our knowledge, medicinal properties reported for this culinary mushroom are minimal.
    Matched MeSH terms: Neurites/drug effects*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links