Displaying publications 1 - 20 of 34 in total

Abstract:
Sort:
  1. Chaudhary S, Nair AB, Shah J, Gorain B, Jacob S, Shah H, et al.
    AAPS PharmSciTech, 2021 Apr 09;22(3):127.
    PMID: 33835317 DOI: 10.1208/s12249-021-01995-y
    Being a candidate of BCS class II, dolutegravir (DTG), a recently approved antiretroviral drug, possesses solubility issues. The current research was aimed to improve the solubility of the DTG and thereby enhance its efficacy using the solid dispersion technique. In due course, the miscibility study of the drug was performed with different polymers, where Poloxamer 407 (P407) was found suitable to move forward. The solid dispersion of DTG and P407 was formulated using solvent evaporation technique with a 1:1 proportion of drug and polymer, where the solid-state characterization was performed using differential scanning calorimetry, Fourier transform infrared spectroscopy and X-ray diffraction. No physicochemical interaction was found between the DTG and P407 in the fabricated solid dispersion; however, crystalline state of the drug was changed to amorphous as evident from the X-ray diffractogram. A rapid release of DTG was observed from the solid dispersion (>95%), which is highly significant (p<0.05) as compared to pure drug (11.40%), physical mixture (20.07%) and marketed preparation of DTG (35.30%). The drug release from the formulated solid dispersion followed Weibull model kinetics. Finally, the rapid drug release from the solid dispersion formulation revealed increased Cmax (14.56 μg/mL) when compared to the physical mixture (4.12 μg/mL) and pure drug (3.45 μg/mL). This was further reflected by improved bioavailability of DTG (AUC: 105.99±10.07 μg/h/mL) in the experimental Wistar rats when compared to the AUC of animals administered with physical mixture (54.45±6.58 μg/h/mL) and pure drug (49.27±6.16 μg/h/mL). Therefore, it could be concluded that the dissolution profile and simultaneously the bioavailability of DTG could be enhanced by means of the solid dispersion platform using the hydrophilic polymer, P407, which could be projected towards improved efficacy of the drug in HIV/AIDS.
    Matched MeSH terms: Oxazines/administration & dosage*; Oxazines/pharmacokinetics*; Oxazines/therapeutic use
  2. Kelvin Yong Pui Szi, Wan Afiqah Syahirah Wan Ghazali, Siti Fadilah Abdullah, Norzaliana Zawawi, Thirumulu Ponnuraj Kannan
    MyJurnal
    Clinacanthus nutans (C. nutans), a well-known ethnopharmacological plant consumed for its medicinal purposes by Southeast Asian communities. C. nutans is said to possess antipyretic, inflammatory, antiedemic as well as analgesic properties and used traditionally in treating various skin ailments, Herpes infection, cancer and diabetes. The young leaves of this C. nutans are consumed in Malaysia for maintaining health. In this study, the proliferative activity of human gingival fibroblast cells (HGF-1, ATCC®CRL-2014™, USA) treated with the ethanol extract obtained from C. nutans leaves at three different concentrations (250, 125 and 62.5 µg/ml) was compared with the untreated cells using alamarBlue assay. The proliferative activity of HGF-1 using alamarBlue assay showed that the cells treated with 62.5 μg/ml of ethanolic extract of C. nutans leaves exhibited increased proliferation compared to the other groups and hence does not exhibit any cytotoxicity on HGF-1.
    Matched MeSH terms: Oxazines
  3. Lutfi AN, Kannan TP, Fazliah MN, Jamaruddin MA, Saidi J
    Aust Dent J, 2010 Mar;55(1):79-85.
    PMID: 20415916 DOI: 10.1111/j.1834-7819.2009.01185.x
    The biological examination of pulp injury, repair events and response of dental pulp stem cells to dental restorative materials is important to accomplish restorative treatment, especially to commonly used dental materials in paediatric dentistry, such as glass ionomer cement (GIC) and calcium hydroxide (Ca(OH)(2)) lining cement.
    Matched MeSH terms: Oxazines
  4. Teh CH, Nazni WA, Nurulhusna AH, Norazah A, Lee HL
    BMC Microbiol, 2017 Feb 16;17(1):36.
    PMID: 28209130 DOI: 10.1186/s12866-017-0936-3
    BACKGROUND: Antimicrobial resistance is currently a major global issue. As the rate of emergence of antimicrobial resistance has superseded the rate of discovery and introduction of new effective drugs, the medical arsenal now is experiencing shortage of effective drugs to combat diseases, particularly against diseases caused by the dreadful multidrug-resistant strains, such as the methicillin-resistant Staphylococcus aureus (MRSA). The ability of fly larvae to thrive in septic habitats has prompted us to determine the antibacterial activity and minimum inhibitory concentrations (MICs) of larval extract of flies, namely Lucilia cuprina, Sarcophaga peregrina and Musca domestica against 4 pathogenic bacteria [Staphylococcus aureus, methicillin-resistant S. aureus (MRSA), Pseudomonas aeruginosa and Escherichia coli] via a simple and sensitive antibacterial assay, resazurin-based turbidometric (TB) assay as well as to demonstrate the preliminary chemical profile of larval extracts using gas chromatography-mass spectrophotometry (GC-MS).

    RESULTS: The resazurin-based TB assay demonstrated that the L. cuprina larval extract was inhibitory against all tested bacteria, whilst the larval extract of S. peregrina and M. domestica were only inhibitory against the MRSA, with a MIC of 100 mg ml(-1). Subsequent sub-culture of aliquots revealed that the larval extract of L. cuprina was bactericidal against MRSA whilst the larval extracts of S. peregrina and M. domestica were bacteriostatic against MRSA. The GC-MS analysis had quantitatively identified 20 organic compounds (fatty acids or their derivatives, aromatic acid esters, glycosides and phenol) from the larval extract of L. cuprina; and 5 fatty acid derivatives with known antimicrobial activities from S. peregrina and M. domestica.

    CONCLUSION: The resazurin-based turbidometric assay is a simple, reliable and feasible screening assay which evidently demonstrated the antibacterial activity of all fly larval extracts, primarily against the MRSA. The larval extract of L. cuprina exerted a broad spectrum antibacterial activity against all tested bacteria. The present study revealed probable development and use of novel and effective natural disinfectant(s) and antibacterial agent(s) from flies and efforts to screen more fly species for antibacterial activity using resazurin-based TB assay should be undertaken for initial screening for subsequent discovery and isolation of potential novel antimicrobial substances, particularly against the multi-drug resistant strains.

    Matched MeSH terms: Oxazines/chemistry*
  5. Teo CL, Atta M, Bukhari A, Taisir M, Yusuf AM, Idris A
    Bioresour Technol, 2014 Jun;162:38-44.
    PMID: 24736210 DOI: 10.1016/j.biortech.2014.03.113
    Wavelength of light is a crucial factor which renders microalgae as the potential biodiesel. In this study, Tetraselmis sp. and Nannochloropsis sp. as famous targets were selected. The effect of different light wavelengths on growth rate and lipid production was studied. Microalgae were cultivated for 14 days as under blue, red, red-blue LED and white fluorescent light. The growth rate of microalgae was analyzed by spectrophotometer and cell counting while oil production under improved Nile red method. Optical density result showed the microalgae exhibited better growth curve under blue wavelength. Besides, Tetraselmis sp. and Nannochloropsis sp. under blue wavelength showed the higher growth rate (1.47 and 1.64 day(-1)) and oil production (102.954 and 702.366 a.u.). Gas chromatography analysis also showed that palmitic acid and stearic acid which were compulsory components for biodiesel contribute around 49-51% of total FAME from Nannochloropsis sp. and 81-83% of total FAME from Tetraselmis sp.
    Matched MeSH terms: Oxazines/metabolism
  6. Alias Z, Tan IK
    Bioresour Technol, 2005 Jul;96(11):1229-34.
    PMID: 15734309
    In early attempts to isolate palm oil-utilising bacteria from palm oil mill effluent (POME), diluted liquid samples of POME were spread on agar containing POME as primary nutrient. 45 purified colonies were screened for intracellular lipids by staining with Sudan Black B. Of these, 10 isolates were positively stained. The latter were grown in a nitrogen-limiting medium with palm olein (a triglyceride) or saponified palm olein (salts of fatty acids) as carbon source. None of the isolates grew in the palm olein medium but all grew well in the saponified palm olein medium. Of the latter however, only one isolate was positively stained with Nile Blue A, indicating the presence of PHA. This method did not successfully generate bacterial isolates which could metabolise palm olein to produce PHA. An enrichment technique was therefore developed whereby a selective medium was designed. The latter comprised minerals and palm olein (1% w/v) as sole carbon source to which POME (2.5% v/v) was added as the source of bacteria. The culture was incubated with shaking at 30 degrees C for 4 weeks. Out of seven isolates obtained from the selective medium, two isolates, FLP1 and FLP2, could utilise palm olein for growth and production of the homopolyester, poly(3-hydroxybutyrate). FLP1 is gram-negative and is identified (BIOLOG) to have 80% similarity to Burkholderia cepacia. When grown with propionate or valerate, FLP1 produced a copolyester, poly(3-hydroxybutyrate-co-3-hydroxyvalerate).
    Matched MeSH terms: Oxazines
  7. Musa M, Mohd Ali K, Kannan TP, Azlina A, Omar NS, Chatterji A, et al.
    Cell J, 2015;17(2):253-63.
    PMID: 26199904
    OBJECTIVE: Perivitelline fluid (PVF) of the horseshoe crab embryo has been reported to possess an important role during embryogenesis by promoting cell proliferation. This study aims to evaluate the effect of PVF on the proliferation, chromosome aberration (CA) and mutagenicity of the dental pulp stem cells (DPSCs).

    MATERIALS AND METHODS: This is an in vitro experimental study. PVF samples were collected from horseshoe crabs from beaches in Malaysia and the crude extract was prepared. DPSCs were treated with different concentrations of PVF crude extract in an 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay (cytotoxicity test). We choose two inhibitory concentrations (IC50 and IC25) and two PVF concentrations which produced more cell viability compared to a negative control (100%) for further tests. Quantitative analysis of the proliferation activity of PVF was studied using the AlamarBlue®assay for 10 days. Population doubling times (PDTs) of the treatment groups were calculated from this assay. Genotoxicity was evaluated based on the CA and Ames tests. Statistical analysis was carried out using independent t test to calculate significant differences in the PDT and mitotic indices in the CA test between the treatment and negative control groups. Significant differences in the data were P<0.05.

    RESULTS: A total of four PVF concentrations retrieved from the MTT assay were 26.887 mg/ml (IC50), 14.093 mg/ml (IC25), 0.278 mg/ml (102% cell viability) and 0.019 mg/ml (102.5% cell viability). According to the AlamarBlue®assay, these PVF groups produced comparable proliferation activities compared to the negative (untreated) control. PDTs between PVF groups and the negative control were insignificantly different (P>0.05). No significant aberrations in chromosomes were observed in the PVF groups and the Ames test on the PVF showed the absence of significant positive results.

    CONCLUSION: PVF from horseshoe crabs produced insignificant proliferative activity on treated DPSCs. The PVF was non-genotoxic based on the CA and Ames tests.

    Matched MeSH terms: Oxazines
  8. Mohd Izham NZ, Yusoff HM, Ul Haq Bhat I, Endo T, Fukumura H, Kwon E, et al.
    Data Brief, 2020 Jun;30:105568.
    PMID: 32368595 DOI: 10.1016/j.dib.2020.105568
    The structural investigation of synthesized compounds can be carried out by various spectroscopic techniques. It is an important prospect in order to elucidate the structure of the desired products before being further utilized. The preparation of new p-nitro stilbene Schiff base derivatives as an electrochemical DNA potential spacer was synthesized using (E)-4-(4-nitrostyryl)aniline from Heck reaction with aldehydes in ethanolic solution. The data presented here in this article contains FTIR, UV-Vis and 1H and 13C NMR of (E)-4-(4-nitrostyryl)aniline and nitrostyryl aniline derivatives.
    Matched MeSH terms: Oxazines
  9. Peh KK, Wong CF
    Drug Dev Ind Pharm, 2000 Jul;26(7):723-30.
    PMID: 10872090
    Controlled-release grade hydroxypropylmethylcellulose (HPMC) or xanthan gum (XG) and microcrystalline cellulose (MCC) were employed to prepare controlled-release diltiazem hydrochloride tablets. The similarity factor f2 was used for dissolution profile comparison using Herbesser 90 SR as a reference product. Drug release could be sustained in a predictable manner by modifying the content of HPMC or XG. Moreover, the drug release profiles of tablets prepared using these matrix materials were not affected by pH and agitation rate. The f2 values showed that only one batch of tablets (of diltiazem HCl, HPMC or XG, and MCC in proportions of 3.0:3.0:4.0) was considered similar to that of the reference product, with values above 50. The unbiased similarity factor f2* values were not much different from the f2 values, ascribing to a small dissolution variance of the test and reference products. The amount of HPMC or XG incorporated to produce tablets with the desired dissolution profile could be determined from the curves of f2 versus polymer content. Hence, the f2 values can be applied as screening and optimization tools during development of controlled-release preparations.
    Matched MeSH terms: Oxazines
  10. Loo YY, Rukayadi Y, Nor-Khaizura MA, Kuan CH, Chieng BW, Nishibuchi M, et al.
    Front Microbiol, 2018;9:1555.
    PMID: 30061871 DOI: 10.3389/fmicb.2018.01555
    Silver nanoparticles (AgNPs) used in this study were synthesized using pu-erh tea leaves extract with particle size of 4.06 nm. The antibacterial activity of green synthesized AgNPs against a diverse range of Gram-negative foodborne pathogens was determined using disk diffusion method, resazurin microtitre-plate assay (minimum inhibitory concentration, MIC), and minimum bactericidal concentration test (MBC). The MIC and MBC of AgNPs against Escherichia coli, Klebsiella pneumoniae, Salmonella Typhimurium, and Salmonella Enteritidis were 7.8, 3.9, 3.9, 3.9 and 7.8, 3.9, 7.8, 3.9 μg/mL, respectively. Time-kill curves were used to evaluate the concentration between MIC and bactericidal activity of AgNPs at concentrations ranging from 0×MIC to 8×MIC. The killing activity of AgNPs was fast acting against all the Gram-negative bacteria tested; the reduction in the number of CFU mL-1 was >3 Log10 units (99.9%) in 1-2 h. This study indicates that AgNPs exhibit a strong antimicrobial activity and thus might be developed as a new type of antimicrobial agents for the treatment of bacterial infection including multidrug resistant bacterial infection.
    Matched MeSH terms: Oxazines
  11. Wong CF, Yuen KH, Peh KK
    Int J Pharm, 1999 Feb 01;178(1):11-22.
    PMID: 10205621
    Controlled release buccal patches were fabricated using Eudragit NE40D and studied. Various bioadhesive polymers, namely hydroxypropylmethyl cellulose, sodium carboxymethyl cellulose and Carbopol of different grades, were incorporated into the patches, to modify their bioadhesive properties as well as the rate of drug release, using metoprolol tartrate as the model drug. The in-vitro drug release was determined using the USP 23 dissolution test apparatus 5 with slight modification, while the bioadhesive properties were evaluated using texture analyzer equipment with chicken pouch as the model tissue. The incorporation of hydrophilic polymers was found to affect the drug release as well as enhance the bioadhesiveness. Although high viscosity polymers can enhance the bioadhesiveness of the patches, they also tend to cause non-homogeneous distribution of the polymers and drug, resulting in non-predictable drug-release rates. Of the various bioadhesive polymers studied, Cekol 700 appeared to be most satisfactory in terms of modifying the drug release and enhancement of the bioadhesive properties.
    Matched MeSH terms: Oxazines
  12. Far FE, Al-Obaidi MMJ, Desa MNM
    J Mycol Med, 2018 Sep;28(3):486-491.
    PMID: 29753721 DOI: 10.1016/j.mycmed.2018.04.007
    BACKGROUND: Malassezia furfur is lipodependent yeast like fungus that causes superficial mycoses such as pityriasis versicolor and dandruff. Nevertheless, there are no standard reference methods to perform susceptibility test of Malassezia species yet.

    AIMS: Therefore, in this study, we evaluated the optimized culture medium for growth of this lipophilic yeast using modified leeming-Notman agar and colorimetric resazurin microtiter assay to assess antimycotic activity of fluconazole against M. furfur.

    RESULTS: The result showed that these assays were more adjustable for M. furfur with reliable and reproducible MIC end-point, by confirming antimycotic activity of fluconazole with MIC of 2μg/ml.

    CONCLUSION: We conclude that this method is considered as the rapid and effective susceptibility testing of M. furfur with fluconazole antifungal activity.

    Matched MeSH terms: Oxazines/chemistry*
  13. Mohd Zain N.S., Tajudin S.S., Mohd Noor S.N.F., Mohamad H.
    MyJurnal
    Thisstudy aim tocharacterize melt-derivedbioactive glass and to determinethe bioactive glass (BG) suitability for dental usagethrough proliferative activity assessment of stem cells from human exfoliated deciduous teeth (SHED)when exposed to bioactive glass conditioned medium. Bioglass 45S5 in mole percentages (46.13% SiO2, 26.91% CaO, 24.35% Na2O and 2.60% P2O5)was synthesizedthrough melt-derived and characterized usingX-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR)to confirm and identify its properties.SHEDwere used to evaluate the biocompatibility of 45S5 by exposing the cells to various concentration of BG-conditioned medium (1-10 mg/ml) using alamarBlue assay. The BG produced has an amorphous structureas shown by XRD analysis. TheSi-O-Si bending, asymmetric Si-O stretching and asymmetricSi-O-Si stretchingbands were observed in the BG structure supporting the presenceof silicate network. For alamarBlue assay, SHED cultured in BG-conditioned medium showed high proliferation rate when subjected to minimal powder content in the DMEM cell culture medium.Hence, it can be concluded that SHED cultured in lower powder content of the BG-conditioned media showedhigh proliferative activity suggesting the potential of the BG for dental usage.
    Matched MeSH terms: Oxazines
  14. Schönrath I, Tsvetkov VB, Zatsepin TS, Aralov AV, Müller J
    J Biol Inorg Chem, 2019 08;24(5):693-702.
    PMID: 31263954 DOI: 10.1007/s00775-019-01682-1
    1,3-Diaza-2-oxophenoxazine (X) has been introduced as a ligand in silver(I)-mediated base pairing in a parallel DNA duplex. This fluorescent cytosine analog is capable of forming stabilizing X-Ag(I)-X and X-Ag(I)-C base pairs in DNA duplexes, as confirmed by temperature-dependent UV spectroscopy and luminescence spectroscopy. DFT calculations of the silver(I)-mediated base pairs suggest the presence of a synergistic hydrogen bond. Molecular dynamics (MD) simulations of entire DNA duplexes nicely underline the geometrical flexibility of these base pairs, with the synergistic hydrogen bond facing either the major or the minor groove. Upon silver(I) binding to the X:X or X:C base pairs, the luminescence emission maximum experiences a red shift from 448 to 460 nm upon excitation at 370 nm. Importantly, the luminescence of the 1,3-diaza-2-oxophenoxazine ligand is not quenched significantly upon binding a silver(I) ion. In fact, the luminescence intensity even increases upon formation of a X-Ag(I)-C base pair, which is expected to be beneficial for the development of biosensors. As a consequence, the silver(I)-mediated phenoxazinone base pairs represent the first strongly fluorescent metal-mediated base pairs.
    Matched MeSH terms: Oxazines/chemistry*
  15. Sayyed AH, Wright DJ
    J Econ Entomol, 2004 Dec;97(6):2043-50.
    PMID: 15666763
    Bioassays (at generation 1, G1) using fipronil, spinosad, indoxacarb, and Bacillus thuringiensis toxins Cry1Ac and Cry1Ca with a newly collected field population of Plutella xylostella (L.) from farmers fields in the Cameron Highlands, Malaysia, indicated a resistance ratio of approximately 400-, 1,170-, 330-, 2,840-, and 1,410-fold, respectively, compared with a laboratory-susceptible population of P. xylostella (ROTH). At G3, the field-derived population was divided into two subpopulations, one was selected (G3 to G7) with fipronil (fip-SEL), whereas the second was left unselected (UNSEL). Bioassays at G8 found that selection with fipronil gave a resistance ratio of approximately 490 compared with UNSEL and approximately 770 compared with ROTH. The resistance ratio for fipronil, spinosad, indoxacarb, Cry1Ac, and Cry1Ca in the UNSEL population declined significantly by G8. Logit regression analysis of F1 reciprocal crosses between fip-SEL (at G8) and UNSEL indicated that resistance to fipronil in the fip-SEL population was inherited as an autosomal, incompletely recessive (D(LC) = 0.37) trait. At the highest dose of fipronil tested, resistance was completely recessive, whereas at the lowest dose it was incompletely recessive. A direct test of monogenic inheritance based on a backcross of F1 progeny with fip-SEL suggested that resistance to fipronil was controlled by a single locus. The fip-SEL population at G8 showed little change in its response to spinosad and indoxacarb compared with G1, whereas its susceptibility to Cry1Ac and Cry1Ca increased markedly over the selection period. This suggests that there may be some low level of cross-resistance between fipronil, spinosad, and indoxacarb.
    Matched MeSH terms: Oxazines
  16. Chong KF, Lee CY
    J Econ Entomol, 2009 Aug;102(4):1586-90.
    PMID: 19736772
    An evaluation of several insecticides, namely, 0.01% fipronil, 0.05% indoxacarb, and 2% boric acid in liquid bait formulations were carried out against field populations of the longlegged ant, Anoplolepis gracilipes (Fr. Smith) (Hymenoptera: Formicidae). The baits were formulated in brown cane sugar solution (50%, wt:wt) and placed in an experimental bait station. Each bait was evaluated against populations of A. gracilipes at four buildings. Fipronil, indoxacarb, and boric acid were effective against A. gracilipes, with > 90% reduction of workers within 3 d posttreatment. Total reduction (100%) was achieved within 7 d for fipronil, 14 d for indoxacarb, and 56 d for boric acid. The performance of fipronil and indoxacarb baits did not differ significantly (P > 0.05) in all postbaiting sampling intervals. Reduction of A. gracilipes resulted in an increase in other ant species [Monomorium pharaonis (L.), Monomorium floricola (Jerdon), Monomorium orientale Mayr, Monomorium destructor (Jerdon), Tapinoma indicum Forel, Pheidole sp., and Camponotus sp.] at the baited locations.
    Matched MeSH terms: Oxazines
  17. Karim MR, Zakaria Z, Hassan L, Ahmad NI, Faiz NM, Garba B
    J Glob Antimicrob Resist, 2021 09;26:154-156.
    PMID: 34118481 DOI: 10.1016/j.jgar.2021.05.012
    Matched MeSH terms: Oxazines
  18. Berahim Z, Moharamzadeh K, Rawlinson A, Jowett AK
    J. Periodontol., 2011 May;82(5):790-7.
    PMID: 21080786 DOI: 10.1902/jop.2010.100533
    Cell-based therapy using autologous cells has been suggested as a potential approach for periodontal tissue regeneration. Spheroid systems are a form of three-dimensional cell culture that promotes cell matrix interaction, which could recapitulate the aspect of cell homeostasis in vivo. The aim of this study is to assess the interaction of periodontal fibroblast spheroids with synthetic and collagen-based membranes that have been used in guided tissue regeneration.
    Matched MeSH terms: Oxazines
  19. Jibril FI, Mohd Hilmi AB, Aliyu S
    J Pharm Bioallied Sci, 2020 Nov;12(Suppl 2):S831-S835.
    PMID: 33828385 DOI: 10.4103/jpbs.JPBS_280_19
    Introduction: Stingless bee is an insect that belongs to the family Apidae. Its name is based on its disability of stinging. It has a high product of Meliponini honey and propolis by which are commonly referred to as stingless bee honey and stingless bee propolis. Meliponini honey is one of the crucial natural sources and has the potential to kill infectious microorganisms. Previous studies have proved that the antibacterial activity of natural honey was an effect of hydrogen peroxide, a substance contained in the honey. However, these claims were contradicting with too many studies.

    Objective: Therefore, this study aimed to identify the antibacterial activity of Malaysian Meliponini honey which contained non-hydrogen peroxide against Staphylococcus aureus, an opportunistic microbial.

    Materials and Methods: Meliponini honey was used as an antibacterial agent for the treatment of S. aureus in agar well diffusion assay. An amplex red hydrogen peroxide kit was used to identify the hydrogen peroxide in the honey sample. Meanwhile, non-hydrogen peroxide activity was performed by using honey-catalase treated.

    Results: For the first time, we found that hydrogen peroxide was absent in all Meliponini honey samples. Meliponini honey has higher antibacterial activity (13.30 ± 0.56mm) compared to Apis honey (9.03 ± 0.22mm) in agar well diffusion assay.

    Discussion: Non-hydrogen peroxide in Meliponini honey is a bioactive compound and beneficial to kill the microbial infection.

    Conclusion: Antibacterial activity of Malaysian Meliponini honey is directly contributed by non-hydrogen peroxide.

    Matched MeSH terms: Oxazines
  20. Kumarn S, Churinthorn N, Nimpaiboon A, Sriring M, Ho CC, Takahara A, et al.
    Langmuir, 2018 10 30;34(43):12730-12738.
    PMID: 30335388 DOI: 10.1021/acs.langmuir.8b02321
    The stabilization mechanism of natural rubber (NR) latex from Hevea brasiliensis was studied to investigate the components involved in base-catalyzed ester hydrolysis, namely, hydrolyzable lipids, ammonia, and the products responsible for the desired phenomenon observed in ammonia-preserved NR latex. Latex stability is generally thought to come from a rubber particle (RP) dispersion in the serum, which is encouraged by negatively charged species distributed on the RP surface. The mechanical stability time (MST) and zeta potential were measured to monitor field latices preserved in high (FNR-HA) and low ammonia (FNR-LA) contents as well as that with the ester-containing components removed (saponified NR) at different storage times. Amounts of carboxylates of free fatty acids (FFAs), which were released by the transformation and also hypothesized to be responsible for the like-charge repulsion of RPs, were measured as the higher fatty acid (HFA) number and corroborated by confocal laser scanning microscopy (CLSM) both qualitatively and quantitatively. The lipids and their FFA products interact differently with Nile red, which is a lipid-selective and polarity-sensitive fluorophore, and consequently re-emit characteristically. The results were confirmed by conventional ester content determination utilizing different solvent extraction systems to reveal that the lipids hydrolyzed to provide negatively charged fatty acid species were mainly the polar lipids (glycolipids and phospholipids) at the RP membrane but not those directly linked to the rubber molecule and, to a certain extent, those suspended in the serum. From new findings disclosed herein together with those already reported, a new model for the Hevea rubber particle in the latex form is proposed.
    Matched MeSH terms: Oxazines
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links