Displaying publications 1 - 20 of 53 in total

Abstract:
Sort:
  1. Sim SK, Tan YC, Tee JH, Yusoff AA, Abdullah JM
    Turk Neurosurg, 2015;25(4):617-24.
    PMID: 26242340 DOI: 10.5137/1019-5149.JTN.14035-15.1
    This study evaluated the neuroprotective effect of intrathecally infused paclitaxel in the prevention of motoneuron death and mitochondrial dysfunction following brachial plexus avulsion injury.
    Matched MeSH terms: Paclitaxel/pharmacology*
  2. Al-Obaidy R, Haider AJ, Al-Musawi S, Arsad N
    Sci Rep, 2023 Feb 23;13(1):3180.
    PMID: 36823237 DOI: 10.1038/s41598-023-30221-x
    Fibrosarcoma is a rare type of cancer that affects cells known as fibroblasts that are malignant, locally recurring, and spreading tumor in fibrous tissue. In this work, an iron plate immersed in an aqueous solution of double added deionized water, supplemented with potassium permanganate solution (KMnO4) was carried out by the pulsed laser ablation in liquid method (PLAIL). Superparamagnetic iron oxide nanoparticles (SPIONs) were synthesized using different laser wavelengths (1064, 532, and 266 nm) at a fluence of 28 J/cm2 with 100 shots of the iron plate to control the concentration, shape and size of the prepared high-stability SPIONs. The drug nanocarrier was synthesized by coating SPION with paclitaxel (PTX)-loaded chitosan (Cs) and polyethylene glycol (PEG). This nanosystem was functionalized by receptors that target folate (FA). The physiochemical characteristics of SPION@Cs-PTX-PEG-FA nanoparticles were evaluated and confirmed by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-Ray diffraction (XRD), atomic force microscopy (AFM), and dynamic light scattering (DLS) methods. Cell internalization, cytotoxicity assay (MTT), apoptosis induction, and gene expression of SPION@Cs-PTX-PEG-FA were estimated in fibrosarcoma cell lines, respectively. In vivo studies used BALB/c tumor-bearing mice. The results showed that SPION@Cs-PTX-PEG-FA exhibited suitable physical stability, spherical shape, desirable size, and charge. SPION@Cs-PTX-PEG-FA inhibited proliferation and induced apoptosis of cancer cells (P 
    Matched MeSH terms: Paclitaxel/pharmacology; Paclitaxel/therapeutic use; Paclitaxel/chemistry
  3. Sharmni Vishnu K, Win TT, Aye SN, Basavaraj AK
    BMC Cancer, 2022 Nov 05;22(1):1139.
    PMID: 36335316 DOI: 10.1186/s12885-022-10225-y
    BACKGROUND: Triple negative breast cancer (TNBC) is clinically aggressive breast cancer with a poor prognosis. Approximately 20% of TNBC has been found to express programmed death ligand 1 (PD-L1), making it a potential therapeutic target. As a PD-L1 inhibitor, atezolizumab is a recently approved immunotherapeutic drug for TNBC, this meta-analysis (MA) was aimed to review the randomized controlled trial studies (RCTs) of combined atezolizumab and nab-paclitaxel in the treatment of TNBC and synthesize the evidence-based results on its effectiveness and safety.

    METHOD: We searched PubMed, Embase, EBSCOhost and ClinicalTrials.gov for the eligible RCTs which compared the efficacy and safety of combined atezolizumab and nab-paclitaxel with nab-paclitaxel alone. The outcomes analyzed included overall survival (OS), progression-free survival (PFS), objective response rate (ORR) and treatment-related adverse effects (AEs).

    RESULTS: A total of six RCTs were included in this MA. For efficacy, although OS was not significantly prolonged with combined atezolizumab and nab-paclitaxel (HR 0.90, 95% CI [0.79, 1.01], p=0.08), this combination therapy significantly improved PFS (HR 0.72, 95% CI [0.59, 0.87], p=0.0006) and ORR (RR 1.25, 95% CI [0.79, 1.01] p<0.00001). For safety, any AEs, haematological, gastrointestinal, and liver AEs showed no statistically significant differences between the atezolizumab and nab-paclitaxel combination group and nab-paclitaxel alone group. However, serious AEs, high grade, dermatological, pulmonary, endocrine, and neurological AEs were significantly lower with nab-paclitaxel alone compared to atezolizumab and nab-paclitaxel combined (p-value range from <0.00001 to 0,02).

    CONCLUSION: Atezolizumab combined with nab-paclitaxel was associated with improved outcomes in the treatment of TNBC; however, this combination resulted in more toxicity compared to nab-paclitaxel alone. While nab-paclitaxel alone produced chemotherapy-related AEs, the combination of atezolizumab with nab-paclitaxel produced AEs, especially immune-related AEs such as haematological, pulmonary, endocrine, and neurological AEs.

    TRIAL REGISTRATION: This research work of systematic review has been registered on PROSPERO (Registration number: CRD42022297952).

    Matched MeSH terms: Paclitaxel
  4. Tibon NS, Ng CH, Cheong SL
    Eur J Med Chem, 2020 Feb 15;188:111983.
    PMID: 31911292 DOI: 10.1016/j.ejmech.2019.111983
    Discovery and development of antimalarial drugs have long been dominated by single-target therapy. Continuous effort has been made to explore and identify different targets in malaria parasite crucial for the malaria treatment. The single-target drug therapy was initially successful, but it was later supplanted by combination therapy with multiple drugs to overcome drug resistance. Emergence of resistant strains even against the combination therapy has warranted a review of current antimalarial pharmacotherapy. This has led to the development of the new concept of covalent biotherapy, in which two or more pharmacophores are chemically bound to produce hybrid antimalarial drugs with multi-target functionalities. Herein, the review initially details the current pharmacotherapy for malaria as well as the conventional and novel targets of importance identified in the malaria parasite. Then, the rationale of multi-targeted therapy for malaria, approaches taken to develop the multi-target antimalarial hybrids, and the examples of hybrid molecules are comprehensively enumerated and discussed.
    Matched MeSH terms: Paclitaxel/pharmacology*; Paclitaxel/chemistry
  5. Fatemian T, Moghimi HR, Chowdhury EH
    Pharmaceutics, 2019 Sep 03;11(9).
    PMID: 31484456 DOI: 10.3390/pharmaceutics11090458
    : Pharmacotherapy as the mainstay in the management of breast cancer suffers from various drawbacks, including non-targeted biodistribution, narrow therapeutic and safety windows, and also resistance to treatment. Thus, alleviation of the constraints from the pharmacodynamic and pharmacokinetic profile of classical anti-cancer drugs could lead to improvements in efficacy and patient survival in malignancies. Moreover, modifications in the genetic pathophysiology of cancer via administration of small nucleic acids might pave the way towards higher response rates to chemotherapeutics. Inorganic pH-dependent carbonate apatite (CA) nanoparticles were utilized in this study to efficiently deliver various classes of therapeutics into cancer cells. Co-delivery of drugs and genetic materials was successfully attained through a carbonate apatite delivery device. On 4T1 cells, siRNAs against AKT and ERBB2 plus paclitaxel or docetaxel resulted in the largest increase in anti-cancer effects compared to CA/paclitaxel or CA/docetaxel. Therefore, these ingredients were selected for further in vivo investigations. Animals receiving injections of CA/paclitaxel or CA/docetaxel loaded with siRNAs against AKT and ERBB2 possessed significantly smaller tumors compared to CA/drug-treated mice. Interestingly, synergistic interactions in target protein knock down with combinations of CA/AKT/paclitaxel, CA/ERBB2/docetaxel were documented via western blotting.
    Matched MeSH terms: Paclitaxel
  6. Tiash S, Chua MJ, Chowdhury EH
    Int J Oncol, 2016 Jun;48(6):2359-66.
    PMID: 27035628 DOI: 10.3892/ijo.2016.3452
    Treatment of breast cancer, the second leading cause of female deaths worldwide, with classical drugs is often accompanied by treatment failure and relapse of disease condition. Development of chemoresistance and drug toxicity compels compromising the drug concentration below the threshold level with the consequence of therapeutic inefficacy. Moreover, amplification and over-activation of proto-oncogenes in tumor cells make the treatment more challenging. The oncogene, ROS1 which is highly expressed in diverse types of cancers including breast carcinoma, functions as a survival protein aiding cancer progression. Thus we speculated that selective silencing of ROS1 gene by carrier-mediated delivery of siRNA might sensitize the cancer cells to the classical drugs at a relatively low concentration. In this investigation we showed that intracellular delivery of c-ROS1-targeting siRNA using pH-sensitive inorganic nanoparticles of carbonate apatite sensitizes mouse breast cancer cells (4T1) to doxorubicin, but not to cisplatin or paclitaxel, with the highest enhancement in chemosensitivity obtained at 40 nM of the drug concentration. Although intravenous administrations of ROS1-loaded nanoparticles reduced growth of the tumor, a further substantial effect on growth retardation was noted when the mice were treated with the siRNA- and Dox-bound particles, thus suggesting that silencing of ROS1 gene could sensitize the mouse breast cancer cells both in vitro and in vivo to doxorubicin as a result of synergistic effect of the gene knockdown and the drug action, eventually preventing activation of the survival pathway protein, AKT1. Our findings therefore provide valuable insight into the potential cross-talk between the pathways of ROS1 and doxorubicin for future development of effective therapeutics for breast cancer.
    Matched MeSH terms: Paclitaxel/pharmacology
  7. Daddiouaissa D, Amid A, Abdullah Sani MS, Elnour AAM
    J Ethnopharmacol, 2021 Apr 24;270:113813.
    PMID: 33444719 DOI: 10.1016/j.jep.2021.113813
    ETHNOPHARMACOLOGICAL RELEVANCE: Medicinal plants have been used by indigenous people across the world for centuries to help individuals preserve their wellbeing and cure diseases. Annona muricata L. (Graviola) which is belonging to the Annonaceae family has been traditionally used due to its medicinal abilities including antimicrobial, anti-inflammatory, antioxidant and cancer cell growth inhibition. Graviola is claimed to be a potential antitumor due to its selective cytotoxicity against several cancer cell lines. However, the metabolic mechanism information underlying the anticancer activity remains limited.

    AIM OF THE STUDY: This study aimed to investigate the effect of ionic liquid-Graviola fruit pulp extract (IL-GPE) on the metabolomics behavior of colon cancer (HT29) by using an untargeted GC-TOFMS-based metabolic profiling.

    MATERIALS AND METHODS: Multivariate data analysis was used to determine the metabolic profiling, and the ingenuity pathway analysis (IPA) was used to predict the altered canonical pathways after treating the HT29 cells with crude IL-GPE and Taxol (positive control).

    RESULTS: The principal components analysis (PCA) identified 44 metabolites with the most reliable factor loading, and the cluster analysis (CA) separated three groups of metabolites: metabolites specific to the non-treated HT29 cells, metabolites specific to the treated HT29 cells with the crude IL-GPE and metabolites specific to Taxol treatment. Pathway analysis of metabolomic profiles revealed an alteration of many metabolic pathways, including amino acid metabolism, aerobic glycolysis, urea cycle and ketone bodies metabolism that contribute to energy metabolism and cancer cell proliferation.

    CONCLUSION: The crude IL-GPE can be one of the promising anticancer agents due to its selective inhibition of energy metabolism and cancer cell proliferation.

    Matched MeSH terms: Paclitaxel/pharmacology
  8. Yew Beng Kang, Pichika R Mallikarjuna, Davamani A Fabian, Adinarayana Gorajana, Chooi Ling Lim, Eng Lai Tan
    MyJurnal
    Important bioactive molecules are molecules that are pharmacologically active derived from natural sources and through chemical synthesis. Over the years many of such molecules have been discovered through bioprospective endeavours. The discovery of taxol from the pacific yew tree bark that has the ability in stabilising cellular microtubules represents one of the hallmarks of success of such endeavours. In recent years, the discovery process has been aided by the rapid development
    of techniques and technologies in chemistry and biotechnology. The progress in advanced genetics and computational biology has also transformed the way hypotheses are formulated as well as the strategies for drug discovery. Of equal importance is the use of advanced drug delivery vehicles in enhancing the efficacy and bioavailability of bioactive molecules. The availability of suitable animal models for testing and validation is yet another major determinant in increasing the prospect for
    clinical trials of bioactive molecules.
    Matched MeSH terms: Paclitaxel
  9. Daddiouaissa D, Amid A, Kabbashi NA, Fuad FAA, Elnour AM, Epandy MAKMS
    J Ethnopharmacol, 2019 May 23;236:466-473.
    PMID: 30853648 DOI: 10.1016/j.jep.2019.03.003
    ETHNOPHARMACOLOGICAL RELEVANCE: Medicinal plants have been used for ages by indigenous communities around the world to help humankind sustain its health. Graviola (Annona muricata), also called soursop, is a member of the Annonaceae family and is an evergreen plant that is generally distributed in tropical and subtropical areas of the world. Graviola tree has a long history of traditional use due to its therapeutic potential including anti-inflammatory, antimicrobial, antioxidant, insecticide and cytotoxic to tumor cells.

    AIM OF THE STUDY: This study aimed to investigate the in vitro antiproliferative effects and apoptotic events of the ionic liquid extract of Graviola fruit (IL-GFE) on MCF-7 breast cancer cells and their cytokinetics behaviour to observe their potential as a therapeutic alternative in cancer treatment.

    MATERIALS AND METHODS: The cell viability assay of the extract was measured using tetrazolium bromide (MTT assay) to observe the effects of Graviola fruit extract. Then the cytokinetics behaviour of MCF-7 cells treated with IL-GFE is observed by plotting the growth curve of the cells. Additionally, the cell cycle distribution and apoptosis mechanism of IL-GFE action on MCF-7 cancer cells were observed by flow cytometry.

    RESULTS: IL-GFE exhibited anti-proliferative activity on MCF-7 with the IC50 value of 4.75 μg/mL, compared to Taxol with an IC50 value of 0.99 μg/mL. IL- GFE also reduced the number of cell generations from 3.71 to 1.67 generations compared to 2.18 generations when treated with Taxol. Furthermore, the anti-proliferative activities were verified when the growth rate was decreased dynamically from 0.0077 h to 1 to 0.0035 h-1. Observation of the IL-GFE-treated MCF-7 under microscope demonstrated detachment of cells and loss of density. The growth inhibition of the cells by extracts was associated with cell cycle arrest at the G0/G1 phase, and phosphatidylserine externalisation confirms the anti-proliferation through apoptosis.

    CONCLUSIONS: ionic liquid Graviola fruit extract affect the cytokinetics behaviour of MCF-7 cells by reducing cell viability, induce apoptosis and cell cycle arrest at the G0/G1 phase.

    Matched MeSH terms: Paclitaxel/pharmacology; Paclitaxel/therapeutic use
  10. Chowdhury MR, Moshikur RM, Wakabayashi R, Tahara Y, Kamiya N, Moniruzzaman M, et al.
    Mol Pharm, 2018 06 04;15(6):2484-2488.
    PMID: 29762034 DOI: 10.1021/acs.molpharmaceut.8b00305
    Paclitaxel (PTX) injection (i.e., Taxol) has been used as an effective chemotherapeutic treatment for various cancers. However, the current Taxol formulation contains Cremophor EL, which causes hypersensitivity reactions during intravenous administration and precipitation by aqueous dilution. This communication reports the preliminary results on the ionic liquid (IL)-based PTX formulations developed to address the aforementioned issues. The formulations were composed of PTX/cholinium amino acid ILs/ethanol/Tween-80/water. A significant enhancement in the solubility of PTX was observed with considerable correlation with the density and viscosity of the ILs, and with the side chain of the amino acids used as anions in the ILs. Moreover, the formulations were stable for up to 3 months. The driving force for the stability of the formulation was hypothesized to be the involvement of different types of interactions between the IL and PTX. In vitro cytotoxicity and antitumor activity of the IL-based formulations were evaluated on HeLa cells. The IL vehicles without PTX were found to be less cytotoxic than Taxol, while both the IL-based PTX formulation and Taxol exhibited similar antitumor activity. Finally, in vitro hypersensitivity reactions were evaluated on THP-1 cells and found to be significantly lower with the IL-based formulation than Taxol. This study demonstrated that specially designed ILs could provide a potentially safer alternative to Cremophor EL as an effective PTX formulation for cancer treatment giving fewer hypersensitivity reactions.
    Matched MeSH terms: Paclitaxel/adverse effects*; Paclitaxel/chemistry
  11. Ali MK, Moshikur RM, Wakabayashi R, Moniruzzaman M, Goto M
    ACS Appl Mater Interfaces, 2021 May 05;13(17):19745-19755.
    PMID: 33891816 DOI: 10.1021/acsami.1c03111
    Chemotherapeutic cytotoxic agents such as paclitaxel (PTX) are considered essential for the treatment of various cancers. However, PTX injection is associated with severe systemic side effects and high rates of patient noncompliance. Micelle formulations (MFs) are nano-drug delivery systems that offer a solution to these problems. Herein, we report an advantageous carrier for the transdermal delivery of PTX comprising a new MF that consists of two biocompatible surfactants: cholinium oleate ([Cho][Ole]), which is a surface-active ionic liquid (SAIL), and sorbitan monolaurate (Span-20). A solubility assessment confirmed that PTX was readily solubilized in the SAIL-based micelles via multipoint hydrogen bonding and cation-π and π-π interactions between PTX and SAIL[Cho][Ole]. Dynamic light scattering (DLS) and transmission electron microscopy revealed that in the presence of PTX, the MF formed spherical PTX-loaded micelles that were well-distributed in the range 8.7-25.3 nm. According to DLS, the sizes and size distributions of the micelle droplets did not change significantly over the entire storage period, attesting to their physical stability. In vitro transdermal assessments using a Franz diffusion cell revealed that the MF absorbed PTX 4 times more effectively than a Tween 80-based formulation and 6 times more effectively than an ethanol-based formulation. In vitro and in vivo skin irritation tests revealed that the new carrier had a negligible toxicity profile compared with a conventional ionic liquid-based carrier. Based on these findings, we believe that the SAIL[Cho][Ole]-based MF has potential as a biocompatible nanocarrier for the effective transdermal delivery of poorly soluble chemotherapeutics such as PTX.
    Matched MeSH terms: Paclitaxel/administration & dosage*; Paclitaxel/pharmacokinetics
  12. Chowdhury MR, Moshikur RM, Wakabayashi R, Tahara Y, Kamiya N, Moniruzzaman M, et al.
    Int J Pharm, 2019 Jun 30;565:219-226.
    PMID: 31077761 DOI: 10.1016/j.ijpharm.2019.05.020
    In order to prevent common hypersensitivity reactions to paclitaxel injections (Taxol), we previously reported an ionic liquid-mediated paclitaxel (IL-PTX) formulation with small particle size and narrow size distribution. The preliminary work showed high PTX solubility in the IL, and the formulation demonstrated similar antitumor activity to Taxol, while inducing a smaller hypersensitivity effect in in vitro cell experiments. In this study, the stability of the IL-PTX formulation was monitored by quantitative HPLC analysis, which showed that IL-PTX was more stable at 4 °C than at room temperature. The in vivo study showed that the IL-PTX formulation could be used in a therapeutic application as a biocompatible component of a drug delivery system. To assess the in-vivo biocompatibility, IL or IL-mediated formulations were administered intravenously by maintaining physiological buffered conditions (neutral pH and isotonic salt concentration). From in vivo pharmacokinetics data, the IL-PTX formulation was found to have a similar systemic circulation time and slower elimination rate compared to cremophor EL mediated paclitaxel (CrEL-PTX). Furthermore, in vivo antitumor and hypersensitivity experiments in C57BL/6 mice revealed that IL-PTX had similar antitumor activity to CrEL-PTX, but a significantly smaller hypersensitivity effect compared with CrEL-PTX. Therefore, the IL-mediated formulation has potential to be an effective and safe drug delivery system for PTX.
    Matched MeSH terms: Paclitaxel/administration & dosage*; Paclitaxel/pharmacokinetics
  13. Sreeharsha N, Prasanthi S, Mahalakshmi SVVNS, Goudanavar PS, Naveen NR, Gowthami B, et al.
    Molecules, 2022 Nov 16;27(22).
    PMID: 36432014 DOI: 10.3390/molecules27227914
    A brand-new nano-crystal (NC) version of the hydrophobic drug Paclitaxel (PT) were formulated for cancer treatment. A stable NC formulation for the administration of PT was created using the triblock co-polymer Pluronic F127. To achieve maximum entrapment effectiveness and minimal particle size, the formulation was improved using the central composite design by considering agitation speed and vacuum pressure at five levels (coded as +1.414, +1, 0, -1, and -1.414). According to the Design Expert software's predictions, 13 runs were created and evaluated for the chosen responses. The formulation prepared with an agitation speed of 1260 RPM and a vacuum pressure of 77.53 mbar can meet the requirements of the ideal formulation in order to achieve 142.56 nm of PS and 75.18% EE, according to the level of desirability (D = 0.959). Folic acid was conjugated to Pluronic F127 to create folate receptor-targeted NC. The drug release profile of the nano-crystals in vitro demonstrated sustained release over an extended period. Folate receptor (FR)-targeted NC (O-PT-NC-Folate) has also been prepared by conjugating folic acid to Pluronic F127. MTT test is used to validate the targeting efficacy on the FR-positive human oral cancer cell line (KB). At pharmacologically relevant concentrations, the PT nano-crystal formulation did not cause hemolysis. Compared to non-targeted NC of PT, the O-PT-NC-Folate showed a comparable but more sustained anti-cancer effect, according to an in vivo anti-tumor investigation in NCI/ADR-RES cell lines. The remarkable anti-tumor effectiveness, minimal toxicity, and simplicity of scale-up manufacturing of the NC formulations indicate their potential for clinical development. Other hydrophobic medications that are formulated into nano-systems for improved therapy may benefit from the formulation approach.
    Matched MeSH terms: Paclitaxel/pharmacology
  14. Islam MJ, Roshid B, Pervin S, Kabir S, Chigurupati S, Hasan MN
    Mymensingh Med J, 2019 Apr;28(2):484-489.
    PMID: 31086172
    Approximately 80% ovarian tumors are benign, and these arise mostly in young adult females. Malignant tumors are more prevalent in ageing women, between the ages of 45-65 years. Mucinous ovarian cancer represents about 5% of epithelial ovarian cancers (EOC). We have reported a case of mucinous cystadenocarcinoma in 35-year-old lady with metastasis to momentum. Imaging (Radiograph & CT scan) studies showed a large right sided pelvic mass with probable origin in the right ovary. Cancer antigen-125 was elevated, while carcinoembrionic antigen and alpha-fetoprotein were normal. Mutational profiles shown distinct finding, as KRAS mutations positive nevertheless p53 and BRCA mutations are absent. She had undergone total abdominal hysterectomy with bilateral salphingo-oopherectomy along with pelvic dissection for removal of lymph nodes at the age of 35. She was given 3 cycles of chemotherapy with cisplatin and paclitaxel. To the best of our knowledge, this is the one of the little cases of ovarian mucinous cystadenocarcinoma being reported at a relatively young age and the first case being reported from Bangladesh.
    Matched MeSH terms: Paclitaxel/therapeutic use*
  15. Fouz N, Amid A, Hashim YZ
    Asian Pac J Cancer Prev, 2014 Jan;14(11):6709-14.
    PMID: 24377593
    BACKGROUND: Breast cancer is a leading cause of death in women. The available chemotherapy drugs have been associated with many side effects. Bromelain has novel medicinal qualities including anti-inflammatory, anti-thrombotic, fibrinolytic and anti-cancer functions. Commercially available bromelain is obtained through tedious methods; therefore, recombinant bromelain may provide a cheaper and simpler choice with similar quality.

    MATERIALS AND METHODS: This study aimed to assess the effects of commercial and recombinant bromelain on the cytokinetic behavior of MCF-7 breast cancer cells and their potential as therapeutic alternatives in cancer treatment. Cytotoxic activities of commercial and recombinant bromelain were determined using (sulforhodamine) SRB assay. Next, cell viability assays were conducted to determine effects of commercial and recombinant bromelain on MCF-7 cell cytokinetic behavior. Finally, the established growth kinetic data were used to modify a model that predicts the effects of commercial and recombinant bromelain on MCF-7 cells.

    RESULTS: Commercial and recombinant bromelain exerted strong effects towards decreasing the cell viability of MCF-7 cells with IC50 values of 5.13 μg/mL and 6.25 μg/mL, respectively, compared to taxol with an IC50 value of 0.063 μg/mL. The present results indicate that commercial and recombinant bromelain both have anti-proliferative activity, reduced the number of cell generations from 3.92 to 2.81 for commercial bromelain and to 2.86 for recombinant bromelain, while with taxol reduction was to 3.12. Microscopic observation of bromelain-treated MCF-7 cells demonstrated detachment. Inhibition activity was verified with growth rates decreased dynamically from 0.009 h-1 to 0.0059 h-1 for commercial bromelain and to 0.0063 h-1 for recombinant bromelain.

    CONCLUSIONS: Commercial and recombinant bromelain both affect cytokinetics of MCF-7 cells by decreasing cell viability, demonstrating similar strength to taxol.

    Matched MeSH terms: Paclitaxel/pharmacology
  16. Shafiee, M.N., Omar, M.H., Suraya, A., Hatta, M.
    MyJurnal
    Platinum based adjuvant chemotherapy is generally recommended for ovarian cancer to improve the survival rate. Intravenous route is commonly used, easily administered and less associated complications. However, intraperitoneal route is gaining its popularity as a single procedure or adjunctive to the intravenous route. Numerous questions on its eligibility and safety are still perplexed. A case review on a patient with non optimal debulking surgery of advanced ovarian cancer was studied. Intravenous platinum based chemotherapy combined with paclitaxel failed to bring her to clinical remission. Second line chemotherapy, gemcitabin rendered her to poor response with unresolved debilitating ascites needing recurrent drainage. Surprisingly, a trial of intraperitoneal chemotherapy with cisplatin revealed a great response with a complete clinical remission.
    Matched MeSH terms: Paclitaxel
  17. Venugopal V, Krishnan S, Palanimuthu VR, Sankarankutty S, Kalaimani JK, Karupiah S, et al.
    PLoS One, 2018;13(11):e0206109.
    PMID: 30408068 DOI: 10.1371/journal.pone.0206109
    The aim of the present study is to analyze the viability of anti-EGFR anchored immunonanoparticle (INP) bearing Paclitaxel (PTX) to specifically bind the EGFR protein on the TNBC cells. The NP was prepared by nanoprecipitation and characterized the particle size, charge, entrapment of drug and release of it. The anti-EGFR anchored and the integrity was confirmed by SDS-PAGE. Cytotoxicity and NPs cellular uptake was analyzed with MDA-MB-468 type cancer cells and the EGFR expression was confirmed by PCR, qualitatively and quantitatively. The in-vivo antitumor activity of INP was determined by using athymic mice model and targeting efficiency was measured by calculating the PTX accumulation in the tumor plasma. The prepared INP with the size of 336.3 nm and the charge of -3.48 mV showed sustained drug release upto 48 h. The INP showed significant reduction of cancer cell viability of 10.6% for 48 h with 93 fold higher PTX accumulation in the tumor plasma compared with NPs. Based on these reports, we recommend that anti-EGFR anchored PTX loaded NP may have the ability to target the TNBC cells and improve the therapeutic action and subsidize the side effects of PTX for the treatment of TNBC.
    Matched MeSH terms: Paclitaxel/administration & dosage*; Paclitaxel/chemistry
  18. Hussain M
    Curr Drug Deliv, 2019;16(7):618-627.
    PMID: 30868954 DOI: 10.2174/1567201816666190313155117
    BACKGROUND: Glycyrrhizic acid (GA) is a glycoside that has shown considerable promise as a penetration enhancer and drug carrier to improve the absorption of poorly water-soluble drugs. The aggregation behavior of GA and its ability to form large micelles at higher solution concentrations are thought to contribute to these bioavailability enhancing properties. The oral absorption of Paclitaxel (PTX) for example, an anti-cancer agent which exhibits poor oral bioavailability, has been found to significantly increase in the presence of GA.

    METHODS: In an attempt to visualize the aggregation behavior of GA and its subsequent association with PTX, 100 ns molecular dynamics simulation of a 5 mM aqueous solution of GA with 10 molecules of PTX was conducted using GROMACS and an all-atom forcefield.

    RESULTS: Aggregation of GA molecules was found to occur quickly at this level of saturation leading to two stable aggregates of 13 and 17 GA molecules with an effective radius of 10.17 nm to 10.92 nm. These aggregates form not in isolation, but together with PTX molecule embedded within the structures, which reduces the number of interactions and hydrogen-bonding with water.

    CONCLUSION: GA aggregation occurs around PTX molecules in solution, forming co-joined GA-PTX cluster units at a ratio of 3:1. These clusters remain stable for the remainder of the 100ns simulation and serve to isolate and protect PTX from the aqueous environment.

    Matched MeSH terms: Paclitaxel
  19. Hama M, Ishima Y, Chuang VTG, Ando H, Shimizu T, Ishida T
    ACS Appl Mater Interfaces, 2021 May 05;13(17):19736-19744.
    PMID: 33881292 DOI: 10.1021/acsami.1c03065
    Abraxane, an albumin-bound paclitaxel nanoparticle formulation, is superior to conventional paclitaxel preparations because it has better efficacy against unresectable pancreatic cancer. Previous reports suggest that this better efficacy of Abraxane than conventional paclitaxel preparation is probably due to its transport through Gp60, an albumin receptor on the surface of vascular endothelial cells. The increased tumor accumulation of Abraxane is also caused by the secreted protein acid and rich in cysteine in the tumor stroma. However, the uptake mechanism of Abraxane remains poorly understood. In this study, we demonstrated that the delivery of Abraxane occurred via different receptor pathways from that of endogenous albumin. Our results showed that the uptake of endogenous albumin was inhibited by a Gp60 pathway inhibitor in the process of endocytosis through endothelial cells or tumor cells. In contrast, the uptake of Abraxane-derived HSA was less affected by the Gp60 pathway inhibitor but significantly reduced by denatured albumin receptor inhibitors. In conclusion, these data indicate that Abraxane-derived HSA was taken up into endothelial cells or tumor cells by a mechanism different from normal endogenous albumin. These new data on distinct cellular transport pathways of denatured albumin via gp family proteins different from those of innate albumin shed light on the mechanisms of tumor delivery and antitumor activity of Abraxane and provide new scientific rationale for the development of a novel albumin drug delivery strategy via a denatured albumin receptor.
    Matched MeSH terms: Albumin-Bound Paclitaxel/administration & dosage*; Albumin-Bound Paclitaxel/chemistry
  20. Tan CH, Yeap JS, Lim SH, Low YY, Sim KS, Kam TS
    J Nat Prod, 2021 05 28;84(5):1524-1533.
    PMID: 33872002 DOI: 10.1021/acs.jnatprod.1c00013
    A new linearly fused macroline-sarpagine bisindole, angustilongine M (1), was isolated from the methanolic extract of Alstonia penangiana. The structure of the alkaloid was elucidated based on analysis of the spectroscopic data, and its biological activity was evaluated together with another previously reported macroline-akuammiline bisindole from the same plant, angustilongine A (2). Compounds 1 and 2 showed pronounced in vitro growth inhibitory activity against a wide panel of human cancer cell lines. In particular, the two compounds showed potent and selective antiproliferative activity against HT-29 cells, as well as strong growth inhibitory effects against HT-29 spheroids. Cell death mechanistic studies revealed that the compounds induced mitochondrial apoptosis and G0/G1 cell cycle arrest in HT-29 cells in a time-dependent manner, while in vitro tubulin polymerization assays and molecular docking analysis showed that the compounds are microtubule-stabilizing agents, which are predicted to bind at the β-tubulin subunit at the Taxol-binding site.
    Matched MeSH terms: Paclitaxel
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links