Displaying publications 1 - 20 of 47 in total

Abstract:
Sort:
  1. Abbas, F.M.A., Foroogh, B., Liong, M.T., Azhar, M.E.
    MyJurnal
    Four types of soft dates (SD), three types of semi-dried dates (SDD) and one type of dried dates (DD) were used in this study. The antioxidant activities were assessed using TEAC method (ABTS assay) and the ferric reducing/antioxidant power method (FRAP assay), while total phenolic content (TPC) and total flavonoid content (TFC) were measured using Folin-Ciocalteau and aluminum chloride colorimetric methods. Multivariate analysis of variance (MANOVA), discriminant analysis (DA) and principal component analysis (PCA) were used to analyze the data. MANOVA showed a strong significant difference between the eight types of dates. DA identified the relative contribution of each parameter in distinguishing the dates. DA also identified two functions responsible for discriminating the dates and showed the difference between different types of dates. The first function distinguished DD from other types of dates, whilst the second function discriminated SD and SDD, affording 100% correct assignation. PCA identified only one component responsible for explaining 98.85% of the total variance in antioxidant data. It is suggested that the TEAC method and the quantitative determination of TPC and TFC was suitable for differentiation of dates and quality control.
    Matched MeSH terms: Phoeniceae
  2. Abdul Afiq, M.J., Abdul Rahman, R., Che Man, Y.B., AL-Kahtani, H.A., Mansor, T.S.T.
    MyJurnal
    Date palm is an important plant in arid regions with more than 20 varieties reported all over the world. Date seed is a byproduct of date fruit industry which is normally being discarded, used as animal feed ingredient or turned into non-caffeinated coffee by the Arabs. About 11-18% of date fruit weight is the seed which is composed of carbohydrates, dietary fiber, fat, ash and protein. In addition, the antioxidant content in date seed oil (DSO) was found to be comparable with olive oil, which can be as a good source of antioxidant in order to fulfill the consumers demand. Oleic acid is the major fatty acid found in DSO, followed by lauric, linoleic, palmitic and myristic acid. However, different varieties of date fruits have different fatty acid compositions. This paper reviewed the potential use of date seed and date seed oil in order to discover and develop its usage and find out the suitable application of these seed and oil.
    Matched MeSH terms: Phoeniceae
  3. Abdul-Hamid NA, Abas F, Ismail IS, Tham CL, Maulidiani M, Mediani A, et al.
    Food Res Int, 2019 11;125:108565.
    PMID: 31554083 DOI: 10.1016/j.foodres.2019.108565
    Inflammation has been revealed to play a central role in the onset and progression of many illnesses. Nuclear magnetic resonance (NMR) based metabolomics method was adopted to evaluate the effects of Phoenix dactylifera seeds, in particular the Algerian date variety of Deglet on the metabolome of the LPS-IFN-γ-induced RAW 264.7 cells. Variations in the extracellular and intracellular profiles emphasized the differences in the presence of tyrosine, phenylalanine, alanine, proline, asparagine, isocitrate, inosine and lysine. Principal component analysis (PCA) revealed noticeable clustering patterns between the treated and induced RAW cells based on the metabolic profile of the extracellular metabolites. However, the effects of treatment on the intracellular metabolites appears to be less distinct as suggested by the PCA and heatmap analyses. A clear group segregation was observed for the intracellular metabolites from the treated and induced cells based on the orthogonal partial least squares-discriminant analysis (OPLS-DA) score plot. Likewise, 11 of the metabolites in the treated cells were significantly different from those in the induced groups, including amino acids and succinate. The enrichment analysis demonstrated that treatment with Deglet seed extracts interfered with the energy and of amino acids metabolism. Overall, the obtained data reinforced the possible application of Deglet seeds as a functional food with anti-inflammatory properties.
    Matched MeSH terms: Phoeniceae*
  4. Abdul-Hamid NA, Mediani A, Maulidiani M, Shadid K, Ismail IS, Abas F, et al.
    J Food Sci Technol, 2018 Apr;55(4):1541-1551.
    PMID: 29606769 DOI: 10.1007/s13197-018-3073-6
    The aim of this study was to examine the variation in metabolite constituents of five commercial varieties of date fruits; Ajwa, Safawi and Ambar which originated from Madinah, the Iranian Bam and Tunisian Deglet Noor. The differences of metabolome were investigated using proton nuclear magnetic resonance (1H NMR) spectroscopy combined with multivariate data analysis (MVDA). Principal Component Analysis (PCA) revealed clear separation between the date varieties. The Tunisian Deglet Noor demonstrated distinct cluster from the rest of the palm date samples based on the metabolite composition as shown by the pattern observed in Hierarchical Clustering Analysis (HCA) and PCA. Deglet Noor exhibited a significant higher level of sucrose (δ 5.40) and fructose (δ 4.16) in comparison with the other four varieties which can be associated with the distinctive sweet taste of this variety. Dates originated from Madinah and Tunisia exhibited a contrast manner in the amount of xylose and moisture content. These two aspects may contribute towards the soft texture of Tunisian dates. All Madinah dates were found to contain phenolic compounds which were well established as great antioxidant and anti-inflammatory agent. Ajwa dates exerted greater effect in inhibiting the generation of nitric oxide (NO) from the stimulated RAW264.7 cells at 95.37% inhibition. Succinic acid was suggested to have the most significant correlation with the trend of NO inhibitory shown by the selected date palm varieties.
    Matched MeSH terms: Phoeniceae
  5. Abdul-Hamid NA, Mediani A, Maulidiani M, Abas F, Ismail IS, Shaari K, et al.
    Molecules, 2016 Oct 28;21(11).
    PMID: 27801841
    This study was aimed at examining the variations in the metabolite constituents of the different Ajwa grades and farm origins. It is also targeted at establishing the correlations between the metabolite contents and the grades and further to the nitric oxide (NO) inhibitory activity. Identification of the metabolites was generated using ¹H-NMR spectroscopy metabolomics analyses utilizing multivariate methods. The NO inhibitory activity was determined using a Griess assay. Multivariate data analysis, for both supervised and unsupervised approaches, showed clusters among different grades of Ajwa dates obtained from different farms. The compounds that contribute towards the observed separation between Ajwa samples were suggested to be phenolic compounds, ascorbic acid and phenylalanine. Ajwa dates were shown to have different metabolite compositions and exhibited a wide range of NO inhibitory activity. It is also revealed that Ajwa Grade 1 from the al-Aliah farm exhibited more than 90% NO inhibitory activity compared to the other grades and origins. Phenolic compounds were among the compounds that played a role towards the greater capacity of NO inhibitory activity shown by Ajwa Grade 1 from the al-Aliah farm.
    Matched MeSH terms: Phoeniceae/classification; Phoeniceae/chemistry*
  6. Agbaje, R., Hassan, C. Z., Norlelawati, A., Huda-Faujan, N., Abdul Rahman, A.
    MyJurnal
    The need for nutritional and functional foods has increased. Consumers, these days, do not
    eat snacks only to provide satisfaction for their hunger, but also to supply essential nutrients
    to body. The objective of this study was to develop six formulations of granolas/cereal bars
    using different combination of Sunnah fruits such as dates (Phoenix dactylifera), raisins (Vitis
    vinifera L.) and figs (Ficus carica). The cereal bars were formulated using dry raw materials
    (glutinous rice, black Cummins, etc.) and binding agents (honey and glucose syrup). The cereal
    bars were assessed for water activity and proximate composition. It was observed that the
    sample B, made with 70 g of glucose syrup, 100 g honey and 450 g of total fruits had the
    highest value of moisture (18.73%) as compared to other formulations (P˂ 0.05). There were no
    differences in protein contents of the cereal bars formulated. Ash contents of the formulations
    were significantly different (P˂ 0.05) in samples B and F; the values ranged between 0.97%
    and 1.88%. The fat contents were significantly different with formulation B having the highest
    fat content (10.72%) and carbohydrate contents were affected by fibre contents; samples with
    lower crude fibres had higher carbohydrate contents which also reflect in the energy contents
    of the granola/cereal bar samples. Lowest aw (water activity) was observed in the samples with
    lower fruit contents which could be as a result of their lower moisture contents. According to
    the results, incorporation of glutinous rice flakes with different composition Sunnah foods and
    binding agents; honey and glucose syrup can be used to formulate cereal bars with appreciable
    proximate and energy contents.
    Matched MeSH terms: Phoeniceae
  7. Ahmad Mohd Zain MR, Abdul Kari Z, Dawood MAO, Nik Ahmad Ariff NS, Salmuna ZN, Ismail N, et al.
    Appl Biochem Biotechnol, 2022 Oct;194(10):4587-4624.
    PMID: 35579740 DOI: 10.1007/s12010-022-03952-2
    A novel coronavirus disease (COVID-19) or severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2), transmitted from person to person, has quickly emerged as the pandemic responsible for the current global health crisis. This infection has been declared a global pandemic, resulting in a concerning number of deaths as well as complications post-infection, primarily among vulnerable groups particularly older people and those with multiple comorbidities. In this article, we review the most recent research on the role of date palm (Phoenix dactylifera L.) fruits (DPFs) to prevent or treat COVID-19 infection. The mechanisms underlying this preventive or therapeutic effect are also discussed in terms of bioactivity potentials in date palm, e.g., antimicrobial, antioxidant, anticancer, anti-diabetic, anti-inflammatory, neuroprotective, and hemolytic potential, as well as prospect against COVID-19 disease and the potential product development. Therefore, it can be concluded that regular consumption of DPFs may be associated with a lower risk of some chronic diseases. Indeed, DPFs have been widely used in folk medicine since ancient times to treat a variety of health conditions, demonstrating the importance of DPFs as a nutraceutical and source of functional nourishment. This comprehensive review aims to summarize the majority of the research on DPFs in terms of nutrient content and biologically active components such as phenolic compounds, with an emphasis on their roles in improving overall health as well as the potential product development to ensure consumers' satisfaction in a current pandemic situation. In conclusion, DPFs can be given to COVID-19 patients as a safe and effective add-on medication or supplement in addition to routine treatments.
    Matched MeSH terms: Phoeniceae*
  8. Aldawsari A, Khan MA, Hameed BH, Alqadami AA, Siddiqui MR, Alothman ZA, et al.
    PLoS One, 2017;12(9):e0184493.
    PMID: 28910368 DOI: 10.1371/journal.pone.0184493
    A substantive approach converting waste date pits to mercerized mesoporous date pit activated carbon (DPAC) and utilizing it in the removal of Cd(II), Cu(II), Pb(II), and Zn(II) was reported. In general, rapid heavy metals adsorption kinetics for Co range: 25-100 mg/L was observed, accomplishing 77-97% adsorption within 15 min, finally, attaining equilibrium in 360 min. Linear and non-linear isotherm studies revealed Langmuir model applicability for Cd(II) and Pb(II) adsorption, while Freundlich model was fitted to Zn(II) and Cu(II) adsorption. Maximum monolayer adsorption capacities (qm) for Cd(II), Pb(II), Cu(II), and Zn(II) obtained by non-linear isotherm model at 298 K were 212.1, 133.5, 194.4, and 111 mg/g, respectively. Kinetics modeling parameters showed the applicability of pseudo-second-order model. The activation energy (Ea) magnitude revealed physical nature of adsorption. Maximum elution of Cu(II) (81.6%), Zn(II) (70.1%), Pb(II) (96%), and Cd(II) (78.2%) were observed with 0.1 M HCl. Thermogravimetric analysis of DPAC showed a total weight loss (in two-stages) of 28.3%. Infra-red spectral analysis showed the presence of carboxyl and hydroxyl groups over DPAC surface. The peaks at 820, 825, 845 and 885 cm-1 attributed to Zn-O, Pb-O, Cd-O, and Cu-O appeared on heavy metals saturated DPAC, confirmed their binding on DPAC during the adsorption.
    Matched MeSH terms: Phoeniceae*
  9. Alotaibi MD, Alshammari BA, Saba N, Alothman OY, Sanjay MR, Almutairi Z, et al.
    Int J Biol Macromol, 2019 Aug 15;135:69-76.
    PMID: 31116962 DOI: 10.1016/j.ijbiomac.2019.05.102
    The current study is motivated by the strict environmental regulations regarding the utilization and consumption of ecofriendly materials. In this context, the aim of this study has been to prepare and characterize different date palm tree (Phoenix dactylifera L.) fibers processed through the conventional water retting method. The chemical, elemental, crystallinity, thermal and morphological characterization of trunk (DPTRF), leaf stalk (DPLST), sheath or leaf sheath (DPLSH) and fruit bunch stalk (DPFBS) fibers was carried out. Chemical analysis revealed that the four types of date palm fibers display noteworthy differences in the content of cellulose, hemicellulose and lignin. Also, the amount of calcium is relatively high in all the date palm fibers; besides this, DPTRF exhibited 69.2% crystallinity, which is lower than that of DPLSH with 72.4% crystallinity. Moreover, DPLST and DPFBS fibers are more thermally stable (higher thermal degradation temperature) than DPTRF and DPLSH samples. Morphological analysis revealed that the fracture surface of DPFBS was relatively rougher, which would probably lead to increased bonding strength with polymers in composites. Overall, we conclude that DPFBS would be promising alternative sustainable and biomass material for the isolation of respective cellulose nanofibers and cellulose nanocrystals as potential reinforcement in polymer composites.
    Matched MeSH terms: Phoeniceae/chemistry*
  10. Ang BSP, Lim TCC, Wang L
    J Clin Microbiol, 2018 06;56(6).
    PMID: 29643201 DOI: 10.1128/JCM.01875-17
    Nipah virus, a paramyxovirus related to Hendra virus, first emerged in Malaysia in 1998. Clinical presentation ranges from asymptomatic infection to fatal encephalitis. Malaysia has had no more cases since 1999, but outbreaks continue to occur in Bangladesh and India. In the Malaysia-Singapore outbreak, transmission occurred primarily through contact with pigs, whereas in Bangladesh and India, it is associated with ingestion of contaminated date palm sap and human-to-human transmission. Bats are the main reservoir for this virus, which can cause disease in humans and animals. There are currently no effective therapeutics, and supportive care and prevention are the mainstays of management.
    Matched MeSH terms: Phoeniceae/virology
  11. Atnaw SM, Kueh SC, Sulaiman SA
    ScientificWorldJournal, 2014;2014:497830.
    PMID: 24526899 DOI: 10.1155/2014/497830
    One of the most challenging issues concerning the gasification of oil palm fronds (OPF) is the presence of tar and particulates formed during the process considering its high volatile matter content. In this study, a tar sampling train custom built based on standard tar sampling protocols was used to quantify the gravimetric concentration of tar (g/Nm3) in syngas produced from downdraft gasification of OPF. The amount of char, ash, and solid tar produced from the gasification process was measured in order to account for the mass and carbon conversion efficiency. Elemental analysis of the char and solid tar samples was done using ultimate analysis machine, while the relative concentration of the different compounds in the liquid tar was determined making use of a liquid gas chromatography (GC) unit. Average tar concentration of 4.928 g/Nm3 and 1.923 g/Nm3 was obtained for raw gas and cleaned gas samples, respectively. Tar concentration in the raw gas sample was found to be higher compared to results for other biomass materials, which could be attributed to the higher volatile matter percentage of OPF. Average cleaning efficiency of 61% which is comparable to that of sand bed filter and venturi scrubber cleaning systems reported in the literature was obtained for the cleaning system proposed in the current study.
    Matched MeSH terms: Phoeniceae/chemistry*
  12. Banerjee S, Gupta N, Kodan P, Mittal A, Ray Y, Nischal N, et al.
    Intractable Rare Dis Res, 2019 Feb;8(1):1-8.
    PMID: 30881850 DOI: 10.5582/irdr.2018.01130
    Nipah virus, an enveloped ribonucleic acid virus, has been a major cause of encephalitis out-breaks with high mortality, primarily in the Indo-Bangladesh regions. Except for the first outbreak in Malaysia-Singapore, which was related to contact with pigs and the outbreak in Philippines associated with horse slaughter, most other outbreaks have affected the Indo- Bangladesh regions. The Indo-Bangladesh outbreaks were associated with consumption of raw date palm sap contaminated by fruit bats and had a very high secondary attack rate. The patient usually presents with fever, encephalitis and/or respiratory involvement with or without thrombocytopenia, leukopenia and transaminitis. Diagnosis can be confirmed by isolation and nucleic acid amplification in the acute phase or antibody detection during the convalescent phase. Treatment is mostly limited to supportive care and syndromic management of acute encephalitis syndrome. Ribavirin, m102.4 monoclonal antibody and favipiravir are the only anti-virals with some activity against Nipah virus. Standard precautions, hand hygiene and personal protective equipments are the cornerstone of comprehensive infection prevention and control strategy. With the recent outbreaks affecting newer geographical areas, there is a need for physicians to be aware of this disease and keep abreast of its current detection and management strategies.
    Matched MeSH terms: Phoeniceae
  13. Choong CE, Wong KT, Jang SB, Nah IW, Choi J, Ibrahim S, et al.
    Chemosphere, 2020 Jan;239:124765.
    PMID: 31520981 DOI: 10.1016/j.chemosphere.2019.124765
    In this study, palm shell activated carbon powder (PSAC) and magnesium silicate (MgSiO3) modified PSAC (MPSAC) were thoroughly investigated for fluoride (F-) adsorption. F- adsorption isotherms showed that PSAC and MPSAC over-performed some other reported F- adsorbents with adsorption capacities of 116 mg g-1 and 150 mg g-1, respectively. Interestingly, the MgSiO3 impregnated layer changed the adsorption behavior of F- from monolayer to heterogeneous multilayer based on the Langmuir and Freundlich isotherm models verified by chi-square test (X2). Thermodynamic parameters indicated that the F- adsorption on PSAC and MPSAC was spontaneous and exothermic. PSAC and MPSAC were characterized using FESEM-EDX, XRD, FTIR and XPS to investigate the F- adsorption mechanism. Based on the regeneration tests using NaOH (0.01 M), PSAC exhibited poor regeneration (<20%) while MPSAC had steady adsorption efficiencies (∼70%) even after 5 regeneration cycles. This is due to highly polarized C-F bond was found on PSAC while Mg-F bond was distinguished on MPSAC, evidently denoting that the F- adsorption is mainly resulted from the exchange of hydroxyl (-OH) group. It was concluded that PSAC would be a potential adsorbent for in-situ F- groundwater remediation due to its capability to retain F- without leaching out in a wide range pH. MPSAC would be an alternative adsorbent for ex-situ F- water remediation because it can easily regenerate with NaOH solution. With the excellent F- adsorption properties, both PSAC and MPSAC offer as promising adsorbents for F- remediation in the aqueous phase.
    Matched MeSH terms: Phoeniceae
  14. Cooper HV, Evers S, Aplin P, Crout N, Dahalan MPB, Sjogersten S
    Nat Commun, 2020 01 21;11(1):407.
    PMID: 31964892 DOI: 10.1038/s41467-020-14298-w
    Conversion of tropical peat swamp forest to drainage-based agriculture alters greenhouse gas (GHG) production, but the magnitude of these changes remains highly uncertain. Current emissions factors for oil palm grown on drained peat do not account for temporal variation over the plantation cycle and only consider CO2 emissions. Here, we present direct measurements of GHGs emitted during the conversion from peat swamp forest to oil palm plantation, accounting for CH4 and N2O as well as CO2. Our results demonstrate that emissions factors for converted peat swamp forest is in the range 70-117 t CO2 eq ha-1 yr-1 (95% confidence interval, CI), with CO2 and N2O responsible for ca. 60 and ca. 40% of this value, respectively. These GHG emissions suggest that conversion of Southeast Asian peat swamp forest is contributing between 16.6 and 27.9% (95% CI) of combined total national GHG emissions from Malaysia and Indonesia or 0.44 and 0.74% (95% CI) of annual global emissions.
    Matched MeSH terms: Phoeniceae/metabolism*
  15. Danish M, Khanday WA, Hashim R, Sulaiman NS, Akhtar MN, Nizami M
    Ecotoxicol Environ Saf, 2017 May;139:280-290.
    PMID: 28167440 DOI: 10.1016/j.ecoenv.2017.02.001
    Box-Behnken model of response surface methodology was used to study the effect of adsorption process parameters for Rhodamine B (RhB) removal from aqueous solution through optimized large surface area date stone activated carbon. The set experiments with three input parameters such as time (10-600min), adsorbent dosage (0.5-10g/L) and temperature (25-50°C) were considered for statistical significance. The adequate relation was found between the input variables and response (removal percentage of RhB) and Fisher values (F- values) along with P-values suggesting the significance of various term coefficients. At an optimum adsorbent dose of 0.53g/L, time 593min and temperature 46.20°C, the adsorption capacity of 210mg/g was attained with maximum desirability. The negative values of Gibb(')s free energy (ΔG) predicted spontaneity and feasibility of adsorption; whereas, positive Enthalpy change (ΔH) confirmed endothermic adsorption of RhB onto optimized large surface area date stone activated carbons (OLSADS-AC). The adsorption data were found to be the best fit on the Langmuir model supporting monolayer type of adsorption of RhB with maximum monolayer layer adsorption capacity of 196.08mg/g.
    Matched MeSH terms: Phoeniceae*
  16. Fikry M, Yusof YA, Al-Awaadh AM, Rahman RA, Chin NL, Mousa E, et al.
    Foods, 2019 Feb 06;8(2).
    PMID: 30736332 DOI: 10.3390/foods8020061
    Developing a bioactive brew is a novel track for revalorization of palm date byproducts. The effect of roasting temperature (160, 180 and 200 °C ) and roasting time (10, 20 and 30 min) on the hardness of the roasted date seeds, moisture content of the defatted roasted date seed powder (DRDSP), bulk density of the DRDSP, color parameters of DRDSP, quality attributes (extraction yield, pH and browning index), the chemical properties (antioxidants and total phenolic content) and the sensory attributes (color, aroma, taste and overall preference) of the brew prepared from DRDSP was studied. The physicochemical, quality, and sensory attributes were found to be significantly influenced by the roasting temperature and time. Additionally, the models proposed could satisfactorily describe the changes in the different properties during the roasting process. The optimum conditions of the roasting process obtained using the superimposed contour plot were 199.9 °C and 21.5 min. In the longer term, the results of this study would be beneficial for the manufacturers of the date seeds powder and brew.
    Matched MeSH terms: Phoeniceae
  17. Filho JAF, de Brito LS, Leão AP, Alves AA, Formighieri EF, Júnior MTS
    Bioinform Biol Insights, 2017;11:1177932217702388.
    PMID: 28469420 DOI: 10.1177/1177932217702388
    Transposable elements (TEs) are mobile genetic elements present in almost all eukaryotic genomes. Due to their typical patterns of repetition, discovery, and characterization, they demand analysis by various bioinformatics software. Probably, as a result of the need for a complex analysis, many genomes publicly available do not have these elements annotated yet. In this study, a de novo and homology-based identification of TEs and microsatellites was performed using genomic data from 3 palm species: Elaeis oleifera (American oil palm, v.1, Embrapa, unpublished; v.8, Malaysian Palm Oil Board [MPOB], public), Elaeis guineensis (African oil palm, v.5, MPOB, public), and Phoenix dactylifera (date palm). The estimated total coverage of TEs was 50.96% (523 572 kb) and 42.31% (593 463 kb), 39.41% (605 015 kb), and 33.67% (187 361 kb), respectively. A total of 155 726 microsatellite loci were identified in the genomes of oil and date palms. This is the first detailed description of repeats in the genomes of oil and date palms. A relatively high diversity and abundance of TEs were found in the genomes, opening a range of further opportunities for applied research in these genera. The development of molecular markers (mainly simple sequence repeat), which may be immediately applied in breeding programs of those species to support the selection of superior genotypes and to enhance knowledge of the genetic structure of the breeding and natural populations, is the most notable opportunity.
    Matched MeSH terms: Phoeniceae
  18. Gantait S, El-Dawayati MM, Panigrahi J, Labrooy C, Verma SK
    Appl Microbiol Biotechnol, 2018 Oct;102(19):8229-8259.
    PMID: 30054703 DOI: 10.1007/s00253-018-9232-x
    Date palm (Phoenix dactylifera L.) is one of the most important fruit trees that contribute a major part to the economy of Middle East and North African countries. It is quintessentially called "tree of life" owing to its resilience to adverse climatic conditions, along with manifold nutritional-cum-medicinal attributes that comes from its fruits and other plant parts. Being a tree with such immense utility, it has gained substantial attention of tree breeders for its genetic advancement via in vitro biotechnological interventions. Herein, an extensive review of biotechnological research advances in date palm has been consolidated as one of the major research achievements during the past two decades. This article compares the different biotechnological techniques used in this species such as: tissue and organ culture, bioreactor-mediated large-scale propagation, cell suspension culture, embryogenic culture, protoplast culture, conservation (for short- and long-term) of germplasms, in vitro mutagenesis, in vitro selection against biotic and abiotic stresses, secondary metabolite production in vitro, and genetic transformation. This review provides an insight on crop improvement and breeding programs for improved yield and quality fruits; besides, it would undeniably facilitate the tissue culture-based research on date palm for accelerated propagation and enhanced production of quality planting materials, along with conservation and exchange of germplasms, and genetic engineering. In addition, the unexplored research methodologies and major bottlenecks identified in this review should be contemplated on in near future.
    Matched MeSH terms: Phoeniceae/genetics*; Phoeniceae/physiology*
  19. Harun NH, Misron N, Mohd Sidek R, Aris I, Wakiwaka H, Tashiro K
    Sensors (Basel), 2014;14(11):21923-40.
    PMID: 25414970 DOI: 10.3390/s141121923
    As the main exporter in the oil palm industry, the need to improve the quality of palm oil has become the main interest among all the palm oil millers in Malaysia. To produce good quality palm oil, it is important for the miller to harvest a good oil palm Fresh Fruit Bunch (FFB). Conventionally, the main reference used by Malaysian harvesters is the manual grading standard published by the Malaysian Palm Oil Board (MPOB). A good oil palm FFB consists of all matured fruitlets, aged between 18 to 21 weeks of antheses (WAA). To expedite the harvesting process, it is crucial to implement an automated detection system for determining the maturity of the oil palm FFB. Various automated detection methods have been proposed by researchers in the field to replace the conventional method. In our preliminary study, a novel oil palm fruit sensor to detect the maturity of oil palm fruit bunch was proposed. The design of the proposed air coil sensor based on the inductive sensor was further investigated mainly in the context of the effect of coil diameter to improve its sensitivity. In this paper, the sensitivity of the inductive sensor was further examined with a dual flat-type shape of air coil. The dual air coils were tested on fifteen samples of fruitlet from two categories, namely ripe and unripe. Samples were tested within 20 Hz to 10 MHz while evaluations on both peaks were done separately before the gap between peaks was analyzed. A comparative analysis was conducted to investigate the improvement in sensitivity of the induction-based oil palm fruit sensor as compared to previous works. Results from the comparative study proved that the inductive sensor using a dual flat-type shape air coil has improved by up to 167%. This provides an indication in the improvement in the coil sensitivity of the palm oil fruit sensor based on the induction concept.
    Matched MeSH terms: Phoeniceae/classification*; Phoeniceae/chemistry*
  20. Khamaiseh EI, Abdul Hamid A, Abdeshahian P, Wan Yusoff WM, Kalil MS
    ScientificWorldJournal, 2014;2014:395754.
    PMID: 24672315 DOI: 10.1155/2014/395754
    The production of biobutanol was studied by the cultivation of Clostridium acetobutylicum NCIMB 13557 in P2 medium including date fruit as the sole substrate. The effect of P2 medium and the effect of different concentrations of date fruit ranging from 10 to 100 g/L on biobutanol production were investigated. Anaerobic batch culture was carried out at 35 °C incubation temperature and pH 7.0 ± 0.2 for 72 h. Experimental results showed that the lowest yield of biobutanol and acetone-butanol-ethanol (ABE) was 0.32 and 0.35 gram per gram of carbohydrate consumed (g/g), respectively, when an initial date fruit concentration of 10 g/L was utilized. At this fruit date concentration a biobutanol production value of 1.56 g/L was obtained. On the other hand, the maximum yield of biobutanol (0.48 g/g) and ABE (0.63 g/g) was produced at 50 g/L date fruit concentration with a biobutanol production value as high as 11 g/L. However, when a higher initial date fruit concentration was used, biobutanol and ABE production decreased to reach the yield of 0.22 g/g and 0.35 g/g, respectively, where 100 g/L date fruit was used. Similar results also revealed that 10.03 g/L biobutanol was produced using 100 g/L date fruit.
    Matched MeSH terms: Phoeniceae/metabolism*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links