Displaying publications 1 - 20 of 44 in total

Abstract:
Sort:
  1. Zulkipli NN, Zakaria R, Long I, Abdullah SF, Muhammad EF, Wahab HA, et al.
    Molecules, 2020 Sep 02;25(17).
    PMID: 32887218 DOI: 10.3390/molecules25173991
    Natural products remain a popular alternative treatment for many ailments in various countries. This study aimed to screen for potential mammalian target of rapamycin (mTOR) inhibitors from Malaysian natural substance, using the Natural Product Discovery database, and to determine the IC50 of the selected mTOR inhibitors against UMB1949 cell line. The crystallographic structure of the molecular target (mTOR) was obtained from Protein Data Bank, with Protein Data Bank (PDB) ID: 4DRI. Everolimus, an mTOR inhibitor, was used as a standard compound for the comparative analysis. Computational docking approach was performed, using AutoDock Vina (screening) and AutoDock 4.2.6 (analysis). Based on our analysis, asiaticoside and its derivative, asiatic acid, both from Centella asiatica, revealed optimum-binding affinities with mTOR that were comparable to our standard compound. The effect of asiaticoside and asiatic acid on mTOR inhibition was validated with UMB1949 cell line, and their IC50 values were 300 and 60 µM, respectively, compared to everolimus (29.5 µM). Interestingly, this is the first study of asiaticoside and asiatic acid against tuberous sclerosis complex (TSC) disease model by targeting mTOR. These results, coupled with our in silico findings, should prompt further studies, to clarify the mode of action, safety, and efficacy of these compounds as mTOR inhibitors.
    Matched MeSH terms: Plants/chemistry*
  2. Zakaryan H, Arabyan E, Oo A, Zandi K
    Arch Virol, 2017 Sep;162(9):2539-2551.
    PMID: 28547385 DOI: 10.1007/s00705-017-3417-y
    Flavonoids are widely distributed as secondary metabolites produced by plants and play important roles in plant physiology, having a variety of potential biological benefits such as antioxidant, anti-inflammatory, anticancer, antibacterial, antifungal and antiviral activity. Different flavonoids have been investigated for their potential antiviral activities and several of them exhibited significant antiviral properties in in vitro and even in vivo studies. This review summarizes the evidence for antiviral activity of different flavonoids, highlighting, where investigated, the cellular and molecular mechanisms of action on viruses. We also present future perspectives on therapeutic applications of flavonoids against viral infections.
    Matched MeSH terms: Plants/chemistry
  3. Yong AL, Ooh KF, Ong HC, Chai TT, Wong FC
    Food Chem, 2015 Nov 1;186:32-6.
    PMID: 25976788 DOI: 10.1016/j.foodchem.2014.11.103
    In this paper, we investigated the antibacterial mechanism and potential therapeutic targets of three antibacterial medicinal plants. Upon treatment with the plant extracts, bacterial proteins were extracted and resolved using denaturing gel electrophoresis. Differentially-expressed bacterial proteins were excised from the gels and subjected to sequence analysis by MALDI TOF-TOF mass spectrometry. From our study, seven differentially expressed bacterial proteins (triacylglycerol lipase, N-acetylmuramoyl-L-alanine amidase, flagellin, outer membrane protein A, stringent starvation protein A, 30S ribosomal protein s1 and 60 kDa chaperonin) were identified. Additionally, scanning electron microscope study indicated morphological damages induced on bacterial cell surfaces. To the best of our knowledge, this represents the first time these bacterial proteins are being reported, following treatments with the antibacterial plant extracts. Further studies in this direction could lead to the detailed understanding of their inhibition mechanism and discovery of target-specific antibacterial agents.
    Matched MeSH terms: Plants/chemistry
  4. Yeo SK, Ooi LG, Lim TJ, Liong MT
    Int J Mol Sci, 2009 Oct;10(8):3517-30.
    PMID: 20111692 DOI: 10.3390/ijms10083517
    Hypertension is one of the major risk factors for cardiovascular disease. Although various drugs for its treatment have been synthesized, the occurring side effects have generated the need for natural interventions for the treatment and prevention of hypertension. Dietary intervention such as the administration of prebiotics has been seen as a highly acceptable approach. Prebiotics are indigestible food ingredients that bypass digestion and reach the lower gut as substrates for indigenous microflora. Most of the prebiotics used as food adjuncts, such as inulin, fructooligosaccharides, dietary fiber and gums, are derived from plants. Experimental evidence from recent studies has suggested that prebiotics are capable of reducing and preventing hypertension. This paper will discuss some of the mechanisms involved, the evidence generated from both in-vitro experiments and in-vivo trials and some controversial findings that are raised.
    Matched MeSH terms: Plants/chemistry
  5. Xu YJ, Chiang PY, Lai YH, Vittal JJ, Wu XH, Tan BK, et al.
    J Nat Prod, 2000 Oct;63(10):1361-3.
    PMID: 11076552
    Leaf extracts of Garcinia parvifolia provided relatively high yields of four novel, cytotoxic prenylated depsidones. The structures were determined mainly by detailed NMR spectral analysis and X-ray crystallography.
    Matched MeSH terms: Plants/chemistry*
  6. Wong LC, Leh CP, Goh CF
    Carbohydr Polym, 2021 Jul 15;264:118036.
    PMID: 33910744 DOI: 10.1016/j.carbpol.2021.118036
    Hydrogels are an attractive system for a myriad of applications. While most hydrogels are usually formed from synthetic materials, lignocellulosic biomass appears as a sustainable alternative for hydrogel development. The valorization of biomass, especially the non-woody biomass to meet the growing demand of the substitution of synthetics and to leverage its benefits for cellulose hydrogel fabrication is attractive. This review aims to present an overview of advances in hydrogel development from non-woody biomass, especially using native cellulose. The review will cover the overall process from cellulose depolymerization, dissolution to crosslinking reaction and the related mechanisms where known. Hydrogel design is heavily affected by the cellulose solubility, crosslinking method and the related processing conditions apart from biomass type and cellulose purity. Hence, the important parameters for rational designs of hydrogels with desired properties, particularly porosity, transparency and swelling characteristics will be discussed. Current challenges and future perspectives will also be highlighted.
    Matched MeSH terms: Plants/chemistry
  7. Wan Ngah WS, Hanafiah MA
    Bioresour Technol, 2008 Jul;99(10):3935-48.
    PMID: 17681755
    The application of low-cost adsorbents obtained from plant wastes as a replacement for costly conventional methods of removing heavy metal ions from wastewater has been reviewed. It is well known that cellulosic waste materials can be obtained and employed as cheap adsorbents and their performance to remove heavy metal ions can be affected upon chemical treatment. In general, chemically modified plant wastes exhibit higher adsorption capacities than unmodified forms. Numerous chemicals have been used for modifications which include mineral and organic acids, bases, oxidizing agent, organic compounds, etc. In this review, an extensive list of plant wastes as adsorbents including rice husks, spent grain, sawdust, sugarcane bagasse, fruit wastes, weeds and others has been compiled. Some of the treated adsorbents show good adsorption capacities for Cd, Cu, Pb, Zn and Ni.
    Matched MeSH terms: Plants/chemistry
  8. Uddin MS, Sarker MZ, Ferdosh S, Akanda MJ, Easmin MS, Bt Shamsudin SH, et al.
    J Sci Food Agric, 2015 May;95(7):1385-94.
    PMID: 25048690 DOI: 10.1002/jsfa.6833
    Phytosterols provide important health benefits: in particular, the lowering of cholesterol. From environmental and commercial points of view, the most appropriate technique has been searched for extracting phytosterols from plant matrices. As a green technology, supercritical fluid extraction (SFE) using carbon dioxide (CO2) is widely used to extract bioactive compounds from different plant matrices. Several studies have been performed to extract phytosterols using supercritical CO2 (SC-CO2) and this technology has clearly offered potential advantages over conventional extraction methods. However, the efficiency of SFE technology fully relies on the processing parameters, chemistry of interest compounds, nature of the plant matrices and expertise of handling. This review covers SFE technology with particular reference to phytosterol extraction using SC-CO2. Moreover, the chemistry of phytosterols, properties of supercritical fluids (SFs) and the applied experimental designs have been discussed for better understanding of phytosterol solubility in SC-CO2.
    Matched MeSH terms: Plants/chemistry*
  9. Teow SY, Wong MM, Yap HY, Peh SC, Shameli K
    Molecules, 2018 06 06;23(6).
    PMID: 29882775 DOI: 10.3390/molecules23061366
    Nanoparticles (NPs) are nano-sized particles (generally 1⁻100 nm) that can be synthesized through various methods. The wide range of physicochemical characteristics of NPs permit them to have diverse biological functions. These particles are versatile and can be adopted into various applications, particularly in biomedical field. In the past five years, NPs’ roles in biomedical applications have drawn considerable attentions, and novel NPs with improved functions and reduced toxicity are continuously increasing. Extensive studies have been carried out in evaluating antibacterial potentials of NPs. The promising antibacterial effects exhibited by NPs highlight the potential of developing them into future generation of antimicrobial agents. There are various methods to synthesize NPs, and each of the method has significant implication on the biological action of NPs. Among all synthetic methods, green technology is the least toxic biological route, which is particularly suitable for biomedical applications. This mini-review provides current update on the antibacterial effects of NPs synthesized by green technology using plants. Underlying challenges in developing NPs into future antibacterials in clinics are also discussed at the present review.
    Matched MeSH terms: Plants/chemistry*
  10. Tang SS, Prodhan ZH, Biswas SK, Le CF, Sekaran SD
    Phytochemistry, 2018 Oct;154:94-105.
    PMID: 30031244 DOI: 10.1016/j.phytochem.2018.07.002
    Antimicrobial peptides (AMPs), the self-defence products of organisms, are extensively distributed in plants. They can be classified into several groups, including thionins, defensins, snakins, lipid transfer proteins, glycine-rich proteins, cyclotides and hevein-type proteins. AMPs can be extracted and isolated from different plants and plant organs such as stems, roots, seeds, flowers and leaves. They perform various physiological defensive mechanisms to eliminate viruses, bacteria, fungi and parasites, and so could be used as therapeutic and preservative agents. Research on AMPs has sought to obtain more detailed and reliable information regarding the selection of suitable plant sources and the use of appropriate isolation and purification techniques, as well as examining the mode of action of these peptides. Well-established AMP purification techniques currently used include salt precipitation methods, absorption-desorption, a combination of ion-exchange and reversed-phase C18 solid phase extraction, reversed-phase high-performance liquid chromatography (RP-HPLC), and the sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) method. Beyond these traditional methods, this review aims to highlight new and different approaches to the selection, characterisation, isolation, purification, mode of action and bioactivity assessment of a range of AMPs collected from plant sources. The information gathered will be helpful in the search for novel AMPs distributed in the plant kingdom, as well as providing future directions for the further investigation of AMPs for possible use on humans.
    Matched MeSH terms: Plants/chemistry*
  11. Tan PJ, Appleton DR, Mustafa MR, Lee HB
    Phytochem Anal, 2012 Jan-Feb;23(1):52-9.
    PMID: 21692117 DOI: 10.1002/pca.1324
    Photodynamic therapy is a treatment modality that involves site-directed generation of cytotoxic reactive oxygen species by light-activated photosensitisers.
    Matched MeSH terms: Plants/chemistry*
  12. Srivastava S, Dashora K, Ameta KL, Singh NP, El-Enshasy HA, Pagano MC, et al.
    Phytother Res, 2021 Jan;35(1):256-277.
    PMID: 32940412 DOI: 10.1002/ptr.6823
    There has been a spurt in the spread of microbial resistance to antibiotics due to indiscriminate use of antimicrobial agents in human medicine, agriculture, and animal husbandry. It has been realized that conventional antibiotic therapy would be less effective in the coming decades and more emphasis should be given for the development of novel antiinfective therapies. Cysteine rich peptides (CRPs) are broad-spectrum antimicrobial agents that modulate the innate immune system of different life forms such as bacteria, protozoans, fungi, plants, insects, and animals. These are also expressed in several plant tissues in response to invasion by pathogens, and play a crucial role in the regulation of plant growth and development. The present work explores the importance of CRPs as potent antimicrobial agents, which can supplement and/or replace the conventional antibiotics. Different plant parts of diverse plant species showed the presence of antimicrobial peptides (AMPs), which had significant structural and functional diversity. The plant-derived AMPs exhibited potent activity toward a range of plant and animal pathogens, protozoans, insects, and even against cancer cells. The cysteine-rich AMPs have opened new avenues for the use of plants as biofactories for the production of antimicrobials and can be considered as promising antimicrobial drugs in biotherapeutics.
    Matched MeSH terms: Plants/chemistry*
  13. Shamsudin S, Selamat J, Sanny M, A R SB, Jambari NN, Khatib A
    Molecules, 2019 Oct 29;24(21).
    PMID: 31671885 DOI: 10.3390/molecules24213898
    Stingless bee honey produced by Heterotrigona itama from different botanical origins was characterised and discriminated. Three types of stingless bee honey collected from acacia, gelam, and starfruit nectars were analyzed and compared with Apis mellifera honey. The results showed that stingless bee honey samples from the three different botanical origins were significantly different in terms of their moisture content, pH, free acidity, total soluble solids, colour characteristics, sugar content, amino acid content and antioxidant properties. Stingless bee honey was significantly different from Apis mellifera honey in terms of physicochemical and antioxidant properties. The amino acid content was further used in the chemometrics analysis to evaluate the role of amino acid in discriminating honey according to botanical origin. Partial least squares-discriminant analysis (PLS-DA) revealed that the stingless bee honey was completely distinguishable from Apis mellifera honey. Notably, a clear distinction between the stingless bee honey types was also observed. The specific amino acids involved in the distinction of honey were cysteine for acacia and gelam, phenylalanine and 3-hydroxyproline for starfruit, and proline for Apis mellifera honey. The results showed that all honey samples were successfully classified based on amino acid content.
    Matched MeSH terms: Plants/chemistry*
  14. Salvamani S, Gunasekaran B, Shaharuddin NA, Ahmad SA, Shukor MY
    Biomed Res Int, 2014;2014:480258.
    PMID: 24971331 DOI: 10.1155/2014/480258
    Atherosclerosis is the process of hardening and narrowing the arteries. Atherosclerosis is generally associated with cardiovascular diseases such as strokes, heart attacks, and peripheral vascular diseases. Since the usage of the synthetic drug, statins, leads to various side effects, the plants flavonoids with antiartherosclerotic activity gained much attention and were proven to reduce the risk of atherosclerosis in vitro and in vivo based on different animal models. The flavonoids compounds also exhibit lipid lowering effects and anti-inflammatory and antiatherogenic properties. The future development of flavonoids-based drugs is believed to provide significant effects on atherosclerosis and its related diseases. This paper discusses the antiatherosclerotic effects of selected plant flavonoids such as quercetin, kaempferol, myricetin, rutin, naringenin, catechin, fisetin, and gossypetin.
    Matched MeSH terms: Plants/chemistry*
  15. Saad JM, Soepadamo E, Fang XP, McLaughlin JL, Fanwick PE
    J Nat Prod, 1991 11 1;54(6):1681-3.
    PMID: 1812217
    The known lignan (-)-grandisin [1] has been isolated from Cryptocarya crassinervia by using the brine shrimp lethality test to direct the isolation; its structure and relative stereochemistry have been determined by ir, 1H nmr, ms, and X-ray crystallography as an all-trans alpha, alpha'-diaryl-beta, beta'-dimethyltetrahydrofuran. Compound 1 is not significantly cytotoxic in our panel of human tumor cells.
    Matched MeSH terms: Plants/chemistry*
  16. Rozainah MZ, Nazri MN, Sofawi AB, Hemati Z, Juliana WA
    Mar Pollut Bull, 2018 Dec;137:237-245.
    PMID: 30503430 DOI: 10.1016/j.marpolbul.2018.10.023
    This paper evaluated the total carbon stock of mangrove ecosystems in two contrasting sites: a fishing village in Delta Kelantan (DK) and Ramsar sites in Johor Park (JP). In both sites, aboveground carbon was significantly higher than belowground carbon, and stems contained more carbon than leaf and root partitions. The average carbon concentration of individual mangrove species (44.9-48.1%) was not significantly different but the larger biomass of the DK samples resulted in vegetation carbon stock that was higher than that in JP. Season played an important role in soil carbon stock-a pronounced wet season in DK coincided with the dry season in JP. The total carbon pool was estimated to be 427.88 t ha-1 in JP and 512.51 t ha-1 in DK, where at least 80% was contributed by soil carbon. The carbon dioxide equivalent was 1570.32 t ha-1 CO2e (JP) and 1880.91 t ha-1 CO2e (DK).
    Matched MeSH terms: Plants/chemistry
  17. Razab R, Abdul-Aziz A
    Nat Prod Commun, 2010 Mar;5(3):441-5.
    PMID: 20420325
    Plants that contain high amounts of polyphenolic compounds are potential candidates for natural antioxidant sources. Studies are on going in the search for new sources of antioxidants. Not much data are available on the antioxidant capacity of tropical herbs. With this in mind, 19 commonly consumed Malaysian herbs were analyzed for their polyphenolic content and antioxidant activities. A majority of these plants have never been studied before with regards to their polyphenolic content and antioxidant activities. The shoots of Anacardium occidentale, the shoots and fruits of Barringtonia racemosa, Pithecellobium jiringa and Parkia speciosa had high polyphenolic contents (> 150 microg gallic acid equivalents/mg dried plant) and antioxidant activities when measured using the ferric reducing antioxidant power (FRAP) (>1.2 mM) and Trolox equivalent antioxidant capacity (TEAC) assays (>2.4 mM). A strong correlation was observed between the two antioxidant assays (FRAP vs TEAC) implying that the plants could both scavenge free radicals and reduce oxidants. There was also a strong correlation between the antioxidant activities and polyphenolic content suggesting the observed antioxidant activities were contributed mainly by the polyphenolics in the plants.
    Matched MeSH terms: Plants/chemistry*
  18. Osaki M, Watanabe T, Ishizawa T, Nilnond C, Nuyim T, Shinano T, et al.
    Plant Foods Hum Nutr, 2003;58(2):93-115.
    PMID: 12906350
    Acid sulfate, peat, sandy podzolic, and saline soils are widely distributed in the lowlands of Thailand and Malaysia. The nutrient concentrations in the leaves of plants grown in these type of soils were studied with the aim of developing a nutritional strategy for adapting to such problem soils. In sago and oil palms that were well-adapted to peat soil, the N, P, and K concentrations were the same in the mature leaves, while the Ca, Mg, Na, and Fe concentrations were higher in the mature leaves of the oil palm than of the sago palm. Melastoma malabathricum and Melaleuca cajuputi plants that were well-adapted to low pH soils, peat. and acid sulfate soils were also studied. It was observed that a high amount of Al accumulated in the M. marabathricum leaves, while Al did not accumulate in M. cajuputi leaves. M. cajuputi plants accumulated large amounts of Na in their leaves or stems regardless of the exchangeable Na concentration in the soil, while M. malabathricum that was growing in saline-affected soils excluded Na. Positive relationships between macronutrients were recognized between P and N, between K and N, and between P and K. Al showed antagonistic relationships with P, K, Ca, Mg, Fe, Zn, Cu, and Na. Na also showed antagonistic relationships with P, K, Zn, Mn, Cu, and Al. Fe showed weak antagonistic relationships with Zn, Mn, Cu, and Al.
    Matched MeSH terms: Plants/chemistry
  19. Onsa GH, bin Saari N, Selamat J, Bakar J
    J Agric Food Chem, 2000 Oct;48(10):5041-5.
    PMID: 11052775
    Latent polyphenol oxidase (LPPO), an enzyme responsible for the browning reaction of sago starches during processing and storage, was investigated. The enzyme was effectively extracted and partially purified from the pith using combinations of nonionic detergents. With Triton X-114 and a temperature-induced phase partitioning method, the enzyme showed a recovery of 70% and purification of 4. 1-fold. Native PAGE analysis of the partially purified LPPO revealed three activity bands when stained with catechol and two bands with pyrogallol. The molecular masses of the enzymes were estimated by SDS-PAGE to be 37, 45, and 53 kDa. The enzyme showed optimum pH values of 4.5 with 4-methylcatechol as a substrate and 7.5 with pyrogallol. The LPPO was highly reactive toward diphenols and triphenols. The activity of the enzyme was greatly enhanced in the presence of trypsin, SDS, ethanol, and linoleic acid.
    Matched MeSH terms: Plants/chemistry*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links