Displaying publications 1 - 20 of 187 in total

Abstract:
Sort:
  1. Lim NL, Nordin MM, Cheah IG
    Med J Malaysia, 1994 Mar;49(1):4-11.
    PMID: 8057989
    An open prospective descriptive pilot study was undertaken to assess the effectiveness and experience in the use of ExosurfNeonatal, a synthetic surfactant, on preterm infants with respiratory distress syndrome in the neonatal intensive care unit of the Paediatric Institute. Of 10 infants treated, seven (70%) survived with no major handicap on discharge. The mean duration of ventilation for these survivors was 6.4 days, mean duration of oxygen therapy 9.1 days and mean length of hospital stay 38.3 days. A comparison was made with a retrospective analysis of 15 neonates who were admitted during an eight month period prior to the pilot study. These infants were mechanically ventilated for respiratory distress syndrome but not given surfactant therapy. Of these, nine (60%) survived (P > 0.1 compared to Exosurf treated infants), but two developed post haemorrhagic hydrocephalus requiring shunting. For these nine survivors, the mean duration of ventilator therapy was 12.6 days, the mean duration of oxygen therapy 20.7 days and the mean length of hospital stay 70.8 days. This difference was statistically significant (P < 0.05). Of the three ExosurfNeonatal treated infants who died, two were extremely premature. Both developed grade IV periventricular haemorrhage while the third infant was admitted in shock and hypothermia and died from intraventricular haemorrhage and pulmonary interstitial emphysema. Except for the very sick and extremely premature infants, surfactant therapy is useful in reducing the mortality and morbidity of premature infants with respiratory distress syndrome in our neonatal intensive unit.
    Matched MeSH terms: Polyethylene Glycols/therapeutic use*
  2. Razak AA, Harrison A
    J Prosthet Dent, 1997 Apr;77(4):353-8.
    PMID: 9104710
    Dimensional accuracy of a composite inlay restoration is important to ensure an accurate fit and to minimize cementation stresses.
    Matched MeSH terms: Polyethylene Glycols/chemistry
  3. Adam A, Marzuki A, Abdul Rahman H, Abdul Aziz M
    Vet Hum Toxicol, 1997 Jun;39(3):147-51.
    PMID: 9167243
    The toxicities of ROUNDUP and its component chemicals, glyphosate (N-phosphonomethylglycine) and polyoxyethyleneamine (POEA), were determined at 0, 1, 3, 6 and 24 h following administration to rats. The intratracheal administration of glyphosate (0.2 g/kg), POEA (0.1 g/kg), a mixture of glyphosate (0.2 g/kg) + POEA (0.1 g/kg), or ROUNDUP (containing 0.2 g/kg glyphosate and 0.1 g/kg POEA) elicited immediate respiratory effects which were more severe and which lasted longer in the groups receiving the POEA-containing preparations than in the glyphosate alone group. By 1 h, all test preparations had caused deaths, but more occurred from the POEA-containing preparations than from glyphosate. The po administration of POEA (1 g/kg), the mixture of glyphosate (2 g/kg) +POEA (1 g/kg), or ROUNDUP (containing 2 g/kg glyphosate and 1 g/kg POEA) produced diarrhea and blood-stained weeping from noses. Death was only seen from POEA at 24 h. Glyphosate (2 g/kg po) produced transient diarrhea without nose bleeds; POEA caused diarrhea at 1 h; and the mixture of POEA + glyphosate produced diarrhea later that increased in severity with time. Bloody nose secretions were seen only with the preparations that contained POEA. No deaths, respiratory effects or bloody nose secretions occurred in controls given saline. Both POEA and glyphosate caused lung hemorrhages and lung epithelial cell damage with po or intratracheal exposures. These results indicate POEA and preparations that contained POEA were more toxic than glyphosate.
    Matched MeSH terms: Polyethylene Glycols/administration & dosage; Polyethylene Glycols/toxicity*
  4. Lim YY, Lim KH
    J Colloid Interface Sci, 1997 Dec 01;196(1):116-9.
    PMID: 9441659
    Micellar properties of binary mixed surfactants of a surface active mixed copper(II) chelate, [Cu(C12-tmed)(acac)Cl] (where C12-tmed is N,N,N'-trimethyl-N'-dodecylethylenediamine) with three common surfactants, viz. sodium dodecyl sulfate (SDS), cetyltrimethylammonium bromide (CTAB), and octaethylene glycol monododecyl ether (C12E8), were investigated by surface tensiometry, ESR, and UV-visible absorption techniques. The surface tension data were treated with Rubingh's method for mixed micelle formation and Rosen's method for mixed monolayer formation at the aqueous solution/air interface. It was found that in the mixed micelle there is strong attractive interaction between cationic copper surfactant and anonic dodecyl sulfate while there is almost ideal mixing between copper surfactant and CTAB and C12E8. From the ESR and UV-visible studies, a mixed block-type arrangement of head groups is proposed. Copyright 1997 Academic Press. Copyright 1997Academic Press
    Matched MeSH terms: Polyethylene Glycols
  5. Tan YT, Heng PW, Wan LS
    Pharm Dev Technol, 1999;4(4):561-70.
    PMID: 10578511
    Modified-release drug spheroids coated with an aqueous mixture of high-viscosity hydroxypropylmethylcellulose (HPMC) and sodium carboxymethylcellulose (NaCMC) were formulated. The preparation of core drug spheroids and the coating procedures were performed using the rotary processor and a bottom-spray fluidized bed, respectively. Dissolution studies indicated that incorporation of suitable additives, such as poly(vinylpyrrolidone) (PVP) and poly(ethylene glycol) 400 (PEG) improved the flexibility and integrity of the coat layer by retarding the drug release. An increase in coating levels applied generally retarded the release rate of the drug. However, the ratio of HPMC to NaCMC in the mixed, plasticized polymeric coat played a more dominant role in determining the dissolution T50% values. The optimal ratio of HPMC to NaCMC for prolonged drug release was found to be 3:1, whereas an increase in the amount of NaCMC in the mixed polymer coat only increased drug release. The synergistic viscosity effect of HPMC and NaCMC in retarding drug release rate was greater in distilled water than in dissolution media of pH 1 and 7.2. Cross-sectional view of the scanning electron micrograph showed that all of the coated spheroids exhibited a well-fused, continuous, and distinct layer of coating film. The drug release kinetics followed a biexponential first-order kinetic model.
    Matched MeSH terms: Polyethylene Glycols
  6. Tan YT, Peh KK, Al-Hanbali O
    AAPS PharmSciTech, 2000;1(3):E24.
    PMID: 14727910
    This study examined the mechanical (hardness, compressibility, adhesiveness, and cohesiveness) and rheological (zero-rate viscosity and thixotropy) properties of polyethylene glycol (PEG) gels that contain different ratios of Carbopol 934P (CP) and polyvinylpyrrolidone K90 (PVP). Mechanical properties were examined using a texture analyzer (TA-XT2), and rheological properties were examined using a rheometer (Rheomat 115A). In addition, lidocaine release from gels was evaluated using a release apparatus simulating the buccal condition. The results indicated that an increase in CP concentration significantly increased gel compressibility, hardness, and adhesiveness, factors that affect ease of gel removal from container, ease of gel application onto mucosal membrane, and gel bioadhesion. However, CP concentration was negatively correlated with gel cohesiveness, a factor representing structural reformation. In contrast, PVP concentration was negatively correlated with gel hardness and compressibility, but positively correlated with gel cohesiveness. All PEG gels exhibited pseudoplastic flow with thixotropy, indicating a general loss of consistency with increased shearing stress. Drug release T50% was affected by the flow rate of the simulated saliva solution. A reduction in the flow rate caused a slower drug release and hence a higher T50% value. In addition, drug release was significantly reduced as the concentrations of CP and PVP increased because of the increase in zero-rate viscosity of the gels. Response surfaces and contour plots of the dependent variables further substantiated that various combinations of CP and PVP in the PEG gels offered a wide range of mechanical, rheological, and drug-release characteristics. A combination of CP and PVP with complementary physical properties resulted in a prolonged buccal drug delivery.
    Matched MeSH terms: Polyethylene Glycols/chemistry*
  7. Salleh AB, Basri M, Taib M, Jasmani H, Rahman RN, Rahman MB, et al.
    Appl Biochem Biotechnol, 2002 10 25;102-103(1-6):349-57.
    PMID: 12396136
    Recent studies on biocatalysis in water-organic solvent biphasic systems have shown that many enzymes retain their catalytic activities in the presence of high concentrations of organic solvents. However, not all enzymes are organic solvent tolerant, and most have limited and selective tolerance to particular organic solvents. Protein modification or protein tailoring is an approach to alter the characteristics of enzymes, including solubility in organic solvents. Particular amino acids may play pivotal roles in the catalytic ability of the protein. Attaching soluble modifiers to the protein molecule may alter its conformation and the overall polarity of the molecule. Enzymes, in particular lipases, have been chemically modified by attachment of aldehydes, polyethylene glycols, and imidoesters. These modifications alter the hydrophobicity and conformation of the enzymes, resulting in changes in the microenvironment of the enzymes. By these modifications, newly acquired properties such as enhancement of activity and stability and changes in specificity and solubility in organic solvents are obtained. Modified lipases were found to be more active and stable in organic solvents. The optimum water activity (a(w)) for reaction was also shifted by using modified enzymes. Changes in enantioselective behavior were also observed.
    Matched MeSH terms: Polyethylene Glycols/chemistry
  8. Guan R
    Med J Malaysia, 2005 Jul;60 Suppl B:28-33.
    PMID: 16108170
    Four to 6 months of conventional interferon alpha (IFN-alpha) (5MU daily or 10MU three times weekly) resulted in HBeAg loss in approximately 33% of HBeAg positive patients (controls: 12%). Longer treatment duration improved HBeAg seroconversion. Children with chronic HBV infection and high ALT respond to IFN-a at similar rates. Good end-of-treatment (ET) biochemical and virological response were also achieved with IFN-alpha in HBeAg negative, HBV-DNA positive hepatitis patients. Sustained response (SR) however, was disappointing, but improved with longer duration of treatment: (10-15% SR with 4/6 months treatment: 30% SR with 24 months treatment). Weekly pegylated IFN-alpha2a (PegIFN-alpha2a) for 24 weeks gave a significantly higher HBeAg conversion rate (33%) than conventional IFN-alpha2a (25%). Fifty-two weeks of PegIFN-alpha2b gave a sustained HBeAg loss in 35% patients and HBeAg seroconversion in 29% patients. Similar results were obtained with 48 weeks of weekly PegIFN-alpha2a. PegIFN-alpha2a monotherapy was found to be superior to lamivudine monotherapy in affecting a 6-month SR (normal ALTs and HBV DNA < 20,000 copies/mL) in HBeAg negative/anti-HBe positive chronic hepatitis B patients. There is a tendency for IFN-a and lamivudine combination to result in better sustained response than lamivudine monotherapy. This tendency is also observed with PegIFN-a and lamivudine combination although the combination did not appear to be better than PegIFN-alpha monotherapy. IFN induced HBeAg seroconversion is durable, could increase over time and resulted in better overall survival and survival free of hepatic decompensation or hepatocellular cancer. The main advantage of IFN-a therapy is that a course of finite duration may achieve sustained off-therapy response in a proportion of both HBeAg positive and HBeAg negative chronic hepatitis B patients. However, IFN treatment is usually associated with side-effects, especially flu-like symptoms, fatigue, neutropenia, thrombocytopenia and depression. These are usually tolerable but may require dose modification and premature cessation of treatment (5%). Interferon therapy induced hepatitis flares may lead to decompensation in patients with cirrhosis and can be dangerous in patients with decompensated liver function despite dose reduction.
    Matched MeSH terms: Polyethylene Glycols/therapeutic use*
  9. Hamidah A, Thambidorai CR, Jamal R
    Med J Malaysia, 2005 Oct;60(4):517-9.
    PMID: 16570722
    We describe a patient with HbE-beta thalassaemia and chronic hepatitis C virus infection (genotype 1a) who was treated successfully with peginterferon alfa-2b and ribavirin, following failure to respond to standard interferon and ribavirin therapy. She had sustained virological response for nearly 24 months after completing peginterferon alfa-2b and ribavirin therapy. Transfusion requirements were significantly increased during combination therapy due to ribavirin-induced haemolysis. The adverse effects of interferon were well tolerated. Combination therapy with peginterferon alfa-2b and ribavirin maybe a feasible treatment option for a subset of thalassaemia/HCV infected non-responders to standard interferon-based therapy.
    Matched MeSH terms: Polyethylene Glycols
  10. Seow EL, Robert Ding PH
    Med J Malaysia, 2005 Dec;60(5):637-41.
    PMID: 16515116
    This was an open-label, uncontrolled study with the aim of assessing the efficacy and safety of pegylated interferon alfa-2b plus ribavirin in the treatment of chronic hepatitis C. The study was conducted in Island Hospital, Penang beween January 2002 and December 2003. Thirty-three patients were enrolled in this study with ten defaulters. The overall sustained virological response (SVR) (Intention-To-Treat analysis) in naïve patients was 39.10%. However, when the study was adjusted to only include those who completed treatment and follow-up, overall SVR as 52.9%. Side-effects were tolerable in most patients with anaemia occurring in 22 patients (66.7%), leukopenia 23 patients (69.7%) and thrombocytopenia in 15 patients (45.5%). This study showed that pegylated interferon alfa-2b 1.5 mcg/kg/week plus ribavirin > 10.6 mg/kg/day is efficacious and safe to be used in the treatment of: chronic hepatitis C.
    Matched MeSH terms: Polyethylene Glycols
  11. Wong TW, Deepak KG, Taib MN, Anuar NK
    Int J Pharm, 2007 Oct 1;343(1-2):122-30.
    PMID: 17597317
    The capacity of microwave non-destructive testing (NDT) technique to characterize the matrix property of binary polymeric films for use as transdermal drug delivery system was investigated. Hydroxypropylmethylcellulose (HPMC) and polyethylene glycol (PEG) 3000 were the choice of polymeric matrix and plasticizer, respectively with loratadine as the model drug. Both blank and drug loaded HPMC-PEG 3000 films were prepared using the solvent-evaporation method. These films were conditioned at the relative humidity of 25, 50 and 75% prior to physicochemical characterization using the established methods of ultra-violet spectrophotometry, differential scanning calorimetry and Fourier transform infrared spectroscopy methods, as well as, novel microwave NDT technique. Blank films exhibited a greater propensity of polymer-polymer interaction at the O-H domain upon storage at a lower level of relative humidity, whereas drug loaded films exhibited a greater propensity of polymer-polymer, polymer-plasticizer and/or drug-polymer interaction via the O-H, C-H and/or aromatic C=C functional groups when they were stored at a lower or moderate level of relative humidity. The absorption and transmission characteristics of both blank and drug loaded films for microwave varied with the state of polymer-polymer, polymer-plasticizer, and/or drug-polymer interaction of the matrix. The measurements of microwave NDT test at 8 and 12 GHz were sensitive to the polar fraction of film involving functional group such as O-H moiety and the less polar environment of matrix consisting of functional groups such as C-H and aromatic C=C moieties. The state of interaction between polymer, plasticizer and/or drug of a binary polymeric film can be elucidated through its absorption and transmission profiles of microwave.
    Matched MeSH terms: Polyethylene Glycols/chemistry*
  12. Ramesh S, Yuen TF, Shen CJ
    PMID: 17600757
    Polymer electrolytes based on poly(ethylene oxide)-lithium triflate (PEO-LiCF3SO3) and poly(ethylene oxide)-lithium sulphate (PEO-Li2S4) were prepared by using solution casting method. Measurements of conductivity and dielectric were carried out on these films as a function of frequency at various temperatures. It was observed that PEO-LiCF3SO3 polymer electrolytes have higher conductivity. The interaction between PEO and Li salts were studied by Fourier transform infrared (FTIR).
    Matched MeSH terms: Polyethylene Glycols/chemistry*
  13. Bashir A, Hassan AA, Salmah MR, Rahman WA
    PMID: 18564706
    The efficacy of the larvicidal and pupicidal agent (Agnique) MMF was evaluated against larvae of An. arabiensis and Culex (Diptera: Culicidae) under field conditions in Bahary Locality, Khartoum, Sudan. At an applied dosage of 0.25 ml/m2, MMF resulted in 89.4, 79.8 and 88.2% reductions in L3-L4 instars An. arabiensis and 63.5% in Culex larvae (all stages) 24 to 72 hours post-treatment. Pupae were completely eliminated (100%) within 24 hours posttreatment. The earlier instars (L1-L2) of An. arabiensis were more tolerant with a 62.5% reduction at 72 hours post-treatment compared to (L3-L4) instars and pupae. At 7-days post-treatment Agnique gave a 57.5% reduction in L1-L2 and 92.6% in L3-L4 instar larvae of An. arabiensis and 57.3% and 86.4% in Culex larvae and pupae, respectively. We conclude that Agnique can perform effectively against L3-L4 instars and pupae of An. arabiensis for only 1 week, and 3 to 4 days against L1-L2 instars of Culex spp.
    Matched MeSH terms: Polyethylene Glycols/pharmacology*
  14. Febriyenti, Azmin Mohd. Noor, Saringat Baei
    MyJurnal
    The objective of this research was to formulate an aerosol concentrate containing haruan (Channa
    striatus) water extract that would produce a thin film when sprayed onto a wound and could be used for wound dressing. The aerosol concentrates were formulated with various polymer and plasticiser mixtures and tested in dispersion systems. The polymers evaluated were hydroxypropyl methylcellulose (HPMC), carboxymethylcellulose sodium (CMC Sodium), acacia, tragacanth, chitosan, gelatine and gelatine (bloom 151–160), all at concentrations of 2%. The plasticisers evaluated were polyethylene glycol (PEG) 400 and 4000, glycerine, propylene glycol, and triacetin. Films were prepared from film-forming dispersions by casting techniques. Film-forming dispersions were characterised in terms of pH, density, surface tension, rheological properties, particle size distribution, and tackiness. Based on these evaluations, HPMC was chosen as the best polymer. It produced a film with the expected qualities and was easy to reproduce in the form of dispersions or as thin transparent films. Glycerine was judged as the most appropriate plasticiser because it produced the concentrate having the desired qualities and properties expected from an aerosol concentrate.
    Matched MeSH terms: Polyethylene Glycols
  15. Yahya, N.A., Lui, J.L., Chong, K.W.A., Abu Kasim, N.H., Radzi, Z., Lim, C.M.
    Ann Dent, 2008;15(1):11-19.
    MyJurnal
    The objective of this study was to investigate the effect of various luting cement systems on bond strength of fibre-reinforced posts to root canal dentine. 40 extracted single rooted sound premolar teeth were root filled, decoronated and randomly divided into four groups. Fibre posts, Aestheti- Plus™ (Bisco,Inc. Schaumburg, IL, USA) were cemented using four luting cements: Group A (control): Elite 100® Zinc phosphate (GC Corp, Japan), Group B: Calibra ™ Esthetic Resin Cement (Dentsply Caulk, USA), Group C: RelyX ARC Adhesive Resin (3M ESPE), Group D: RelyX Unicem Aplicap (3M ESPE). Each root was sliced into 2 discs representing the coronal and middle portions of the root canal giving rise to 20 specimens per group. Bond strength was determined using push-out tests and data was analyzed using SPSS version 14.0. The mean bond strength of Group A to Aestheti-Plus™ post was 7.71 MPa (±2.51) and Group B was 5.69 MPa (±3.23). Group C exhibited the lowest mean bond strength, 4.29 MPa (±3.53) while the highest bond strength was obtained from Group D, 7.98 MPa (±2.61). One way ANOVA showed significant interaction between all groups (p=.OOI). Post-hoc Bonferroni test reve;iled that bond strength of Group C was significantly lower compared to Group A (p=.008) and D (p=.004). In conclusion, the mean bond strength of Aestheti- Plus™ post to root canal dentine was highest when cemented with RelyX Unicem resin cement followed by Elite 100® zinc phosphate cement, Calibra and RelyX ARC resin cements. However, the bond strengths of Cali bra and RelyX Unicem resin cements were not significantly different from Elite 100® zinc phosphate cement.
    Matched MeSH terms: Polyethylene Glycols
  16. Kusrini E, Saleh MI, Lecomte C
    Spectrochim Acta A Mol Biomol Spectrosc, 2009 Sep 15;74(1):120-6.
    PMID: 19560960 DOI: 10.1016/j.saa.2009.05.024
    (1)H NMR evidence for direct coordination between the Ln(III) ion and the oxygen atoms of the pentaethylene glycol (EO5) ligand and the picrate anion (Pic) in [Ln(Pic)(2)(EO5)][Pic] {Ln=Ce and Nd} complexes are confirmed by single X-ray diffraction. No dissociation of Ln-O bonds in dimethyl sulfoxide-d solution was observed in NMR studies conducted at different temperatures ranging 25-100 degrees C. The Ln(III) ion was chelated to nine oxygen atoms from the EO5 ligand in a hexadentate manner and the two Pic anions in each bidentate and monodentate modes. Both compounds are isostructural and crystallized in monoclinic with space group P2(1)/c. Coordination environment around the Ce1 and Nd1 atoms can be described as tricapped trigonal prismatic and monocapped square antiprismatic geometries, respectively. The crystal packing of the complexes have stabilized by one dimensional (1D) chains along the [001] direction to form intermolecular O-Hcdots, three dots, centeredO and C-Hcdots, three dots, centeredO hydrogen bonding. The molar conductance of the complexes in DMSO solution indicated that both compounds are ionic. The complexes had a good thermal stability. Under the UV-excitation, these complexes exhibited the red-shift emission.
    Matched MeSH terms: Polyethylene Glycols/chemistry*
  17. Sheshala R, Peh KK, Darwis Y
    Drug Dev Ind Pharm, 2009 Nov;35(11):1364-74.
    PMID: 19832637 DOI: 10.3109/03639040902939213
    AIM: The aim of this study was to prepare insulin-loaded poly(lactic acid)-polyethylene glycol microspheres that could control insulin release at least for 1 week and evaluate their in vivo performance in a streptozotocin-induced diabetic rat model.
    METHODS: The microspheres were prepared using a water-in-oil-in-water double emulsion solvent evaporation technique. Different formulation variables influencing the yield, particle size, entrapment efficiency, and in vitro release profiles were investigated. The pharmacokinetic study of optimized formulation was performed with single dose in comparison with multiple dose of Humulin 30/70 as a reference product in streptozotocin-induced diabetic rats.
    RESULTS: The optimized formulation of insulin microspheres was nonporous, smooth-surfaced, and spherical in structure under scanning electron microscope with a mean particle size of 3.07 microm and entrapment efficiency of 42.74% of the theoretical amount incorporated. The in vitro insulin release profiles was characterized by a bimodal behavior with an initial burst release because of the insulin adsorbed on the microsphere surface, followed by slower and continuous release corresponding to the insulin entrapped in polymer matrix.
    CONCLUSIONS: The optimized formulation and reference were comparable in the extent of absorption. Consequently, these microspheres can be proposed as new controlled parenteral delivery system.
    Matched MeSH terms: Polyethylene Glycols/chemistry*
  18. Behjat, T., Russly, A.R., Luqman, C.A., Yus, A.Y., Nor Azowa, I.
    MyJurnal
    Several blends of cellulose derived from bast part of kenaf (Hibiscus cannabinus L.) plant, with different thermoplastics, low density polyethylene (LDPE) and high density polyethylene (HDPE), were prepared by a melt blending machine. Polyethylene glycol (PEG) was used as plasticizer. Biodegradability of these blends was measured using soil burial test in order to study the rates of biodegradation of these polymer blends. It was found that the cellulose/LDPE and cellulose/HDPE blends were biodegradable in a considerable rate. The bio-composites with high content of cellulose had higher degradation rate. In addition, biodegradability of the bio-composites made up using PEG was superior to those of the bio-composites fabricated without PEG, due to the improved wetting of the plasticizer in the matrix polymer. The results were also supported by the scanning electron microscopy (SEM).
    Matched MeSH terms: Polyethylene Glycols
  19. Keck CM
    Int J Pharm, 2010 May 5;390(1):3-12.
    PMID: 19733647 DOI: 10.1016/j.ijpharm.2009.08.042
    The influence of optical parameters, additional techniques (e.g. PIDS technology) and the importance of light microscopy were investigated by comparing laser diffraction data obtained via the conventional method and an optimized analysis method. Also the influence of a possible dissolution of nanocrystals during a measurement on the size result obtained was assessed in this study. The results reveal that dissolution occurs if unsaturated medium or microparticle saturated medium is used for the measurements. The dissolution is erratic and the results are not reproducible. Dissolution can be overcome by saturating the measuring medium prior to the measurement. If nanocrystals are analysed the dispersion medium should be saturated with the nanocrystals, because the solubility is higher than for coarse micro-sized drug material. The importance of using the optimized analysis method was proven by analysing 40 different nanosuspensions via the conventional versus the optimized sizing method. There was no large difference in the results obtained for the 40 nanosuspensions using the conventional method. This would have led to the conclusion, that all the 40 formulations investigated are physically stable. However, the analysis via the optimized method revealed that from 40 formulations investigated only four were physically stable. In conclusion an optimized analysis saves time and money and avoids misleading developments, because discrimination between "stable" and "unstable" can be done reliably at a very early stage of the development.
    Matched MeSH terms: Polyethylene Glycols/chemistry
  20. Cheong JN, Mirhosseini H, Tan CP
    Int J Food Sci Nutr, 2010 Jun;61(4):417-24.
    PMID: 20151850 DOI: 10.3109/09637481003591574
    The main objective of the present study was to investigate the effect of polyoxyethylene sorbitan esters and sodium caseinate on physicochemical properties of palm-based functional lipid nanodispersions prepared by the emulsification-evaporation technique. The results indicated that the average droplet size increased significantly (P < 0.05) by increasing the chain length of fatty acids and also by increasing the hydrophile-lipophile balance value. Among the prepared nanodispersions, the nanoemulsion containing Polysorbate 20 showed the smallest average droplet size (202 nm) and narrowest size distribution for tocopherol-tocotrienol nanodispersions, while sodium caseinate-stabilized nanodispersions containing carotenoids had the largest average droplet size (386 nm), thus indicating a greater emulsifying role for Polysorbate 20 compared with sodium caseinate.
    Matched MeSH terms: Polyethylene Glycols
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links