Displaying publications 1 - 20 of 51 in total

Abstract:
Sort:
  1. Jamil NAM, Rashid NMN, Hamid MHA, Rahmad N, Al-Obaidi JR
    World J Microbiol Biotechnol, 2017 Dec 04;34(1):1.
    PMID: 29204733 DOI: 10.1007/s11274-017-2385-4
    Tiger's milk mushroom is known for its valuable medicinal properties, especially the tuber part. However, wild tuber is very hard to obtain as it grows underground. This study first aimed to cultivate tiger's milk mushroom tuber through a cultivation technique, and second to compare nutritional and mycochemical contents, antioxidant and cytotoxic activities and compound screening of the cultivated tuber with the wild tuber. Results showed an increase in carbohydrate content by 45.81% and protein content by 123.68% in the cultivated tuber while fat content reduced by 13.04%. Cultivated tuber also showed an increase of up to 64.21% for total flavonoid-like compounds and 62.51% of total β-D-glucan compared to the wild tuber. The antioxidant activity of cultivated tuber and wild tuber was 760 and 840 µg mL-1, respectively. The cytotoxic activity of boiled water extract of cultivated tuber against a human lung cancer cell line (A549) was 65.50 ± 2.12 µg mL-1 and against a human breast cancer cell line (MCF7) was 19.35 ± 0.11 µg mL-1. β-D-glucan extract from the purification of boiled water extract of cultivated tuber showed cytotoxic activity at 57.78 ± 2.29 µg mL-1 against A549 and 33.50 ± 1.41 µg mL-1 against MCF7. However, the β-glucan extract from wild tuber did not show a cytotoxic effect against either the A549 or MCF7 cell lines. Also, neither of the extracts from cultivated tuber and wild tuber showed an effect against a normal cell line (MRC5). Compound profiling through by liquid chromatography mass spectrometry (LC/MS) showed the appearance of new compounds in the cultivated tuber. In conclusion, our cultivated tuber of tiger's milk mushroom using a new recipe cultivation technique showed improved nutrient and bioactive compound contents, and antioxidant and cytotoxic activities compared to the wild tuber. Further investigations are required to obtain a better quality of cultivated tuber.
    Matched MeSH terms: Polyporaceae/chemistry*
  2. TSIA MUN KAIK, AQILAH MOHAMMAD
    MyJurnal
    Studies on fungal taxonomy and fungal diversity are crucial for a better understanding of the interactions between fungi and their habitats. To date, there is no published record on macrofungal diversity in Pulau Bidong, Terengganu. Therefore, this study aimed to identify macrofungi species found with their respective substrates and to determine the macrofungal diversity in the island. The study was conducted at two different occasions and comprised of two trails near Universiti Malaysia Terengganu Research Station in Pulau Bidong, Terengganu. Collectionof fresh macrofungi was made and additional data including host information, distinctive features of each fungal sample and several environmental parameters was also recorded. Fresh specimens were later observed and identified before being dried prior to storage. Overall, 65 macrofungal species with 2 unidentified species belonging to 21 families and 34 genera were recorded. Trail A and trail B recorded diversity index of2.67 and 3.14 for Shannon Index while Simpson index recorded 0.90 and 0.94 respectively. The macrofungal diversity was dominated by family Polyporaceae while rare species discovered were from family of Tricholomataceae, Hericiaceae, Stereaceae, Schizophyllaceae, Sclerodermataceae, Dacrymycetaceae, Tremellaceae, Russulaceae and Clavulinaceae. The most common macrofungal substrates was decayed branches while other macrofungal substrates found were decayed trunks and leaves, soil,termite mounds, and living tree. In conclusion, the macrofungal species were randomlydistributed with high diversity in both trails. Therefore, it is recommended that anincrease in sampling trips, sampling efforts and areas covered be provided to increase the number of macrofungal species discovered and accuracy of diversity studies in the future.
    Matched MeSH terms: Polyporaceae
  3. Choong YK, Lan J, Lee HL, Chen XD, Wang XG, Yang YP
    PMID: 26186395 DOI: 10.1016/j.saa.2015.07.054
    Many macrofungus sclerotia are well-known medicinal herbs, health food and nutritional supplements. However, the prevalent adulterant commercial products are major hindrances to their incorporation into mainstream medical use in many countries. The mushroom sclerotia of Lignosus rhinocerotis, Poria cocos, Polyporus umbellatus, Pleurotus tuber-regium and Omphalia lapidescens are commonly used in traditional Chinese medicine. In this study, IR macro-fingerprint method was used in the identification of these sclerotia. The results showed that the spectrum of L. rhinocerotis (LR) was comparable with P. cocos with 94.4% correlation, except that the peak at 1543cm(-1) of LR appeared in lower intensity. The spectrum of P. umbellatus and P. tuber-regium was also correlated (91.5%), as both spectra could be clearly discriminated in that P. umbellatus spectrum has small base peaks located at the range of 1680-1500cm(-1). O. lapidescens was not comparable with all the other sclerotia as its spectrum was totally different. Its base peak was broad and derivated equally along the range. The first IR has revealed the dissimilarity among five mushrooms sclerotia. The second derivative and 2DIR further enhanced the identification in detail.
    Matched MeSH terms: Polyporaceae
  4. Seow SL, Eik LF, Naidu M, David P, Wong KH, Sabaratnam V
    Sci Rep, 2015 Nov 06;5:16349.
    PMID: 26542212 DOI: 10.1038/srep16349
    The traditional application of the sclerotium of Lignosus rhinocerotis (tiger's milk mushroom) by the indigenous folks as tonic and remedy to treat a variety of ailments has been documented in Malaysia. Indigenous communities claimed to have consumed the decoction to boost their alertness during hunting. Mental alertness is believed to be related to neuronal health and neuroactivity. In the present study, the cell viability and neuritogenic effects of L. rhinocerotis sclerotium hot aqueous and ethanolic extracts, and crude polysaccharides on rat pheochromocytoma (PC-12) cells were studied. Interestingly, the hot aqueous extract exhibited neuritogenic activity comparable to NGF in PC-12 cells. However, the extracts and crude polysaccharides stimulated neuritogenesis without stimulating the production of NGF in PC-12 cells. The involvements of the TrkA receptor and MEK/ERK1/2 pathway in hot aqueous extract-stimulated neuritogenesis were examined by Trk (K252a) and MEK/ERK1/2 (U0126 and PD98059) inhibitors. There was no significant difference in protein expression in NGF- and hot aqueous extract-treated cells for both total and phosphorylated p44/42 MAPK. The neuritogenic activity in PC-12 cells stimulated by hot aqueous and ethanolic extracts, and crude polysaccharides of L. rhinocerotis sclerotium mimicking NGF activity via the MEK/ERK1/2 signaling pathway is reported for the first time.
    Matched MeSH terms: Polyporaceae/chemistry*
  5. Tan ESS, Leo TK, Tan CK
    Sci Rep, 2021 06 03;11(1):11781.
    PMID: 34083710 DOI: 10.1038/s41598-021-91256-6
    Tiger milk mushroom (TMM; Lignosus rhinocerus) have been used for a long time by indigenous communities in South East Asia regions as traditional medicine for different ailments, including respiratory disorders. The beneficial effects of TMM have been proven through in vivo and in vitro models, but these effects have yet to be validated in a clinical study. In this study, the beneficial effects of TMM supplementation were investigated in 50 voluntary participants. Participants were required to take 300 mg of TMM twice daily for three months. Level of interleukin 1β (IL-1β), interleukin 8 (IL-8), immunoglobulin A (IgA), total antioxidant capacity, malondialdehyde (MDA), 3-nitrotyrosine (3-NT), 8-hydroxydeoxyguanosine (8-OHdG), pulmonary function and respiratory symptoms were assessed during baseline and monthly follow-up visits. Results demonstrated that supplementation of TMM significantly (p 
    Matched MeSH terms: Polyporaceae/chemistry*
  6. Mohamad Hsnul Bolhassan, Noorlidah Abdullah, Vikineswary Sabartnam, Hattori Tsutomu, Sumaiyah Abdullah, Noraswati Mohd Noor Rashid, et al.
    Sains Malaysiana, 2012;41:155-161.
    Macrofungi of the order Polyporales are among the most important wood decomposers and caused economic losses by decaying the wood in standing trees, logs and in sawn timber. Diversity and distribution of Polyporales in Peninsular Malaysia was investigated by collecting basidiocarps from trunks, branches, exposed roots and soil from six states (Johor, Kedah, Kelantan, Negeri Sembilan, Pahang and Selangor) in Peninsular Malaysia and Federal Territory Kuala Lumpur. This study showed that the diversity of Polyporales were less diverse than previously reported. The study identified 60 species from five families; Fomitopsidaceae, Ganodermataceae, Meruliaceae, Meripilaceae, and Polyporaceae. The common species of Polyporales collected were Fomitopsis feei, Amauroderma subrugosum, Ganoderma australe, Earliella scabrosa, Lentinus squarrosulus, Microporus xanthopus, Pycnoporus sanguineus and Trametes menziesii.
    Matched MeSH terms: Polyporaceae
  7. Yap HY, Chooi YH, Fung SY, Ng ST, Tan CS, Tan NH
    PLoS One, 2015;10(11):e0143549.
    PMID: 26606395 DOI: 10.1371/journal.pone.0143549
    Lignosus rhinocerotis (Cooke) Ryvarden (tiger milk mushroom) has long been known for its nutritional and medicinal benefits among the local communities in Southeast Asia. However, the molecular and genetic basis of its medicinal and nutraceutical properties at transcriptional level have not been investigated. In this study, the transcriptome of L. rhinocerotis sclerotium, the part with medicinal value, was analyzed using high-throughput Illumina HiSeqTM platform with good sequencing quality and alignment results. A total of 3,673, 117, and 59,649 events of alternative splicing, novel transcripts, and SNP variation were found to enrich its current genome database. A large number of transcripts were expressed and involved in the processing of gene information and carbohydrate metabolism. A few highly expressed genes encoding the cysteine-rich cerato-platanin, hydrophobins, and sugar-binding lectins were identified and their possible roles in L. rhinocerotis were discussed. Genes encoding enzymes involved in the biosynthesis of glucans, six gene clusters encoding four terpene synthases and one each of non-ribosomal peptide synthetase and polyketide synthase, and 109 transcribed cytochrome P450 sequences were also identified in the transcriptome. The data from this study forms a valuable foundation for future research in the exploitation of this mushroom in pharmacological and industrial applications.
    Matched MeSH terms: Polyporaceae
  8. Lau BF, Abdullah N, Aminudin N, Lee HB, Yap KC, Sabaratnam V
    PLoS One, 2014;9(7):e102509.
    PMID: 25054862 DOI: 10.1371/journal.pone.0102509
    Previous studies on the nutritional and nutraceutical properties of Lignosus rhinocerotis focused mainly on the sclerotium; however, the supply of wild sclerotium is limited. In this investigation, the antioxidant capacity and cytotoxic effect of L. rhinocerotis cultured under different conditions of liquid fermentation (shaken and static) were compared to the sclerotium produced by solid-substrate fermentation. Aqueous methanol extracts of the mycelium (LR-MH, LR-MT) and culture broth (LR-BH, LR-BT) demonstrated either higher or comparable antioxidant capacities to the sclerotium extract (LR-SC) based on their radical scavenging abilities, reducing properties, metal chelating activities, and inhibitory effects on lipid peroxidation. All extracts exerted low cytotoxicity (IC50>200 µg/ml, 72 h) against selected mammalian cell lines. Several low-molecular-weight compounds, including sugars, fatty acids, methyl esters, sterols, amides, amino acids, phenolics, and triterpenoids, were identified using GC-MS and UHPLC-ESI-MS/MS. The presence of proteins (<40 kDa) in the extracts was confirmed by SDS-PAGE and SELDI-TOF-MS. Principal component analysis revealed that the chemical profiles of the mycelial extracts under shaken and static conditions were distinct from those of the sclerotium. Results from bioactivity evaluation and chemical profiling showed that L. rhinocerotis from liquid fermentation merits consideration as an alternative source of functional ingredients and potential substitute for the sclerotium.
    Matched MeSH terms: Polyporaceae/growth & development; Polyporaceae/chemistry*
  9. Lee MK, Lim KH, Millns P, Mohankumar SK, Ng ST, Tan CS, et al.
    Phytomedicine, 2018 Mar 15;42:172-179.
    PMID: 29655683 DOI: 10.1016/j.phymed.2018.03.025
    BACKGROUND: Lignosus rhinocerotis (Cooke) Ryvarden is a popular medicinal mushroom used for centuries in Southeast Asia to treat asthma and chronic cough. The present study aimed to investigate the effect of this mushroom on airways patency.

    MATERIALS AND METHODS: The composition of L. rhinocerotis TM02 cultivar was analyzed. Organ bath experiment was employed to study the bronchodilator effect of Lignosus rhinocerotis cold water extract (CWE) on rat isolated airways. Trachea and bronchus were removed from male Sprague-Dawley rats, cut into rings of 2 mm, pre-contracted with carbachol before adding CWE into the bath in increasing concentrations. To investigate the influence of incubation time, tissues were exposed to intervals of 5, 15 and 30 min between CWE concentrations after pre-contraction with carbachol in subsequent protocol. Next, tissues were pre-incubated with CWE before the addition of different contractile agents, carbachol and 5-hydroxytrptamine (5-HT). The bronchodilator effect of CWE was compared with salmeterol and ipratropium. In order to uncover the mechanism of action of CWE, the role of beta-adrenoceptor, potassium and calcium channels was investigated.

    RESULTS: Composition analysis of TM02 cultivar revealed the presence of β-glucans and derivatives of adenosine. The extract fully relaxed the trachea at 3.75 mg/ml (p 

    Matched MeSH terms: Polyporaceae/chemistry*
  10. Kong BH, Tan NH, Fung SY, Pailoor J, Tan CS, Ng ST
    Nutr Res, 2016 Feb;36(2):174-83.
    PMID: 26598045 DOI: 10.1016/j.nutres.2015.10.004
    The Tiger Milk Mushroom (Lignosus spp.) is an important medicinal mushroom in Southeast Asia and has been consumed frequently by the natives as a cure for a variety of illnesses. In this study, we hypothesized that Lignosus tigris (cultivar E) sclerotium may contain high nutritional value and antioxidant properties, is nontoxic and a potential candidate as a dietary supplement. The chemical and amino acid compositions of the sclerotium were evaluated and antioxidant activities of the sclerotial extracts were assessed using ferric reducing antioxidant power; 1,1-diphenyl-2-picrylhydrazyl; and superoxide anion radical scavenging assays. Acute toxicity of the L. tigris E sclerotium was assessed using a rat model study. The sclerotium was found to be rich in carbohydrate, protein, and dietary fibers with small amounts of fat, calories, and sugar. The amino acid composition of the protein contains all essential amino acids, with a protein score of 47. The sclerotial extracts contain phenolics, terpenoids, and glucan. The ferric reducing antioxidant power values of the various sclerotial extracts (hot water, cold water, and methanol) ranged from 0.008 to 0.015 mmol min(-1) g(-1) extract, while the 1,1-diphenyl-2-picrylhydrazyl and superoxide anion radical scavenging activities ranged from 0.11 to 0.13, and -2.81 to 9.613 mmol Trolox equivalents g(-1) extract, respectively. Acute toxicity assessment indicated that L. tigris E sclerotial powder was not toxic at the dose of 2000 mg kg(-1). In conclusion, L. tigris E sclerotium has the potential to be developed into a functional food and nutraceutical.
    Matched MeSH terms: Polyporaceae/chemistry*
  11. Seelan JS, Justo A, Nagy LG, Grand EA, Redhead SA, Hibbett D
    Mycologia, 2015 May-Jun;107(3):460-74.
    PMID: 25661717 DOI: 10.3852/14-084
    The genus Lentinus (Polyporaceae, Basidiomycota) is widely documented from tropical and temperate forests and is taxonomically controversial. Here we studied the relationships between Lentinus subg. Lentinus sensu Pegler (i.e. sections Lentinus, Tigrini, Dicholamellatae, Rigidi, Lentodiellum and Pleuroti and polypores that share similar morphological characters). We generated sequences of internal transcribed spacers (ITS) and partial 28S regions of nuc rDNA and genes encoding the largest subunit of RNA polymerase II (RPB1), focusing on Lentinus subg. Lentinus sensu Pegler and the Neofavolus group, combined these data with sequences from GenBank (including RPB2 gene sequences) and performed phylogenetic analyses with maximum likelihood and Bayesian methods. We also evaluated the transition in hymenophore morphology between Lentinus, Neofavolus and related polypores with ancestral state reconstruction. Single-gene phylogenies and phylogenies combining ITS and 28S with RPB1 and RPB2 genes all support existence of a Lentinus/Polyporellus clade and a separate Neofavolus clade. Polyporellus (represented by P. arcularius, P. ciliatus, P. brumalis) forms a clade with species representing Lentinus subg. Lentinus sensu Pegler (1983), excluding L. suavissimus. Lentinus tigrinus appears as the sister group of Polyporellus in the four-gene phylogeny, but this placement was weakly supported. All three multigene analyses and the single-gene analysis using ITS strongly supported Polyporus tricholoma as the sister group of the Lentinus/Polyporellus clade; only the 28S rRNA phylogeny failed to support this placement. Under parsimony the ancestral hymenophoral configuration for the Lentinus/Polyporellus clade is estimated to be circular pores, with independent transitions to angular pores and lamellae. The ancestral state for the Neofavolus clade is estimated to be angular pores, with a single transition to lamellae in L. suavissimus. We propose that Lentinus suavissimus (section Pleuroti) should be reclassified as Neofavolus suavissimus comb. nov.
    Matched MeSH terms: Polyporaceae/classification*; Polyporaceae/genetics; Polyporaceae/growth & development
  12. Yap YH, Tan N, Fung S, Aziz AA, Tan C, Ng S
    J Sci Food Agric, 2013 Sep;93(12):2945-52.
    PMID: 23460242 DOI: 10.1002/jsfa.6121
    Lignosus rhinocerus (tiger milk mushroom) is an important medicinal mushroom used in Southeast Asia and China, and its sclerotium can be developed into functional food/nutraceuticals. The nutrient composition, antioxidant properties, and anti-proliferative activity of wild type and a cultivated strain of L. rhinocerus sclerotia were investigated.
    Matched MeSH terms: Polyporaceae/growth & development; Polyporaceae/chemistry*
  13. Lau BF, Aminudin N, Abdullah N
    J Microbiol Methods, 2011 Oct;87(1):56-63.
    PMID: 21801760 DOI: 10.1016/j.mimet.2011.07.005
    Mushrooms are considered as important source of biologically active compounds which include low-molecular-mass protein/peptides (LMMP). In this study, we attempted to profile the LMMP from Lignosus rhinocerus, a wild medicinal mushroom, grown by static cultures (SC) and in stirred tank reactor (STR). Crude water extract (CWE) and protein fractions were profiled using H50 ProteinChip® arrays and SELDI-TOF-MS. Three protein peaks of 5.8, 6.9 and 9.1 kDa were found to be common to spectra of L. rhinocerus CWE from both culture conditions. Partial protein purification has resulted in detection of more peaks in the spectra of protein fractions. For protein fractions of L. rhinocerus cultured in STR, most peaks were observed in the range of 3-8 kDa whereas some peaks with molecular mass up to 14.3 kDa were noted in spectra of protein fractions from SC. Our results have demonstrated the optimization of profiling method using SELDI-TOF-MS for fungal LMMP.
    Matched MeSH terms: Polyporaceae/growth & development; Polyporaceae/metabolism*; Polyporaceae/chemistry
  14. Chen SH, Ng SL, Cheow YL, Ting ASY
    J Hazard Mater, 2017 Jul 15;334:132-141.
    PMID: 28407540 DOI: 10.1016/j.jhazmat.2017.04.004
    Four fungal isolates: Simplicillium chinense (iso 9, accession no. KX425621), Penicillium simplicissimum (iso 10, KP713758), Trichoderma asperellum (iso 11, KP792512), and Coriolopsis sp. (1c3, KM403574) were subjected to a series of induced-tolerance training under high metal concentrations to determine if greater tolerance could be achieved from constant exposure to such conditions. Adaptive tolerance assay (Tolerance Index, TI) and Field-Emission Scanning Electron Microscopy with Energy Dispersive X-ray (SEM-EDX) characterized their metal tolerance. "Untrained" S. chinense, P. simplicissimum and T. asperellum showed tolerance towards 4000-4500ppm Al(III) (TI: 0.64-0.71), 1000ppm Cr(III) (0.52-0.83) and Pb(II) (0.32-0.88). With tolerance training, tolerance towards 2000-6000ppm Al(III), 500-3000ppm Pb(II) and 2000-3000ppm Cr(III) were achieved (TI: 0.01-0.82) compared to untrained cultures (0.00-0.59). In contrast, tolerance training for Coriolopsis sp. and P. simplicissimum was less successful, with TI values similar or lower than untrained cultures. SEM-EDX analysis proposed biosorption and bioaccumulation as mechanisms for metal removal. The latter was demonstrated with the removal of Cr(III) and Pb(II) by S. chinense (12.37 and 11.52mgg-1, respectively) and T. asperellum (10.44 and 7.50mgg-1). Induced-tolerance training may render benefit in the long run, but this delicate approach is suggestively species and metal dependent.
    Matched MeSH terms: Polyporaceae/drug effects*; Polyporaceae/physiology; Polyporaceae/ultrastructure
  15. Lau BF, Abdullah N, Aminudin N, Lee HB
    J Ethnopharmacol, 2013 Oct 28;150(1):252-62.
    PMID: 23993912 DOI: 10.1016/j.jep.2013.08.034
    The sclerotium of the "tiger's milk mushroom" (Lignosus rhinocerotis) is used as tonic and folk medicine for the treatment of cancer, fever, cough and asthma by the local and indigenous communities. It is traditionally prepared by either boiling or maceration-like methods; however, there is no attempt to understand how different processing methods might affect their efficacies as anticancer agents.
    Matched MeSH terms: Polyporaceae*
  16. Chen TI, Zhuang HW, Chiao YC, Chen CC
    J Ethnopharmacol, 2013 Aug 26;149(1):70-4.
    PMID: 23773827 DOI: 10.1016/j.jep.2013.06.001
    Lignosus rhinocerotis mushroom is widely used as traditional medicine and as soup ingredient in Malaysia and Hong Kong. Its sclerotium is the part of edibility and is traditionally used for the treatment of fever, cough, asthma and cancer. In view of its safety profile, very little information is found in scientific literature.
    Matched MeSH terms: Polyporaceae/chemistry*
  17. Lee SS, Tan NH, Fung SY, Pailoor J, Sim SM
    J Ethnopharmacol, 2011 Oct 31;138(1):192-200.
    PMID: 21930194 DOI: 10.1016/j.jep.2011.09.004
    Lignosus rhinocerus (known locally as 'Tiger Milk mushroom') is the most important medicinal mushroom used by the indigenous communities of Malaysia to treat fever, cough, asthma, cancer, food poisoning and as a general tonic. The sclerotium of the mushroom is the part with medicinal value. Lignosus rhinocerus was hitherto unexploited commercially because of limited supply. Recently, the mushroom was successfully cultivated.
    Matched MeSH terms: Polyporaceae/chemistry*
  18. Yap HY, Fung SY, Ng ST, Tan CS, Tan NH
    J Ethnopharmacol, 2015 Nov 4;174:437-51.
    PMID: 26320692 DOI: 10.1016/j.jep.2015.08.042
    The sclerotium of Lignosus rhinocerotis (Cooke) Ryvarden (tiger milk mushroom) has been traditionally used as a complementary and alternative medicine for cancer treatment by the local communities of Southeast Asia. Despite the continuous research interest in its antiproliferative activity, the identity of the bioactive compound(s) responsible has yet to be determined. This study aims to bridge the gap in existing research literature by using proteomics approach for investigation of the nature of the anticancer substance of L. rhinocerotis.
    Matched MeSH terms: Polyporaceae
  19. Lau BF, Abdullah N, Aminudin N, Lee HB, Tan PJ
    J Ethnopharmacol, 2015 Jul 1;169:441-58.
    PMID: 25937256 DOI: 10.1016/j.jep.2015.04.042
    Several members of the genus Lignosus, which are collectively known as cendawan susu rimau (in Malay) or tiger׳s milk mushrooms (TMM), are regarded as important local medicine particularly by the indigenous communities in Malaysia. The mushroom sclerotia are purportedly effective in treating cancer, coughs, asthma, fever, and other ailments. The most commonly encountered Lignosus spp. in Malaysia was authenticated as Lignosus rhinocerotis (Cooke) Ryvarden (synonym: Polyporus rhinocerus), which is also known as hurulingzhi in China and has been used by Chinese physicians to treat liver cancer, gastric ulcers, and chronic hepatitis. In spite of growing interest in the therapeutic potential of TMM, there is no compilation of scientific evidence that supports the ethnomedicinal uses of these mushrooms. Therefore, the present review is intended (i) to provide a comprehensive, up-to-date overview of the ethnomedicinal uses, pharmacological activities, and cultivation of TMM in general and L. rhinocerotis in particular, (ii) to demonstrate how recent scientific findings have validated some of their traditional uses, and (iii) to identify opportunities for future research and areas to prioritize for TMM bioprospecting.
    Matched MeSH terms: Polyporaceae/classification; Polyporaceae/growth & development*; Polyporaceae/chemistry*
  20. Veeraperumal S, Qiu HM, Tan CS, Ng ST, Zhang W, Tang S, et al.
    J Ethnopharmacol, 2021 Jun 28;274:114024.
    PMID: 33727110 DOI: 10.1016/j.jep.2021.114024
    ETHNOPHARMACOLOGICAL RELEVANCE: Lignosus rhinocerotis (Cooke) Ryvarden cultivar TM02, also known as tiger's milk mushroom, is regarded as important folk medicine in Malaysia, while is used for the treatment of liver cancer, chronic hepatitis, gastric ulcer in traditional Chinese medicine. However, there is no compilation of scientific evidence that its protection for gastric, and no attempts have been made to understand how polysaccharides in Lignosus rhinocerotis might promote intestinal mucosal wound healing.

    AIM OF THE STUDY: This study aimed to investigate the effect and mechanism of β-glucan prepared from L. rhinocerotis using an enzymatic method on epithelial restitution during intestinal mucosal damage.

    MATERIALS AND METHODS: Based on FT-IR, MALDI-TOF-MS, HPSEC-MALLS-RID, and AFM, the structure of polysaccharides from L. rhinocerotis was analysed. In addition, polysaccharides were used to test for wound healing activity in IEC-6 cells by measuring cell migration, proliferation, and expression of cell division control protein 42, Rac-1, RhoA, and Par-3.

    RESULTS: β-glucan was extracted using enzyme-assisted extraction, and a yield of approximately 8.5 ± 0.8% was obtained from the dried biomass. The β-glucan extracted by enzyme-assisted extraction (EAE) of polysaccharides was composed entirely of D-glucose with a total carbohydrate content of 95.5 ± 3.2%. The results of HPLC, FTIR, and MALDI-TOF-MS analyses revealed EAEP to be confirmed as β-glucan. The molecular weight of prepared β-glucan was found to be 5.315 × 104 g/mol by HPSEC-MALLS-RID. Furthermore, mucosal wound healing studies showed that the treatment of IEC-6 with a β-glucan concentration of 200 μg/mL promoted cell migration and proliferation, and it enhanced the protein expression of cell division control protein 42, Rac-1, RhoA, and Par-3.

    CONCLUSIONS: The present study reveals that the prepared β-glucan accelerates intestinal epithelial cell proliferation and migration via activation of Rho-dependent pathway. Hence, β-glucan can be employed as a prospective therapeutic agent for the treatment of diseases associated with gastrointestinal mucosal damage, such as peptic ulcers and inflammatory bowel disease.

    Matched MeSH terms: Polyporaceae/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links