Displaying publications 1 - 20 of 77 in total

Abstract:
Sort:
  1. Newaz MA, Nawal NN, Rohaizan CH, Muslim N, Gapor A
    Am J Hypertens, 1999 Aug;12(8 Pt 1):839-44.
    PMID: 10480480
    Antioxidant protection provided by different doses of alpha-tocopherol was compared by determining nitric oxide synthase (NOS) activity in blood vessels of spontaneously hypertensive rats (SHR) treated with alpha-tocopherol. SHR were divided into four groups namely hypertensive control (C), treatment with 17 mg of alpha-tocopherol/kg diet (alpha1), 34 mg of alpha-tocopherol/kg diet (alpha2), and 170 mg of alpha-tocopherol/kg diet (alpha3). Wister Kyoto (WKY) rats were used as normal control (N). Blood pressure were recorded from the tail by physiography every other night for the duration of the study period of 3 months. At the end of the trial, animals were sacrificed. The NOS activity in blood vessels was measured by [3H]arginine radioactive assay and the nitrite concentration in plasma by spectrophotometry at wavelength 554 nm using Greiss reagent. Analysis of data was done using Student's t test and Pearson's correlation. The computer program Statistica was used for all analysis. Results of our study showed that for all the three alpha-tocopherol-treated groups, blood pressure was significantly (P < .001) reduced compared to the hypertensive control and maximum reduction of blood pressure was shown by the dosage of 34 mg of alpha-tocopherol/kg diet (C: 209.56 +/- 8.47 mm Hg; alpha2: 128.83 +/- 17.13 mm Hg). Also, NOS activity in blood vessels of SHR was significantly lower than WKY rats (N: 1.54 +/- 0.26 pmol/mg protein, C: 0.87 +/- 0.23 pmol/mg protein; P < .001). Although alpha-tocopherol in doses of alpha1, alpha2, and alpha3 increased the NOS activity in blood vessels, after treatment only that of alpha2 showed a statistical significance (P < .01). Plasma nitrite concentration was significantly reduced in SHR compared to normal WKY rats (N: 54.62 +/- 2.96 mol/mL, C: 26.24 +/- 2.14 mol/mL; P < .001) and accordingly all three groups showed significant improvement in their respective nitrite level (P < .001). For all groups, NOS activity and nitrite level showed negative correlation with blood pressure. It was significant for NOS activity in hypertensive control (r = -0.735, P = .038), alpha1 (r = -0.833, P = .001), and alpha2 (r = -0.899, P = .000) groups. For plasma nitrite, significant correlation was observed only in group alpha1 (r = -0.673, P = .016) and alpha2 (r = -0.643, P = .024). Only the alpha2 group showed significant positive correlation (r = 0.777, P = .003) between NOS activity and nitrite level. In conclusion it was found that compared to WKY rats, SHR have lower NOS activity in blood vessels, which upon treatment with antioxidant alpha-tocopherol increased the NOS activity and concomitantly reduced the blood pressure. There was correlation of lipid peroxide in blood vessels with NOS and nitric oxide, which implies that free radicals may be involved in the pathogenesis of hypertension.
    Matched MeSH terms: Rats, Inbred SHR
  2. Ch'ng YS, Loh YC, Tan CS, Ahmad M, Asmawi MZ, Wan Omar WM, et al.
    J Med Food, 2018 Mar;21(3):289-301.
    PMID: 29420109 DOI: 10.1089/jmf.2017.4008
    The seeds of Swietenia macrophylla King (SM) (Meliaceae) are used as a folk medicine for the treatment of hypertension in Malaysia. However, the antihypertensive and vasorelaxant effects of SM seeds are still not widely studied. Thus, this study was designed to investigate the in vivo antihypertensive effects and in vitro mechanism of vasorelaxation of a 50% ethanolic SM seed extract (SM50) and the fingerprint of SM50 was developed through tri-step Fourier transform infrared (FTIR) spectroscopy. The vasorelaxant activity and the underlying mechanisms of SM50 were evaluated on thoracic aortic rings isolated from Sprague-Dawley rats in the presence of antagonists. The pharmacological effect of SM50 was investigated by oral administration of spontaneously hypertensive rats (SHRs) with three different doses of SM50 (1000, 500, and 250 mg/kg/day) for 4 weeks and their systolic blood pressure (SBP) and diastolic blood pressure (DBP) values were measured weekly using tail-cuff method. The tri-step FTIR macro-fingerprint of SM50 showed that SM50 contains stachyose, flavonoids, limonoids, and ester, which may contribute to its vasorelaxant effect. The results showed that the vasorelaxant activity of SM50 was mostly attributed to channel-linked receptors pathways through the blockage of voltage-operated calcium channels (VOCC). SM50 also acts as both potassium channels opener and inositol triphosphate receptor (IP3R) inhibitor, followed by β2-adrenergic pathway, and ultimately mediated through the nitric oxide/soluble guanylyl cyclase/cyclic 3',5'-guanosine monophosphate (NO/sGC/cGMP) signaling pathways. The treatment of SM50 also significantly decreased the SBP and DBP in SHRs. In conclusion, the antihypertensive mechanism of SM50 was mediated by VOCC, K+ channels, IP3R, G-protein-coupled β2-adrenergic receptor, and followed by NO/sGC/cGMP signaling mechanism pathways in descending order. The data suggested that SM50 has the potential to be used as a herbal medicament to treat hypertension.
    Matched MeSH terms: Rats, Inbred SHR
  3. Sundaram A, Siew Keah L, Sirajudeen KN, Singh HJ
    Hypertens Res, 2013 Mar;36(3):213-8.
    PMID: 23096233 DOI: 10.1038/hr.2012.163
    Although oxidative stress has been implicated in the pathogenesis of hypertension in spontaneously hypertensive rats (SHRs), there is little information on the levels of primary antioxidant enzymes status (AOEs) in pre-hypertensive SHR. This study therefore determined the activities of primary AOEs and their mRNA levels, levels of hydrogen peroxide (H2O2), malondialdehyde (MDA) and total antioxidant status (TAS) in whole kidneys of SHR and age-matched Wistar-Kyoto (WKY) rats aged between 2 and 16 weeks. Compared with age-matched WKY rats, catalase (CAT) activity was significantly higher from the age of 2 weeks (P<0.001) and glutathione peroxide (GPx) activity was lower from the age of 3 weeks (P<0.001) in SHR. CAT mRNA levels were significantly higher in SHR aged 2, 4, 6 and 12 weeks. GPx mRNA levels were significantly lower in SHR at 8 and 12 weeks. Superoxide dismutase activity or its mRNA levels were not different between the two strains. H2O2 levels were significantly lower in SHR from the age of 8 weeks (P<0.01). TAS was significantly higher in SHR from the age of 3 weeks (P<0.05). MDA levels were only significantly higher at 16 weeks of age in the SHR (P<0.05). The data suggest that altered renal CAT and GPx mRNA expression and activity precede the development of hypertension in SHR. The raised CAT activity perhaps contributes to the higher TAS and lower H2O2 levels in SHR. In view of these findings, the precise role of oxidative stress in the pathogenesis of hypertension in SHR needs to be investigated further.
    Matched MeSH terms: Rats, Inbred SHR
  4. Hussein FA, Chay SY, Ghanisma SBM, Zarei M, Auwal SM, Hamid AA, et al.
    J Dairy Sci, 2020 Mar;103(3):2053-2064.
    PMID: 31882211 DOI: 10.3168/jds.2019-17462
    We evaluated the acute (single-dose) and subacute (repeated-dose) oral toxicity of alcalase-hydrolyzed whey protein concentrate. Our acute study revealed no death or treatment-related complications, and the median lethal dose of whey protein concentrate hydrolysate was >2,500 mg/kg. In the subacute study, when the hydrolysate was fed at 3 different concentrations (200, 400, and 800 mg/kg), no groups showed toxicity changes compared with controls. Then, whey protein concentrate hydrolysate was orally administered to spontaneously hypertensive rats. Results revealed significant reductions in blood pressure in a dose-dependent manner, and dosing at 400 mg/kg led to significant blood pressure reduction (-47.8 mm Hg) compared with controls (blood pressure maintained) and the findings of previous work (-21 mm Hg). Eight peptides-RHPEYAVSVLLR, GGAPPAGRL, GPPLPRL, ELKPTPEGDL, VLSELPEP, DAQSAPLRVY, RDMPIQAF, and LEQVLPRD-were sequentially identified and characterized. Of the peptides, VLSELPEP and LEQVLPRD showed the most prominent in vitro angiotensin-I converting enzyme inhibition with half-maximal inhibitory concentrations of 0.049 and 0.043 mM, respectively. These findings establish strong evidence for the in vitro and in vivo potential of whey protein concentrate hydrolysate to act as a safe, natural functional food ingredient that exerts antihypertensive activity.
    Matched MeSH terms: Rats, Inbred SHR
  5. Mohd Zainudin M, Zakaria Z, Megat Mohd Nordin NA
    BMC Complement Altern Med, 2015 Mar 10;15:54.
    PMID: 25887182 DOI: 10.1186/s12906-015-0565-z
    BACKGROUND: The National Health and Morbidity Survey in 2011 estimated that 35.1% (5.7 million) of Malaysian adults aged 18 and older suffer from hypertension. Hypertension is still treated by conventional medicine despite its exact aetiology being unknown. Studies showed that oxidative stress and low availability of nitric oxide (NO) causes an increase in vascular wall tension and increase blood pressure. Piper sarmentosum (PS) a traditional Malay herbal plant is well known for its high antioxidant content. Antioxidant is useful in improving cardiovascular diseases particularly hypertension. Thus, it is beneficial to determine the effect of PS leaves aqueous extract (Kadukmy™) on the blood pressure, NO level, oxidative stress markers and serum cholesterol level of the Spontaneous Hypertensive Rats (SHR).

    METHODS: Rats were devided into five groups consisting of three treatment groups and two control groups. Baseline blood investigations were done before and following commencement of treatment. Spontaneous hypertensive rats were treated for 28 consecutive days and the blood pressure was measured weekly.

    RESULTS: Kadukmy™ administration showed a significant reduction in systolic blood pressure (SBP), diastolic blood pressure (DBP) and mean arterial pressure (MAP) (P 

    Matched MeSH terms: Rats, Inbred SHR
  6. Abbas SA, Sharma JN, Yusof AP
    Immunopharmacology, 1999 Oct 15;44(1-2):93-8.
    PMID: 10604530
    It is known that BK does play a role in the cardioprotective effect of angiotensin converting enzyme (ACE) inhibitors. The present study therefore was conducted to examine the effects of bradykinin (BK) and its antagonist on survival time in spontaneously hypertensive rats (SHR) with coronary artery ligation for 15 min and continuously. We also evaluated the heart rate and blood pressure (BP) in the presence and absence of BK and BK2 receptor antagonist, D-Arg-[Hyp-D-Phe7]BK. Coronary artery was ligated in anaesthetized rats and they were artificially ventilated with room air (stroke volume, 4 ml; 48 strokes/min) as described by the previous investigators. Lead II elecrocardiogram (ECG) was recorded from subcutaneous steel needle electrodes. Results of this investigation indicated that BK treatment 4 microg/kg (i.v.) and 8 microg/kg (i.v.) caused significant (P < 0.05) increase in survival time in SHR with coronary artery ligation for 15 min and continuously as compare to their respective saline-treated controls. However, BK antagonist treatment 4 microg/kg (i.v.) abolished the increase in survival time caused by BK treatment. The mean values of survival time between the saline-treated and BK antagonist plus BK-treated rats did not differ significantly (P > 0.05). The heart rate and BP responses were greatly reduced (P < 0.001) in the presence of coronary artery ligation. These findings suggest that BK might have cardioprotective effect to increase the survival time in rats by activating BK2 receptors after coronary artery ligation.
    Matched MeSH terms: Rats, Inbred SHR
  7. Armenia A, Munavvar AS, Abdullah NA, Helmi A, Johns EJ
    Br J Pharmacol, 2004 Jun;142(4):719-26.
    PMID: 15172958
    1. Diabetes and hypertension are both associated with an increased risk of renal disease and are associated with neuropathies, which can cause defective autonomic control of major organs including the kidney. This study aimed to examine the alpha(1)-adrenoceptor subtype(s) involved in mediating adrenergically induced renal vasoconstriction in a rat model of diabetes and hypertension. 2. Male spontaneously hypertensive rats (SHR), 220-280 g, were anaesthetized with sodium pentobarbitone 7-day poststreptozotocin (55 mg x kg(-1) i.p.) treatment. The reductions in renal blood flow (RBF) induced by increasing frequencies of electrical renal nerve stimulation (RNS), close intrarenal bolus doses of noradrenaline (NA), phenylephrine (PE) or methoxamine were determined before and after administration of nitrendipine (Nit), 5-methylurapidil (5-MeU), chloroethylclonidine (CEC) and BMY 7378. 3. In the nondiabetic SHR group, mean arterial pressure (MAP) was 146+/-6 mmHg, RBF was 28.0+/-1.4 ml x min(-1) x kg(-1) and blood glucose was 112.3+/-4.7 mg x dl(-1), and in the diabetic SHR Group, MAP was 144+/-3 mmHg, RBF 26.9+/-1.3 ml(-1) min x kg(-1) and blood glucose 316.2+/-10.5 mg x dl(-1). Nit, 5-MeU and BMY 7378 blunted all the adrenergically induced renal vasoconstrictor responses in SHR and diabetic SHR by 25-35% (all P<0.05), but in diabetic rats the responses induced by RNS and NA treated with 5-MeU were not changed. By contrast, during the administration of CEC, vasoconstrictor responses to all agonists were enhanced by 20-25% (all P<0.05) in both the SHR and diabetic SHR. 4. These findings suggest that alpha(1A) and alpha(1D)-adrenoceptor subtypes contribute in mediating the adrenergically induced constriction of the renal vasculature in both the SHR and diabetic SHR. There was also an indication of a greater contribution of presynaptic adrenoceptors, that is, alpha(1B)-, and/or alpha(2)-subtypes.
    Matched MeSH terms: Rats, Inbred SHR
  8. Sharma JN, Amrah SS, Noor AR
    Pharmacology, 1995 Jun;50(6):363-9.
    PMID: 7568335
    The present investigation evaluated the effects of aprotinin, an inhibitor of kallikrein, on blood pressure responses, heart rate, and duration of hypotension induced by acute administration of captopril and enalapril (angiotensin-converting enzyme inhibitors) in anaesthetized spontaneously hypertensive rats. Captopril (20 mg/kg) and enalapril (20 mg/kg) administered intravenously caused a significant (p < 0.001) fall in systolic and diastolic blood pressures in the absence of aprotinin. In contrast, captopril (20 mg/kg) and enalapril (20 mg/kg) failed (p > 0.05) to cause a fall in systolic and diastolic blood pressures in the presence of aprotinin (2 mg/kg). Captopril and enalapril were able to significantly reduce the heart rate (p < 0.05 and p < 0.001) in the presence as well as in the absence of aprotinin. The duration of hypotension produced by captopril and enalapril was abolished significantly (p < 0.001) in the presence of aprotinin. These findings may suggest that captopril and enalapril caused hypotension via the kallikrein pathway, since the kallikrein inhibitor aprotinin can antagonize the hypotensive responses of these agents. Thus, kallikrein may be an independent mediator in the regulation of blood pressure.
    Matched MeSH terms: Rats, Inbred SHR
  9. Boon CM, Ng MH, Choo YM, Mok SL
    PLoS One, 2013;8(2):e55908.
    PMID: 23409085 DOI: 10.1371/journal.pone.0055908
    Oleic acid has been shown to lower high blood pressure and provide cardiovascular protection. Curiosity arises as to whether super olein (SO), red palm olein (RPO) and palm olein (PO), which have high oleic acid content, are able to prevent the development of hypertension.
    Matched MeSH terms: Rats, Inbred SHR
  10. Kamal MSA, Ismail NH, Satar NA, Azis NA, Radjeni Z, Mohammad Noor HS, et al.
    Clin Exp Hypertens, 2019;41(5):444-451.
    PMID: 30648895 DOI: 10.1080/10641963.2018.1506467
    Ficus deltoidea is used in Malay traditional medicine for the treatment of a number of disorders, including hypertension. There is, however, no scientific evidence on its anti-hypertensive effects. This study, therefore, investigated the effects of a standardized ethanolic-water extract of Ficus deltoidea Angustifolia (FD-A) on blood pressure (BP) in spontaneously hypertensive rats (SHR). Male SHR with systolic BP of >150 were divided into 4 groups (n = 8) and given either FD-A (800 or 1000 mg kg-1 day-1) or losartan (10 mg kg-1 day-1) or 0.5 ml of distilled water (control) daily for 28 days. BP, body weight, food and water intake, serum and urinary electrolytes, endothelin-1 (ET-1), total antioxidant capacity (TAC) and components of the renin-angiotensin-aldosterone system were measured. Data were analyzed using ANOVA with statistical significance set at p SHR. This effect does not seem to involve the renin-angiotensin-aldosterone-system but might involve some other mechanisms. Abbreviations: FD-A: Ficus deltoidea Angustifolia; ACE: Angiotensin-converting enzyme; SHR: Spontaneously hypertensive rats; SBP: Systolic blood pressure; DBP: Diastolic blood pressure; AUC: Area under curve; RAAS: Renin Angiotensin Aldosterone System.
    Matched MeSH terms: Rats, Inbred SHR
  11. Kazi RN, Sattar MA, Abdullah NA, Khan MA, Rathore HA, Abdulla MH, et al.
    Yakugaku Zasshi, 2011 Mar;131(3):431-6.
    PMID: 21372540
    α(1D)-adrenoceptors are involved in the genesis/maintenance of hypertension in spontaneously hypertensive rats (SHR). This study aims to investigate the role of α(1D)-adrenoceptors in the antinatriuretic and antidiuretic responses in SHR subjected to high sodium (SHRHNa) and normal sodium (SHRNNa) intake for six weeks. Renal inulin clearance study was performed in which the antinatriuretic and antidiuretic responses to phenylephrine were examined in the presence and absence of α(₁D)-adrenoceptors blocker BMY7378. Data, mean±S.E.M. were subjected to ANOVA with significance at p<0.05. Results show that feeding SHR for six weeks with high salt did not cause any change in blood pressure. SHRHNa had higher (all p<0.05) urine flow rate (UFR), fractional and absolute excretion of sodium (FE(Na) and U(Na)V) compared to SHRNNa. Phenylephrine infusion produced significant reduction in UFR, FE(Na) and U(Na)V in both SHRHNa and SHRNNa. The antidiuretic and antinatriuretic responses to phenylephrine in both groups were attenuated in the presence of BMY7378. Moreover, the antidiuretic and antinatriuretic responses to phenylephrine and BMY7378 were independent on any significant changes in renal and glomerular hemodynamics in both groups. Thus we conclude that high sodium intake did not bring any further increase in blood pressure of SHR, however, it results in exaggerated natriuresis and diuresis in SHRHNa. Irrespective of dietary sodium changes, α₁-adrenoceptors are involved in mediating the antinatriuretic and antidiuretic responses to phenylephrine in SHR. Further, high sodium intake did not significantly influence the functionality of α(₁D)-adrenoceptors in mediating the adrenergically induced antinatriuresis and antidiuresis.
    Matched MeSH terms: Rats, Inbred SHR
  12. Ling WC, Murugan DD, Lau YS, Vanhoutte PM, Mustafa MR
    Sci Rep, 2016 09 12;6:33048.
    PMID: 27616322 DOI: 10.1038/srep33048
    Sodium nitrite (NaNO2) induces relaxation in isolated arteries partly through an endothelium-dependent mechanism involving NO-eNOS-sGC-cGMP pathway. The present study was designed to investigate the effect of chronic NaNO2 administration on arterial systolic blood pressure (SBP) and vascular function in hypertensive rats. NaNO2 (150 mg L-1) was given in drinking water for four weeks to spontaneously (SHR) and Nω-Nitro-L-arginine methyl ester hydrochloride (L-NAME) treated hypertensive SD rats. Arterial SBP and vascular function in isolated aortae were studied. Total plasma nitrate/nitrite and vascular cyclic guanosine monophosphate (cGMP) levels were measured using commercially available assay kits. Vascular nitric oxide (NO) levels were evaluated by DAF-FM fluorescence while the proteins involved in endothelial nitric oxide synthase (eNOS) activation was determined by Western blotting. NaNO2 treatment reduced SBP, improved the impaired endothelium-dependent relaxation, increased plasma total nitrate/nitrite level and vascular tissue NO and cGMP levels in SHR. Furthermore, increased presence of phosphorylated eNOS and Hsp-90 was observed in NaNO2-treated SHR. The beneficial effect of nitrite treatment was not observed in L-NAME treated hypertensive SD rats. The present study provides evidence that chronic treatment of genetically hypertensive rats with NaNO2 improves endothelium-dependent relaxation in addition to its antihypertensive effect, partly through mechanisms involving activation of eNOS.
    Matched MeSH terms: Rats, Inbred SHR
  13. Parn KW, Ling WC, Chin JH, Lee SK
    Nutrients, 2022 Nov 01;14(21).
    PMID: 36364864 DOI: 10.3390/nu14214605
    This study aimed to identify the no-observed-adverse-effect level (NOAEL) of dietary epigallocatechin gallate (EGCG) supplementation and its possible antihypertensive and nutrigenomics effects in modulating intrarenal renin-angiotensin system (RAS) gene expression in spontaneously hypertensive rats (SHR). EGCG (50, 250, 500 or 1000 mg/kg b.w. i.g., once daily) was administered to SHR for 28 days. All the SHR survived with no signs of systemic toxicity. Increased alanine aminotransferase (ALT), aspartate aminotransferase (AST) and thiobarbituric acid reactive substances (TBARS) were evident in SHR supplemented with 500 and 1000 mg/kg b.w. but not in those supplemented with lower doses of EGCG. Subsequently, the NOAEL of EGCG was established at 250 mg/kg b.w., and the same protocol was replicated to assess its effects on blood pressure and renal RAS-related genes in SHR. The systolic blood pressure (SBP) of the EGCG group was consistently lower than the control group. The mRNA levels of cortical Agtr2 and Ace2 and medullary Agtr2, Ace and Mas1 were upregulated while medullary Ren was downregulated in EGCG group. Statistical analysis showed that SBP reduction was associated with the changes in medullary Agtr2, Ace, and Ren. Dietary EGCG supplementation exhibits antihypertensive and nutrigenomics effects through activation of intrarenal Ace and Agtr2 and suppression of Ren mediators, while a high dose of EGCG induced liver damage in SHR. In future clinical studies, liver damage biomarkers should be closely monitored to further establish the safety of the long-term use of EGCG.
    Matched MeSH terms: Rats, Inbred SHR
  14. Salman IM, Sattar MA, Ameer OZ, Abdullah NA, Yam MF, Salman HM, et al.
    Indian J Med Res, 2010 Jun;131:786-92.
    PMID: 20571167
    A wealth of information concerning the essential role of renal sympathetic nerve activity (RSNA) in the regulation of renal function and mean arterial blood pressure homeostasis has been established. However, many important parameters with which RSNA interacts are yet to be explicitly characterized. Therefore, the present study aimed to investigate the impact of acute renal denervation (ARD) on sodium and water excretory responses to intravenous (iv) infusions of either norepinephrine (NE) or angiotensin II (Ang II) in anaesthetized spontaneously hypertensive rats (SHR).
    Matched MeSH terms: Rats, Inbred SHR/physiology*
  15. Afzal S, Abdul Sattar M, Johns EJ, Eseyin OA
    PLoS One, 2020;15(11):e0229803.
    PMID: 33170841 DOI: 10.1371/journal.pone.0229803
    Pioglitazone, a therapeutic drug for diabetes, possesses full PPAR-γ agonist activity and increase circulating adiponectin plasma concentration. Plasma adiponectin concentration decreases in hypertensive patients with renal dysfunctions. Present study investigated the reno-protective, altered excretory functions and renal haemodynamic responses to adrenergic agonists and ANG II following separate and combined therapy with pioglitazone in diabetic model of hypertensive rats. Pioglitazone was given orally [10mg/kg/day] for 28 days and adiponectin intraperitoneally [2.5μg/kg/day] for last 7 days. Groups of SHR received either pioglitazone or adiponectin in combination. A group of Wistar Kyoto rats [WKY] served as normotensive controls, whereas streptozotocin administered SHRs served as diabetic hypertensive rats. Metabolic data and plasma samples were taken on day 0, 8, 21 and 28. In acute studies, the renal vasoconstrictor actions of Angiotensin II [ANGII], noradrenaline [NA], phenylephrine [PE] and methoxamine [ME] were determined. Diabetic SHRs control had a higher basal mean arterial blood pressure than the WKY, lower RCBP and plasma adiponectin, higher creatinine clearance and urinary sodium excretion compared to WKY [all P<0.05] which were normalized by the individual drug treatments and to greater degree following combined treatment. Responses to intra-renal administration of NA, PE, ME and ANGII were larger in diabetic SHR than WKY and SHRs [P<0.05]. Adiponectin significantly blunted responses to NA, PE, ME and ANG II in diabetic treated SHRs by 40%, whereas the pioglitazone combined therapy with adiponectin further attenuated the responses to adrenergic agonists by 65%. [all P <0.05]. These findings suggest that adiponectin possesses renoprotective effects and improves renal haemodynamics through adiponectin receptors and PPAR-γ in diabetic SHRs, suggesting that synergism exists between adiponectin and pioglitazone. A cross-talk relationship also supposed to exists between adiponectin receptors, PPAR-γ and alpha adrenoceptors in renal vasculature of diabetic SHRs.
    Matched MeSH terms: Rats, Inbred SHR
  16. Hussin FS, Chay SY, Zarei M, Meor Hussin AS, Ibadullah WZW, Zaharuddin ND, et al.
    Foods, 2020 Dec 09;9(12).
    PMID: 33316941 DOI: 10.3390/foods9121826
    The current study evaluated the γ-aminobutyric acid (GABA) producing ability from three novel strains of lactic acid bacteria (L. plantarum Taj-Apis362, assigned as UPMC90, UPMC91, and UPMC1065) co-cultured with starter culture in a yogurt. A combination of UPMC90 + UPMC91 with starter culture symbiotically revealed the most prominent GABA-producing effect. Response surface methodology revealed the optimized fermentation conditions at 39.0 °C, 7.25 h, and 11.5 mM glutamate substrate concentration to produce GABA-rich yogurt (29.96 mg/100 g) with desirable pH (3.93) and water-holding capacity (63.06%). At 2% glucose to replace pyridoxal-5-phosphate (PLP), a cofactor typically needed during GABA production, GABA content was further enhanced to 59.00 mg/100 g. In vivo study using this sample revealed a blood pressure-lowering efficacy at 0.1 mg/kg GABA dosage (equivalent to 30 mg/kg GABA-rich yogurt) in spontaneously hypertensive rats. An improved method to produce GABA-rich yogurt has been established, involving shorter fermentation time and lower glutamate concentration than previous work, along with glucose induction that omits the use of costly PLP, fostering the potential of developing a GABA-rich functional dairy product through natural fermentation with desirable product quality and antihypertensive property.
    Matched MeSH terms: Rats, Inbred SHR
  17. Hashim Fauzy F, Mohd Zainudin M, Ismawi HR, Elshami TFT
    PMID: 31485247 DOI: 10.1155/2019/7198592
    Piper sarmentosum is a tropical plant in Southeast Asia known for its traditional use in curing various ailments including hypertension. Previous research works have provided evidence for the herb's antihypertensive property. However, the exact mechanisms involved are still in question. The present study investigated the effects of Piper sarmentosum leaves aqueous extract (PSAE) treatment on vascular endothelin system in spontaneously hypertensive rats (SHRs). Four groups of SHRs were treated for 28 consecutive days, with negative and positive control groups receiving distilled water and 3 mg/kg perindopril, respectively. Another two groups are the treatment groups, which received PSAE and combination of 1.5 mg/kg perindopril and PSAE. Weekly measurements of blood pressure showed that PSAE significantly reduced the systolic, diastolic, and mean arterial pressures (P < 0.05) of the rats. PSAE also increased mesenteric artery nitric oxide (NO) level (P < 0.05) and reduced endothelin-1 (ET-1) level (P < 0.05) in the treatment groups. Our results demonstrate that oral administration of PSAE reduced blood pressure in SHRs by reducing the ET-1 level while increasing NO production.
    Matched MeSH terms: Rats, Inbred SHR
  18. Muharis SP, Top AG, Murugan D, Mustafa MR
    Nutr Res, 2010 Mar;30(3):209-16.
    PMID: 20417882 DOI: 10.1016/j.nutres.2010.03.005
    Diabetes and hypertension are closely associated with impaired endothelial function. Studies have demonstrated that regular consumption of edible palm oil may reverse endothelial dysfunction. The present study investigates the effect of palm oil fractions: tocotrienol rich fraction (TRF), alpha-tocopherol and refined palm olein (vitamin E-free fraction) on the vascular relaxation responses in the aortic rings of streptozotocin-induced diabetic and spontaneously hypertensive rats (SHR). We hypothesize that the TRF and alpha-tocopherol fractions are able to improve endothelial function in both diabetic and hypertensive rat aortic tissue. A 1,1-diphenyl picryl hydrazyl assay was performed on the various palm oil fractions to evaluate their antioxidant activities. Endothelium-dependent (acetylcholine) and endothelium-independent (sodium nitroprusside) relaxations were examined on streptozotocin-induced diabetic and SHR rat aorta following preincubation with the different fractions. In 1-diphenyl picryl hydrazyl antioxidant assay, TRF and alpha-tocopherol fractions exhibited a similar degree of activity while palm olein exhibited poor activity. TRF and alpha-tocopherol significantly improved acetylcholine-induced relaxations in both diabetic (TRF, 88.5% +/- 4.5%; alpha-tocopherol, 87.4% +/- 3.4%; vehicle, 65.0 +/- 1.6%) and SHR aorta (TRF, 72.1% +/- 7.9%; alpha-tocopherol, 69.8% +/- 4.0%, vehicle, 51.1% +/- 4.7%), while palm olein exhibited no observable effect. These results suggest that TRF and alpha-tocopherol fractions possess potent antioxidant activities and provide further support to the cardiovascular protective effects of palm oil vitamin E. TRF and alpha-tocopherol may potentially improve vascular endothelial function in diabetes and hypertension by their sparing effect on endothelium derived nitric oxide bioavailability.
    Matched MeSH terms: Rats, Inbred SHR
  19. Tan HJ, Ling WC, Chua AL, Lee SK
    Phytomedicine, 2021 Sep;90:153623.
    PMID: 34303263 DOI: 10.1016/j.phymed.2021.153623
    BACKGROUND: Concurrent use of epigallocatechin-3-gallate (EGCG) and medication may lead to botanical-drug interactions, subsequently therapeutic failure or drug toxicity. It has been reported that EGCG reduces plasma nadolol bioavailability in normotensive models. Nevertheless, evidence on the effects of EGCG on hypertensive model, and the possible underlying mechanism have not been elucidated.

    OBJECTIVES: This study aims (i) to investigate the effects of EGCG on nadolol pharmacokinetics (maximum plasma concentration, time to achieve maximum concentration, area under the time-plasma concentration curve, plasma half-life and total clearance) and subsequently its impact on blood pressure control; and (ii) to identify transcriptional regulatory roles of EGCG on the nadolol intestinal and hepatic drug-transporters in SHR.

    METHODS: Male SHR were pre-treated with a daily dose of EGCG (10 mg/kg body weight, i.g.) for 13 days. On day-14, a single dose of nadolol (10 mg/kg body weight) was given to the rats 30 min after the last dose of EGCG administration. Systolic blood pressure (SBP) was measured at 6-h and 22-h post-nadolol administration. Plasma and urinary nadolol concentrations were quantified using high-performance liquid chromatography, and pharmacokinetic parameters were analyzed by using non-compartmental analysis. Hepatic and ileal Oatp1a5, P-gp, and Oct1 mRNA expressions were determined by real-time PCR.

    RESULTS: SBP of SHR pre-treated with EGCG and received nadolol was significantly higher than those which were not pre-treated with EGCG but received nadolol. Pre-treatment of EGCG resulted in a marked reduction of plasma nadolol maximum concentration (Cmax) and area under the time-plasma concentration curve (AUC) by 53% and 51% compared to its control. The 14-day treatment with oral EGCG led to a significant downregulation of mRNA levels of ileal Oatp1a5, P-gp, and Oct1 genes by 4.03-, 8.01- and 4.03-fold; and hepatic P-gp, and Oct1 genes by 2.61- and 2.66-fold.

    CONCLUSION: These data concluded that exposure to EGCG could lead to reduced nadolol bioavailability and therefore, uncontrolled raised blood pressure and higher risks of cardiovascular events. Our data suggest that the reduced nadolol bioavailability is associated with the downregulation of ileal Oatp1a5 and Oct1 mRNA levels that subsequently lead to poor absorption of nadolol to the systemic circulation.

    Matched MeSH terms: Rats, Inbred SHR
  20. Ajay M, Achike FI, Mustafa MR
    Pharmacol Res, 2007 May;55(5):385-91.
    PMID: 17317209
    In this study, we report the effects of a non-antioxidant flavonoid flavone on vascular reactivity in Wistar-Kyoto (WKY) rat isolated aortae. Whether flavone directly modulates vascular reactivity in spontaneously hypertensive rat (SHR) and streptozotocin-induced diabetic-WKY rat isolated aortae was also determined. Thoracic aortic rings were mounted in organ chambers and exposed to various drug treatments in the presence of flavone (10 microM) or its vehicle (DMSO), which served as control. Pretreatment with flavone enhanced relaxant effects to endothelium-dependent vasodilator acetylcholine (ACh) and attenuated contractile effects to alpha(1)-receptor agonist phenylephrine (PE) in WKY aortae compared to those observed in control aortic rings. Flavone had no effect on relaxations to ACh in WKY aortae incubated with either L-NAME or methylene blue, but enhanced relaxations to ACh in WKY aortae incubated with indomethacin or partially depolarized with KCl. Relaxations to ACh are totally abolished in both control or flavone pretreated endothelium-denuded WKY aortae. Flavone attenuated the inhibition by beta-NADH of ACh-induced relaxation in WKY aortae, but it had no significant effect on the transient contractions induced by beta-NADH nor the pyrogallol-induced abolishment of ACh-induced relaxation in WKY aortae. Flavone enhanced endothelium-independent relaxation to sodium nitroprusside (SNP) in both endothelium-intact and -denuded WKY aortae. Flavone enhanced relaxation to ACh and SNP as well as attenuated contractile effects to PE in SHR and diabetic aortae, a finding similar to that observed in normal WKY aortae. From these results, we conclude that flavone modulates vascular reactivity in normal as well as hypertensive and diabetic aortae. These effects of flavone results probably through enhanced bioactivity of nitric oxide released from the endothelium.
    Matched MeSH terms: Rats, Inbred SHR
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links