Displaying publications 1 - 20 of 37 in total

Abstract:
Sort:
  1. Ariff N, Abdullah A, Azmai MNA, Musa N, Zainathan SC
    Vet World, 2019 Aug;12(8):1273-1284.
    PMID: 31641308 DOI: 10.14202/vetworld.2019.1273-1284
    Background and Aim: Viral nervous necrosis (VNN) is a serious disease of several marine fish species. VNN causes 100% mortality in the larval stages, while lower losses have been reported in juvenile and adult fish. This study aimed to detect the occurrence of VNN while identifying its associated risk factors and the genotypes of its causative agent in a hybrid grouper hatchery in Malaysia.

    Materials and Methods: A batch of newly hatched hybrid grouper fry (Epinephelus fuscoguttatus × Epinephelus lanceolatus) were followed from the larval stage to market size. Samples of the hybrid groupers, water, live feed, and artificial fish pellets were collected periodically from day 0 to 180 in the hybrid grouper hatchery. Reverse transcription-polymerase chain reaction (RT-PCR) and nested PCR amplifications were carried out on VNN-related sequences. The phylogenetic tree including the sampled causative agent of VNN was inferred from the coat protein genes from all known Betanodavirus species using Molecular Evolutionary Genetics Analysis (MEGA). Pearson's correlation coefficient values were calculated to determine the strength of the correlation between the presence of VNN in hybrid grouper samples and its associated risk factors.

    Results: A total of 113 out of 146 pooled and individual samples, including hybrid grouper, water, and artificial fish pellet samples, demonstrated positive results in tests for the presence of VNN-associated viruses. The clinical signs of infection observed in the samples included darkened skin, deformation of the backbone, abdominal distension, skin lesions, and fin erosion. VNN was present throughout the life stages of the hybrid groupers, with the first detection occurring at day 10. VNN-associated risk factors included water temperature, dissolved oxygen content, salinity, ammonia level, fish size (adults more at risk than younger stages), and life stage (age). Detection of VNN-associated viruses in water samples demonstrated evidence of horizontal transmission of the disease. All the nucleotide sequences found in this study had high nucleotide identities of 88% to 100% to each other, striped jack nervous necrosis virus (SJNNV), and the reassortant strain red-spotted grouper NNV/SJNNV (RGNNV/SJNNV) isolate 430.2004 (GenBank accession number JN189932.1) (n=26). The phylogenetic analysis showed that quasispecies was present in each VNN-causing virus-positive sample, which differed based on the type of sample and life stage.

    Conclusion: This study was the first to confirm the existence of a reassortant strain (RGNNV/SJNNV) in hybrid groupers from Malaysia and Southeast Asia. However, the association between the mode of transmission and the risk factors of this virus needs to be investigated further to understand the evolution and potential new host species of the reassortant strain.

    Matched MeSH terms: Reverse Transcription
  2. Ge P, Ong CY, Abdalkareem AE, Khoo BY, Yuan B
    Exp Ther Med, 2021 Feb;21(2):103.
    PMID: 33335566 DOI: 10.3892/etm.2020.9535
    The presence of certain soluble factors may provide a possible selective advantage for a parasite to gradually modify cell proliferation in neighbouring cells, which may result in chronic diseases. These soluble factors present in the conditioned medium also allow the parasite to invade rapidly into more host cells. The present study aimed to determine the levels of a group of type 1 T helper (Th1) cytokines in the conditioned media of host cells infected with parasites and in IL-21-silenced colorectal cancer cells. The conditioned media of human foreskin fibroblasts (HFFs) parasitized with the RH and ME49 strains of Toxoplasma gondii for 10 days were prepared, and subsequently the levels of the Th1 cytokines in the conditioned media were determined by ELISA. HFFs were incubated with the growth media containing selected soluble factors, and cell proliferation markers were subsequently analysed by reverse transcription-quantitative PCR. The mRNA expression level of cell proliferation markers was also examined in IL-21-silenced HCT116 cells, where the levels of soluble factors in the conditioned media were also determined as aforementioned. The results of the present study demonstrated that HFFs parasitized with ME49 released elevated levels of IFN-γ and lower levels of IL-18 into the conditioned medium compared with the controls. These phenomena were not observed in the conditioned medium of HFFs parasitized with RH. Similar levels of these soluble factors were also detected in the conditioned medium of IL-21-silenced HCT116 cells. The results of the present study also revealed that Ki67 and proliferating cell nuclear antigen mRNA expression was altered in host cells incubated with various levels of IFN-γ and IL-18, as well as in IL-21-silenced HCT116 cells compared with the respective controls. In conclusion, the current study provided preliminary evidence on the fundamental molecular mechanisms of host-parasite interactions that result in chronic diseases, which may aid in the treatment of these diseases in the relevant endemic regions.
    Matched MeSH terms: Reverse Transcription
  3. Seyedi SS, Tan SG, Namasivayam P, Yong CSY
    Sains Malaysiana, 2016;45:717-727.
    The Hibiscus sabdariffa var. UMKL (Roselle) investigated here may potentially be used as an alternative fibre source. To
    the best of our knowledge, there was no study focusing on the genetics underlying the cellulose biosynthesis machinery
    in Roselle thus far. This paper presents the results of the first isolation of the cellulose synthase gene, HsCesA1 from this
    plant, which is fundamental for working towards understanding the functions of CesA genes in the cellulose biosynthesis
    of Roselle. A full-length HsCesA1 cDNA of 3528 bp in length (accession no: KJ608192) encoding a polypeptide of 974
    amino acid was isolated. The full-length HsCesA1 gene of 5489 bp length (accession no: KJ661223) with 11-introns
    and a promoter region of 737 bp was further isolated. Important and conserved characteristics of a CesA protein were
    identified in the HsCesA1 deduced amino acid sequence, which strengthened the prediction that the isolated gene being
    a cellulose synthase belonging to the processive class of the 2-glycosyltransferase family 2A. Relative gene expression
    analysis by semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) on young leaf and stem tissues
    found that HsCesA1 had similar levels of gene expression in both tissues. Phylogenetic and Blast analyses also supported
    the prediction that the isolated HsCesA1 may play roles in the cell wall depositions in both leaf and stem tissues.
    Matched MeSH terms: Reverse Transcription
  4. Thanarajoo SS, Kong LL, Kadir J, Lau WH, Vadamalai G
    J Virol Methods, 2014 Jun;202:19-23.
    PMID: 24631346 DOI: 10.1016/j.jviromet.2014.02.024
    A reverse transcription loop-mediated isothermal amplification (RT-LAMP) detected Coconut cadang-cadang viroid (CCCVd) within 60 min at 60 °C in total nucleic acid extracted from oil palm leaves infected with CCCVd. Positive reactions showed colour change from orange to green in the reaction mix after the addition of fluorescent reagent, and a laddering pattern band on 2% agarose gel electrophoresis. Conventional RT-PCR with LAMP primers produced amplicons with a sequence identical to the 297-nt CCCVd oil palm variant with the primers being specific for CCCVd and not for other viroids such as PSTVd and CEVd. RT-LAMP was found to be rapid and specific for detecting oil palm CCCVd.
    Matched MeSH terms: Reverse Transcription*
  5. Raikundalia S, Sa'Dom SAFM, Few LL, Too WCS
    Oncol Lett, 2021 Mar;21(3):183.
    PMID: 33574922 DOI: 10.3892/ol.2021.12444
    Choline kinase (ChK) catalyzes the first step in the CDP-choline pathway for the synthesis of phosphatidylcholine. The α isoform of this enzyme is overexpressed in various types of cancer and its inhibition or downregulation has been applied as an anticancer strategy. In spite of increasing attention being paid to ChK expression, as well as its activity and inhibition in cancer, there are only limited studies available on the regulation of ChK, including its regulation by microRNAs (miRNAs/miRs). The dysregulation of gene expression by miRNAs is a common cause for carcinogenesis. In the present study, miR-367-3p was predicted to target the 3'-untranslated region (UTR) of the ChK α (chka) mRNA transcript. The binding of miR-367-3p to the 3'-UTR of chka was validated by a luciferase assay. The effects of the miR-367-3p mimic on chka gene and protein expression levels were determined by reverse transcription-quantitative polymerase chain reaction and western blot analysis, respectively. miR-367-3p significantly downregulated the expression of chka to ~60% of the negative control. Cells transfected with miR-367-3p exhibited higher levels of apoptosis and a lower cell migration compared with the control. To the best of our knowledge, the present study provided the first experimental evidence of the regulation of chka expression by miR-367-3p. The pro-apoptotic and suppressive effects of miR-367-3p on cell migration were similar to the anticancer effects resulting from the inhibition of ChK enzyme activity or the knockdown of chka gene expression by small interfering RNA. Therefore, these findings may potentially lead to the use of miR-367-3p in anticancer strategies that target ChK.
    Matched MeSH terms: Reverse Transcription
  6. Wong CL, Yong CY, Ong HK, Ho KL, Tan WS
    Front Vet Sci, 2020;7:477.
    PMID: 32974392 DOI: 10.3389/fvets.2020.00477
    Foot-and-mouth disease (FMD) is a devastating livestock disease caused by foot-and-mouth disease virus (FMDV). Outbreaks of this disease in a country always result in conspicuous economic losses to livestock industry and subsequently lead to serious socioeconomic damages due to the immediate imposition of trade embargo. Rapid and accurate diagnoses are imperative to control this infectious virus. In the current review, enzyme-linked immunosorbent assay (ELISA)-based methods used in FMD diagnosis are extensively reviewed, particularly the sandwich, liquid-phase blocking, and solid-phase competition ELISA. The differentiation of infected animals from vaccinated animals using ELISA-based methods is also highlighted, in which the role of 3ABC polyprotein as a marker is reviewed intensively. Recently, more studies are focusing on the molecular diagnostic methods, which detect the viral nucleic acids based on reverse transcription-polymerase chain reaction (RT-PCR) and RT-loop-mediated isothermal amplification (RT-LAMP). These methods are generally more sensitive because of their ability to amplify a minute amount of the viral nucleic acids. In this digital era, the RT-PCR and RT-LAMP are progressing toward the mobile versions, aiming for on-site FMDV diagnosis. Apart from RT-PCR and RT-LAMP, another diagnostic assay specifically designed for on-site diagnosis is the lateral flow immunochromatographic test strips. These test strips have some distinct advantages over other diagnostic methods, whereby the assay often does not require the aid of an external device, which greatly lowers the cost per test. In addition, the on-site diagnostic test can be easily performed by untrained personnel including farmers, and the results can be obtained in a few minutes. Lastly, the use of FMDV diagnostic assays for progressive control of the disease is also discussed critically.
    Matched MeSH terms: Reverse Transcription
  7. Yong HT, Son R
    MyJurnal
    Hepatitis A virus infection occurs globally and is causing a public health concern, primarily in developing countries due to its persistent circulation in the environment. The improved sanitary condition and increase in awareness of personal hygiene have led to the marked reduction of HAV prevalence in industrialized countries during childhood and to a shift of the infection towards adulthood. HAV is an environmentally stable, positive single stranded RNA virus that is primarily transmitted by the fecal-oral route, person to person contact or ingestion of contaminated food and drink. One of the main causes leading to HAV infection is epidemiologically linked to the consumption of raw or undercooked shellfish particularly oysters and clams. Due to their filter-feeding style, these shellfishes readily concentrate viruses from the surrounding water containing municipal sewage, and as a consequence pose a health threat to consumers. Therefore, development of detection techniques possessing the requisite sensitivity and specificity for the practical routine monitoring purposes is of great importance necessary for the protection of shellfish-consuming public. Nucleic acid based method such as reverse transcription PCR has emerged as the popular method of choice in view of its rapidity, accuracy and
    sensitivity in contrary of the time-consuming conventional cell culture and hybridization techniques. However, detection of hepatitis A virus is firstly hampered by the non-cytophatic effect of wild type HAV strain, secondly, the low concentration of viral genome present in the environmental sample which requires effective isolation and concentration of virions and lastly the labor-extensive purification and thorough removal of the abundance of the PCR inhibitors which will unfavorably reduce the efficiency of PCR detection.
    Matched MeSH terms: Reverse Transcription
  8. Mat Jusoh TNA, Shueb RH
    J Trop Med, 2017;2017:4687182.
    PMID: 29379526 DOI: 10.1155/2017/4687182
    The shattering rise in dengue virus infections globally has created a need for an accurate and validated rapid diagnostic test for this virus. Rapid diagnostic test (RDT) and reverse transcription-polymerase chain reaction (RT-PCR) diagnostic detection are useful tools for diagnosis of early dengue infection. We prospectively evaluated the diagnostic performance of nonstructural 1 (NS1) RDT and real-time RT-PCR diagnostic kits in 86 patient serum samples. Thirty-six samples were positive for dengue NS1 antigen while the remaining 50 were negative when tested with enzyme-linked immunosorbent assay (ELISA). Commercially available RDTs for NS1 detection, RTK ProDetect™, and SD Bioline showed high sensitivity of 94% and 89%, respectively, compared with ELISA. GenoAmp® Trioplex Real-Time RT-PCR and RealStar® Dengue RT-PCR tests presented a comparable kappa agreement with 0.722. The result obtained from GenoAmp® Real-Time RT-PCR Dengue test showed that 14 samples harbored dengue virus type 1 (DENV-1), 8 samples harbored DENV-2, 2 samples harbored DENV-3, and 1 sample harbored DENV-4. 1 sample had a double infection with DENV-1 and DENV-2. The NS1 RDTs and real-time RT-PCR tests were found to be a useful diagnostic for early and rapid diagnosis of acute dengue and an excellent surveillance tool in our battle against dengue.
    Matched MeSH terms: Reverse Transcription
  9. Abd-Aziz N, Stanbridge EJ, Shafee N
    Oncol Lett, 2015 Oct;10(4):2192-2196.
    PMID: 26622817
    Bortezomib is the first proteasomal inhibitor (PI) to be used therapeutically for treating relapse cases of multiple myeloma and mantle cell lymphoma. A proposed mechanism for its action is that it prevents the proteasomal degradation of proapoptotic proteins, leading to enhanced apoptosis. Although the α subunit of hypoxia-inducible factor (HIF)-1 is not degraded with bortezomib treatment, the heterodimeric HIF-1 fails to transactivate target genes. HIF-1 and HIF-2 are related hypoxia-inducible transcription factors that are important for the survival of hypoxic tumor cells. The majority of reports have focused on the effects of bortezomib on the transcriptional activities of HIF-1, but not HIF-2. The present study investigated the effects of bortezomib on HIF-2 activity in cancer cells with different levels of HIF-1α and HIF-2α subunits. HIF-α subunit levels were detected using specific antibodies, while HIF transcriptional activities were evaluated using immunodetection, reverse transcription-polymerase chain reaction and luciferase reporter assay. Bortezomib treatment was found to suppress the transcription and expression of CA9, a HIF-1-specific target gene; however, it had minimal effects on EPO and GLUT-1, which are target genes of both HIF-1 and HIF-2. These data suggest that bortezomib attenuates the transcriptional activity only of HIF-1, and not HIF-2. This novel finding on the lack of an inhibitory effect of bortezomib on HIF-2 transcriptional activity has implications for the improvement of design and treatment modalities of bortezomib and other PI drugs.
    Matched MeSH terms: Reverse Transcription
  10. He PY, Yip WK, Chai BL, Chai BY, Jabar MF, Dusa N, et al.
    Oncol Rep, 2017 Dec;38(6):3554-3566.
    PMID: 29039592 DOI: 10.3892/or.2017.6037
    The objective of this study was to determine the effect of miR‑29a‑3p inhibitor on the migration and invasion of colorectal cancer cell lines (CRC) and the underlying molecular mechanisms. miR‑29a‑3p was detected using reverse transcription-quantitative polymerase chain reaction (RT‑qPCR) in the CRC cell lines HCT11, CaCo2, HT29, SW480 and SW620. An invasive subpopulation designated SW480‑7 was derived from the parental cell line, detected by Transwell and Transwell Matrigel assays. Cytoskeleton Regulators RT2 profiler PCR array and western blot analysis were utilized to identify the alterations in expression of downstream mRNAs. siRNA against CDC42BPA was transfected into SW480‑7 and effects on cell migration and invasion were investigated. Data obtained showed that miR‑29a‑3p was detected in these five CRC cell lines. miR‑29a‑3p inhibitor had no effect on viability but stimulated cell migration and invasion of SW480‑7 cells. In contrast, miR‑29a‑3p mimic suppressed cell migration and invasion. TargetScan miRBD and DIANA were employed to identify the potential direct target genes of miR‑29a‑3p in the Cytoskeleton Regulators RT2-Profiler PCR array. Cytoskeleton Regulators RT2-Profiler PCR array data showed that 3 out of the 5 predicted targets genes, CDC42BPA (2.33-fold), BAIAP2 (1.79-fold) and TIAM1 (1.77-fold), in the array were upregulated by miR‑29a‑3p. A significant increase in expression IQGAP2, PHLDB2, SSH1 mRNAs and downregulation of PAK1 mRNA was also detected with miR‑29a‑3p inhibition. Increase in CDC42BPA, SSH1 and IQGAP2 mRNA expression correlated with increased protein level in miR‑29a‑3p transfected SW-480-7 cells. Silencing of CDC42BPA (an enhancer of cell motility) partially abolished miR‑29a‑3p inhibitor-induced stimulation of cell migration and invasion. miR‑29a‑3p expression in stage II and III CRC is relatively lower than that of stage I CRC. However, the data need to be interpreted with caution due to the small sample size. In conclusion, inhibition of miR‑29a‑3p stimulates SW480‑7 cell migration and invasion and downstream expression IQGAP2, PHLDB2, SSH1 mRNAs are upregulated whilst PAK1 mRNA is downregulated. Silencing of CDC42BPA expression partially reduces miR29a‑3p inhibitor-induced migration and invasion of SW480‑7 cells.
    Matched MeSH terms: Reverse Transcription
  11. Elyasi Gorji Z, Amiri-Yekta A, Gourabi H, Hassani S, Fatemi N, Zerehdaran S, et al.
    Iran J Biotechnol, 2015 Jun;13(2):10-17.
    PMID: 28959285 DOI: 10.15171/ijb.1004
    BACKGROUND: Follicle stimulating hormone (FSH) plays an essential role in reproductive physiology and follicular development.

    OBJECTIVE: A new variant of the equine fsh (efsh) gene was cloned, sequenced, and expressed in Pichia pastoris (P. pastoris) GS115 yeast expression system.

    MATERIALS AND METHODS: The full-length cDNAs of the efshα and efshβ chains were amplified by reverse transcription polymerase chain reaction (RT-PCR) using the total RNA isolated from an Iranian Turkmen-thoroughbred horse's anterior pituitary gland. The amplified efsh chains were cloned into the pPIC9 vector and transferred into P. pastoris. The secretion of recombined eFSH using P. pastoris expression system was confirmed by Western blotting and immunoprecipitation (IP) methods.

    RESULTS: The DNA sequence of the efshβ chain accession number JX861871, predicted two putative differential nucleotide arrays, both of which are located in the 3'UTR. Western blotting showed a molecular mass of 13 and 18 kDa for eFSHα and eFSHβ subunits, respectively. The expression of desired protein was confirmed by protein G immunoprecipitation kit.

    CONCLUSIONS: eFSH successfully expressed in P. pastoris. These findings lay a foundation to improve ovulation and embryo recovery rates as well as the efficiency of total embryo-transfer process in mares.

    Matched MeSH terms: Reverse Transcription
  12. Nurul, A.A., Tan, S.J., Asiah, A.B., Norliana, G., Nor Shamsuria, O., Nurul, A.S.
    MyJurnal
    Introduction: Stem cells from human exfoliated deciduous teeth (SHED) are highly proliferative, clonogenic cells capable of differentiating into osteoblasts and inducing bone formation. It is a potential alternative for stem cell bone regeneration therapy. However, stem cell therapy carries the risk of immune rejection mediated by inflammatory cytokines of the human defense system. Objective: This preliminary research studies the interaction between SHED and the immune system by determining the inflammatory cytokines profile and osteogenic potential of SHED. Methods: Human fetal osteoblasts (hFOb) cell line and isolated SHED were cultured and total RNA was extracted, followed by reverse transcription cDNA synthesis. Semi-quantitative reverse transcription PCR and Multiplex PCR were performed to detect the expression levels of OPG/RANKL and TNF-α, IL-1β, IL-6, IL-8 and TGF-β in both cell types. Results: Analysis showed that SHED expressed significantly lower amounts of IL-1β, IL-6, and IL-8 compared to hFOB. IL-1β is a potent bone-resorbing factor, while IL-6 and IL-8 induce osteoclastogenesis and osteolysis respectively. SHED did not express TNF-α which stimulates osteoclastic activity. SHED demonstrated high OPG/RANKL ratio, in contrast with that of marrow stem cells described in previous studies. Our findings suggest that SHED may have improved immunomodulatory profile in terms of promoting relatively lower inflammatory reaction during transplant and enhancing bone regeneration. Conclusion: SHED has a potential to be a good source of osteoblasts for bone regeneration therapy. Further studies on the immunomodulatory properties of SHED-derived osteoblasts are necessary to enable stem cell therapy in immunocompetent hosts.
    Matched MeSH terms: Reverse Transcription
  13. Nordin N, Sani NIM, Kadir AA, Shaari R, Mohamed M, Reduan MFH, et al.
    J Adv Vet Anim Res, 2021 Mar;8(1):101-104.
    PMID: 33860019 DOI: 10.5455/javar.2021.h491
    Objective: In this case report, we have investigated the infectious bronchitis (IB) virus (IBV) outbreak with the co-infection of Escherichia coli in 28-33-day-old broiler chickens in Malaysia.

    Materials and Methods: A farmer complained that Cobb 500 chickens, raised in the open house, were having bloody diarrhea, open mouth breathing, non-uniform growth, and ruffled feathers. The mortality was about 100 birds (from about 7000 birds) per day. The sick birds were isolated and subjected to physical examination, postmortem, and histopathological analyses. Gross lesions were observed and recorded. The lung samples have proceeded with histopathological evaluations. The lungs, kidneys, trachea, air sac, and heart samples were collected to isolate bacteria and fungi through a series of conventional cultural methods, followed by molecular confirmation of the IBV.

    Results: Postmortem examination revealed air sacculitis, hemorrhagic tracheitis, pulmonary congestion, fibrin deposition in the liver and air sac, hemorrhagic enteritis, and renomegaly. The bacterial culture and biochemical tests revealed E. coli in the lungs, trachea, liver, intestine, and kidney samples. However, no fungus could be isolated from those samples. Histological evaluation of lung samples demonstrated infiltration of inflammatory cells in the pulmonary tissues. Apart from this, reverse transcription-polymerase chain reaction confirmed the presence of avian coronavirus responsible for infectious bronchitis (IB).

    Conclusion: The chickens were diagnosed with IB concurrent with E.coli. The chickens exhibited typical nephropathogenic strain of IBV infection, causing high mortality.

    Matched MeSH terms: Reverse Transcription
  14. Mazlan LF, Bachek NF, Mahamud SNA, Idris LH, Wei TS, Omar AR, et al.
    Vet World, 2017 May;10(5):542-548.
    PMID: 28620260 DOI: 10.14202/vetworld.2017.542-548
    AIM: Genotype VII Newcastle disease virus (NDV) is the most predominant NDV strains that circulating in Malaysia; thus, this study was aimed to determine the susceptibility of Japanese quails toward genotype VII NDV. Clinical signs, gross pathological lesions of organs, positive detection of virus in organs and cloacal swabs, as well as the expression of the antibody titer, were used as parameters to assess the susceptibility of Japanese quails following infection of genotype VII NDV.

    MATERIALS AND METHODS: About 20 quails were divided into three groups (n=8 for Groups A and B; n=4 for the control group). The quails in the Groups A and B were infected via intraocular route with 0.03 ml of 103.5 ELD50 and 107.0 ELD50 of NDV strain IBS 002, respectively, while the control group received 1× phosphate-buffered saline. Cloacal swabs and necropsy were taken on day 7 post-infection for all quails were subjected to one-step reverse transcription real-time quantitative polymerase chain reaction (RT-qPCR) for detection of virus and examination for gross pathological lesion, respectively. Blood serums of infected quails were taken on day 10, 14, and 21 post-day infections and were subjected for hemagglutination inhibition (HI) assay.

    RESULTS: Depression and ruffled feathers, trachea rales, leg paralysis, and torticollis were shown in some of the quails in both infected groups. Based on statistical analysis, there was no significant difference (p>0.05) in clinical signs between the infected groups. The results for RT-qPCR were found to be negative for all groups, and no gross pathological lesions of organs observed for quails in both infected groups. Trachea, proventriculus, and cecal tonsil were taken for the detection of NDV by RT-qPCR, and some of the organ samples showed positive detection of virus in both infected groups. HI assay showed an increase in mean titers of antibody across time and between infected groups.

    CONCLUSION: In summary, Japanese quails are susceptible to genotype VII NDV based on parameters assessed.

    Matched MeSH terms: Reverse Transcription
  15. Siew Ching H, Thirumulu Ponnuraj K, Luddin N, Ab Rahman I, Nik Abdul Ghani NR
    Polymers (Basel), 2020 Sep 17;12(9).
    PMID: 32957636 DOI: 10.3390/polym12092125
    This study aimed to investigate the effects of nanohydroxyapatite-silica-glass ionomer cement (nanoHA-silica-GIC) on the differentiation of dental pulp stem cells (DPSCs) into odontogenic lineage. DPSCs were cultured in complete Minimum Essential Medium Eagle-Alpha Modification (α-MEM) with or without nanoHA-silica-GIC extract and conventional glass ionomer cement (cGIC) extract. Odontogenic differentiation of DPSCs was evaluated by real-time reverse transcription polymerase chain reaction (rRT-PCR) for odontogenic markers: dentin sialophosphoprotein (DSPP), dentin matrix protein 1 (DMP1), osteocalcin (OCN), osteopontin (OPN), alkaline phosphatase (ALP), collagen type I (COL1A1), and runt-related transcription factor 2 (RUNX2) on day 1, 7, 10, 14, and 21, which were normalized to the house keeping gene glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Untreated DPSCs were used as a control throughout the study. The expressions of DSPP and DMP1 were higher on days 7 and 10, that of OCN on day 10, those of OPN and ALP on day 14, and that of RUNX2 on day 1; COL1A1 exhibited a time-dependent increase from day 7 to day 14. Despite the above time-dependent variations, the expressions were comparable at a concentration of 6.25 mg/mL between the nanoHA-silica-GIC and cGIC groups. This offers empirical support that nanoHA-silica-GIC plays a role in the odontogenic differentiation of DPSCs.
    Matched MeSH terms: Reverse Transcription
  16. Lo SG, Wong SF, Mak JW, Choo KK, Ng KP
    Med Mycol, 2020 Apr 01;58(3):333-340.
    PMID: 31309220 DOI: 10.1093/mmy/myz061
    Cladosporium is one of the most abundant spore. Fungi of this genus can cause respiratory allergy and intrabronchial lesion. We studied the differential expression of host genes after the interaction of Cladosporium sphaerospermum conidia with Human Bronchial Epithelial Cells (BEAS-2B) and Human Pulmonary Alveolar Epithelial Cells (HPAEpiC). C. sphaerospermum conidia were harvested and co-cultured with BEAS-2B cells or HPAEpiC cells for 48 hours respectively. This culture duration was chosen as it was associated with high germination rate. RNA was extracted from two biological replicates per treatment. RNA of BEAS-2B cells was used to assess changes in gene expression using AffymetrixGeneChip® Human Transcriptome Array 2.0. After co-culture with Cladosporium spores, 68 individual genes were found differentially expressed (P ≤ 0.05) and up-regulated ≥ 1.5 folds while 75 genes were found differentially expressed at ≤ -1.5 folds compared with controls. Reverse transcription and qPCR were performed on the RNA collected from both BEAS-2B cells and HPAEpiC cells to validate the microarray results with 7 genes. Based on the findings, infected pulmonary epithelial cells exhibited an increase in cell death-related genes and genes associated with innate immunity.
    Matched MeSH terms: Reverse Transcription
  17. Eman S. Algariri, Rabiatul Basria S.M.N. Mydin, Emmanuel Jairaj Moses, Simon Imakwu Okekpa, Nur Arzuar Abdul Rahim, Narazah Mohd Yusoff
    MyJurnal
    Introduction: Rac1 and STIM1 genes are emerging therapeutic targets for cancers. However, their roles in acute my- eloid leukaemia (AML) are not well understood. The goal of this study was to evaluate the effects of dose and time on Rac1 and STIM1 knockdown in the AML cell line model (THP-1 cells). Methods: THP-1 cells were transfected with siRac1 at doses of 50, 100, and 200 nM or dsiSTIM1 at doses of 2, 5, and 10 nM. Expression level of Rac1 and STIM1 then were assessed at time points between 12 and 72 h post-transfection using real-time reverse transcription poly- merase chain reaction. Results: Compared to the control, 87% Rac1 knockdown was attained with 50 nM siRac1 at 24 h post-transfection, and 70% STIM1 knockdown was achieved with 10 nM dsiSTIM1 at 48 h post-transfection. Conclusion: These results show that effective knockdown of Rac1 and STIM1 is possible, and therapy that includes Rac1 and STIM1 inhibitors eventually could provide a new and highly effective strategy for AML treatment.
    Matched MeSH terms: Reverse Transcription
  18. Damayanti TA, Alabi OJ, Rauf A, Naidu RA
    Plant Dis, 2010 Apr;94(4):478.
    PMID: 30754487 DOI: 10.1094/PDIS-94-4-0478B
    Yardlong bean (Vigna unguiculata subsp. sesquipedalis) is extensively cultivated in Indonesia for consumption as a green vegetable. During the 2008 season, a severe outbreak of a virus-like disease occurred in yardlong beans grown in farmers' fields in Bogor, Bekasi, Subang, Indramayu, and Cirebon of West Java, Tanggerang of Banten, and Pekalongan and Muntilan of Central Java. Leaves of infected plants showed severe mosaic to bright yellow mosaic and vein-clearing symptoms, and pods were deformed and also showed mosaic symptoms on the surface. In cv. 777, vein-clearing was observed, resulting in a netting pattern on symptomatic leaves followed by death of the plants as the season advanced. Disease incidence in the Bogor region was approximately 80%, resulting in 100% yield loss. Symptomatic leaf samples from five representative plants tested positive in antigen-coated plate-ELISA with potyvirus group-specific antibodies (AS-573/1; DSMZ, German Resource Center for Biological Material, Braunschweig, Germany) and antibodies to Cucumber mosaic virus (CMV; AS-0929). To confirm these results, viral nucleic acids eluted from FTA classic cards (FTA Classic Card, Whatman International Ltd., Maidstone, UK) were subjected to reverse transcription (RT)-PCR using potyvirus degenerate primers (CIFor: 5'-GGIVVIGTIGGIWSIGGIAARTCIAC-3' and CIRev: 5'-ACICCRTTYTCDATDATRTTIGTIGC-3') (3) and degenerate primers (CMV-1F: 5'-ACCGCGGGTCTTATTATGGT-3' and CMV-1R: 5' ACGGATTCAAACTGGGAGCA-3') specific for CMV subgroup I (1). A single DNA product of approximately 683 base pairs (bp) with the potyvirus-specific primers and a 382-bp fragment with the CMV-specific primers were amplified from ELISA-positive samples. These results indicated the presence of a potyvirus and CMV as mixed infections in all five samples. The amplified fragments specific to potyvirus (four samples) and CMV (three samples) were cloned separately into pCR2.1 (Invitrogen Corp., Carlsbad, CA). Two independent clones per amplicon were sequenced from both orientations. Pairwise comparison of these sequences showed 93 to 100% identity among the cloned amplicons produced using the potyvirus-specific primers (GenBank Accessions Nos. FJ653916, FJ653917, FJ653918, FJ653919, FJ653920, FJ653921, FJ653922, FJ653923, FJ653924, FJ653925, and FJ653926) and 92 to 97% with a corresponding nucleotide sequence of Bean common mosaic virus (BCMV) from Taiwan (No. AY575773) and 88 to 90% with BCMV sequences from China (No. AJ312438) and the United States (No. AY863025). The sequence analysis indicated that BCMV isolates from yardlong bean are more closely related to an isolate from Taiwan than with isolates from China and the United States. The CMV isolates (GenBank No. FJ687054) each were 100% identical and 96% identical with corresponding sequences of CMV subgroup I isolates from Thailand (No. AJ810264) and Malaysia (No. DQ195082). Both BCMV and CMV have been documented in soybean, mungbean, and peanut in East Java of Indonesia (2). Previously, BCMV, but not CMV, was documented on yardlong beans in Guam (4). To our knowledge, this study represents the first confirmed report of CMV in yardlong bean in Indonesia and is further evidence that BCMV is becoming established in Indonesia. References: (1) J. Aramburu et al. J. Phytopathol. 155:513, 2007. (2) S. K. Green et al. Plant Dis. 72:994, 1988. (3) C. Ha et al. Arch. Virol. 153:25, 2008. (4) G. C. Wall et al. Micronesica 29:101, 1996.
    Matched MeSH terms: Reverse Transcription
  19. Noor Syamila Othman, Wan Ishlah Leman, Kahairi Abdullah, Siti Aesah @ Naznin Muhammad, Mohd Arifin Kaderi
    MyJurnal
    The aim of this study was to investigate the level of miR-744 expression in nasopharyngeal carcinoma (NPC) tumour tissue and to provide initial clue on its potential as biomarkers for early detection of NPC in a preliminary analysis. Total miRNAs was extracted from NPC tissue as well as normal nasopharynx tissue taken from Hospital Tengku Ampuan Afzan (HTAA), Kuantan and converted into cDNA. The level of miR-744 expression in the cDNA was quantified using quantitative reverse transcription polymserase chain reaction (RT-qPCR) technique. The expression level of SNORD48 was measured simultaneously for each sample, which served as endogenous control. The difference in the expression of miR-744 in NPC and normal nasopharynx tissue were analysed using relative quantification, 2-ΔΔCT. In this preliminary analysis, this study found that miR-744 was upregulated in NPC as compared to normal nasopharynx tissue by 2.5 fold changes, respectively suggesting it may involve in progression of tumour. However, the finding is not significant and may not accurately reflect the overall population, due to small sample size involved in the study. Findings from the current study suggest the potential of miR-744 to serve as useful diagnostic and prognostic biomarker in NPC.
    Matched MeSH terms: Reverse Transcription
  20. Etemadi MR, Sekawi Z, Othman N, Lye MS, Moghaddam FY
    Evol Bioinform Online, 2013;9:151-61.
    PMID: 23641140 DOI: 10.4137/EBO.S10999
    Human respiratory syncytial virus (RSV) is a major viral pathogen associated with acute lower respiratory tract infections (ALRTIs) among hospitalized children. In this study, the genetic diversity of the RSV strains was investigated among nasopharyngeal aspirates (NPA) taken from children less than 5 years of age hospitalized with ALRTIs in Hospital Serdang, Malaysia. A total of 165 NPA samples were tested for the presence of RSV and other respiratory viruses from June until December 2009. RSV was found positive in 83 (50%) of the samples using reverse transcription polymerase chain reaction (RT-PCR). Further classification of 67 RSV strains showed that subgroups A and B comprised 11/67 (16.4%) and 56/67 (83.6%) of the strains, respectively. The second hypervariable region at the carboxyl-terminal of the G gene was amplified and sequenced in order to do phylogenetic study. The phylogenetic relationships of the samples were determined separately for subgroups A and B using neighbor joining (NJ), maximum parsimony (MP), and Bayesian inference (BI). Phylogenetic analysis of the 32 sequenced samples showed that all 9 RSV-A strains were clustered within NA1 genotype while the remaining 23 strains of the RSV-B subgroup could be grouped into a clade consisted of strains with 60-nucleotide duplication region. They were further classified into newly discovered BA10 and BA9 genotypes. The present finding suggests the emergence of RSV genotypes of NA1 and BA. This is the first documentation of the phylogenetic relationship and genetic diversity of RSV strains among hospitalized children diagnosed with ALRTI in Serdang, Malaysia.
    Matched MeSH terms: Reverse Transcription
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links