Displaying publications 1 - 20 of 499 in total

Abstract:
Sort:
  1. Farasyahida A. Samad, Wan Salida Wan Mansor, idayatul Aini Zakaria
    MyJurnal
    Clean, safe and readily available water is very crucial in everyday life, especially for health, hygiene, and the productivity of the community. Unfortunately, increase in contaminants in water supplies from human activities and industrialization is very worrying. Conventional wastewater treatment includes the usage of alum that will affect health with prolonged consumption. This research was carried out to focus on the development of wastewater treatment system using adsorbent from Moringa oleifera seeds. Adsorbent was successfully synthesized from the seeds of Moringa oleifera. Characterization of the sample was made using X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscope (SEM), while the effectiveness of water treatment was analyzed using Turbidity Meter. Then, all samples were tested against kaolin wastewater. XRD results showed that all the adsorbent samples were amorphous in nature. FTIR results indicated that there were hydroxyl group and carboxylic group in the sample representing numerous oxygen-riddled functional groups on the surface. From SEM results, it was clearly shown that the pore structure and size of Moringa oleifera affected the capability of adsorption where the smaller the size, the more effective the sample. Turbidity test showed that the sample that worked best for wastewater treatment was adsorbent from Moringa oleifera seeds in size of 125µm that was heated for 4 hours with 93.76% turbidity removal. Therefore, this study proved that the adsorbent from Moringa oleifera seeds is very suitable for high turbidity wastewater treatment. Further studies investigating the combination of conventional activated carbon with adsorbent from Moringa oleifera seeds should be conducted before these samples are made available for further use so that we can compare which sample works best for wastewater treatment.
    Matched MeSH terms: Seeds
  2. Bhat R, binti Yahya N
    Food Chem, 2014 Aug 1;156:42-9.
    PMID: 24629936 DOI: 10.1016/j.foodchem.2014.01.063
    Belinjau (Gnetum gnemon L.) seed flour was evaluated for nutritional composition, antioxidant activity and functional properties. Seed flour was found to be rich in protein (19.0g/100g), crude fibre (8.66g/100g), carbohydrates (64.1%), total dietary fibre (14.5%) and encompassed adequate amounts of essential amino acids, fatty acids and minerals. Antioxidant compounds such as total phenols (15.1 and 12.6mgGAE/100g), tannins (35.6 and 16.1mgCE/100g) and flavonoids (709 and 81.6mgCEQ/100g) were higher in ethanolic extracts over aqueous extracts, respectively. Inhibition of DPPH was high in ethanol extracts (48.9%) compared to aqueous extracts (19.7%), whereas aqueous extracts showed a higher FRAP value compared to ethanol extracts (0.98 and 0.61mmolFe(II)/100g, respectively). Results on functional properties revealed acceptable water and oil absorption capacities (5.51 and 1.98g/g, respectively), emulsion capacity and stability (15.3% and 6.90%, respectively), and foaming capacity (5.78%). FTIR spectral analysis showed seed flour to encompass major functional groups such as: amines, amides, amino acids, polysaccharides, carboxylic acids, esters and lipids. As belinjau seed flour possesses a rich nutraceutical value, it has high potential to be used as a basic raw material to develop new low cost nutritious functional foods.
    Matched MeSH terms: Seeds/chemistry*
  3. Hata EM, Yusof MT, Zulperi D
    Plant Pathol J, 2021 Apr;37(2):173-181.
    PMID: 33866759 DOI: 10.5423/PPJ.OA.05.2020.0083
    The genus Streptomyces demonstrates enormous promise in promoting plant growth and protecting plants against various pathogens. Single and consortium treatments of two selected Streptomyces strains (Streptomyces shenzhenensis TKSC3 and Streptomyces sp. SS8) were evaluated for their growth-promoting potential on rice, and biocontrol efficiency through induced systemic resistance (ISR) mediation against Xanthomonas oryzae pv. oryzicola (Xoc), the causal agent of rice bacterial leaf streak (BLS) disease. Seed bacterization by Streptomyces strains improved seed germination and vigor, relative to the untreated seed. Under greenhouse conditions, seed bacterization with consortium treatment TKSC3 + SS8 increased seed germination, root length, and dry weight by 20%, 23%, and 33%, respectively. Single and consortium Streptomyces treatments also successfully suppressed Xoc infection. The result was consistent with defense-related enzyme quantification wherein single and consortium Streptomyces treatments increased peroxidase (POX), polyphenol oxidase, phenylalanine ammonia-lyase, and β,1-3 glucanase (GLU) accumulation compared to untreated plant. Within all Streptomyces treatments, consortium treatment TKSC3 + SS8 showed the highest disease suppression efficiency (81.02%) and the lowest area under the disease progress curve value (95.79), making it the best to control BLS disease. Consortium treatment TKSC3 + SS8 induced the highest POX and GLU enzyme activities at 114.32 μmol/min/mg protein and 260.32 abs/min/mg protein, respectively, with both enzymes responsible for plant cell wall reinforcement and resistant interaction. Our results revealed that in addition to promoting plant growth, these Streptomyces strains also mediated ISR in rice plants, thereby, ensuring protection from BLS disease.
    Matched MeSH terms: Seeds
  4. Zhu H
    Ecol Evol, 2017 12;7(23):10398-10408.
    PMID: 29238563 DOI: 10.1002/ece3.3561
    The tropical climate in China exists in southeastern Xizang (Tibet), southwestern to southeastern Yunnan, southwestern Guangxi, southern Guangdon, southern Taiwan, and Hainan, and these southern Chinese areas contain tropical floras. I checked and synonymized native seed plants from these tropical areas in China and recognized 12,844 species of seed plants included in 2,181 genera and 227 families. In the tropical flora of southern China, the families are mainly distributed in tropical areas and extend into temperate zones and contribute to the majority of the taxa present. The genera with tropical distributions also make up the most of the total flora. In terms of geographical elements, the genera with tropical Asian distribution constitute the highest proportion, which implies tropical Asian or Indo-Malaysia affinity. Floristic composition and geographical elements are conspicuous from region to region due to different geological history and ecological environments, although floristic similarities from these regions are more than 90% and 64% at the family and generic levels, respectively, but lower than 50% at specific level. These differences in the regional floras could be influenced by historical events associated with the uplift of the Himalayas, such as the southeastward extrusion of the Indochina geoblock, clockwise rotation and southeastward movement of Lanping-Simao geoblock, and southeastward movement of Hainan Island. The similarity coefficients between the flora of southern China and those of Indochina countries are more than 96% and 80% at family and generic levels, indicating their close floristic affinity and inclusion in the same biogeographically floristic unit.
    Matched MeSH terms: Seeds
  5. Syamimi Zaini N, Karim R, Abdull Razis AF, Saulol Hamid NF, Zawawi N
    Food Res Int, 2022 Dec;162(Pt A):111988.
    PMID: 36461229 DOI: 10.1016/j.foodres.2022.111988
    Kenaf (Hibiscus cannabinus L.) seed is a non-conventional edible oilseed that can be valorized into various food products. There is a recent discovery of kenaf seed beverage (KSB) potential as a novel plant-based beverage. KSB had less crude protein than soybean (SB)but more carbohydrate, magnesium, and phosphorus contents.Levels of crude fat, phytates, oxalates, total saponins, and lipid peroxidability in KSB were lower than SB. Sugar content between KSB and SB were comparable, while antioxidant properties of KSB were superior. Ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS) analysis detected gluconic acid, citric acid, palmitic acid, oleic acid, and 13-hydroxyoctadecadienoic acid in both KSB and SB. Considering its novelty, acute and subacute oral toxicity assessments in male Sprague Dawley rats were conducted. The acute toxicity assessment was performed at a single dose of 9.2 ml/kg body weight of KSB. In the following subacute toxicity assessment, different groups of rats consumed different doses of KSB (3.1, 6.1, and 9.2 ml/kg body weight) daily for 28 days. Rats presented normal behavioral and physiological states in both toxicity studies. Growth, food and water intakes, organ weight, and hematological parameters were unaffected. No mortality was reported. Several alterations in serum biochemical parameters were within the normal range, and unassociated with histopathological changes. The oral lethal dose (LD50) and the no-observed-adverse-effect-level (NOAEL) of KSB in rats was greater than 9.2 ml/kg (=1533 mg/kg) body weight. Interestingly, KSB exhibited comparable effects with soybean beverage (SB) on high-density lipoprotein cholesterol and triglycerides which worth further research Follow-up toxicity assessments in animals and human trials are also recommended to ascertain its long term safety.
    Matched MeSH terms: Seeds
  6. Joffry SM, Yob NJ, Rofiee MS, Affandi MM, Suhaili Z, Othman F, et al.
    PMID: 22242040 DOI: 10.1155/2012/258434
    Melastoma malabathricum L. (Melastomataceae) is one of the 22 species found in the Southeast Asian region, including Malaysia. Considered as native to tropical and temperate Asia and the Pacific Islands, this commonly found small shrub has gained herbal status in the Malay folklore belief as well as the Indian, Chinese, and Indonesian folk medicines. Ethnopharmacologically, the leaves, shoots, barks, seeds, and roots of M. malabathricum have been used to treat diarrhoea, dysentery, hemorrhoids, cuts and wounds, toothache, and stomachache. Scientific findings also revealed the wide pharmacological actions of various parts of M. malabthricum, such as antinociceptive, anti-inflammatory, wound healing, antidiarrheal, cytotoxic, and antioxidant activities. Various types of phytochemical constituents have also been isolated and identifed from different parts of M. malabathricum. Thus, the aim of the present review is to present comprehensive information on ethnomedicinal uses, phytochemical constituents, and pharmacological activities of M. malabathricum.
    Matched MeSH terms: Seeds
  7. Zhi LL, Zaini MA
    Water Sci Technol, 2017 02;75(3-4):864-880.
    PMID: 28234287 DOI: 10.2166/wst.2016.568
    This work was aimed to evaluate the feasibility of castor bean residue based activated carbons prepared through metals chloride activation. The activated carbons were characterized for textural properties and surface chemistry, and the adsorption data of rhodamine B were established to investigate the removal performance. Zinc chloride-activated carbon with specific surface area of 395 m(2)/g displayed a higher adsorption capacity of 175 mg/g. Magnesium chloride and iron(III) chloride are less toxic and promising agents for composite chemical activation. The adsorption data obeyed Langmuir isotherm and pseudo-second-order kinetics model. The rate-limiting step in the adsorption of rhodamine B is film diffusion. The positive values of enthalpy and entropy indicate that the adsorption is endothermic and spontaneous at high temperature.
    Matched MeSH terms: Seeds/chemistry
  8. Azlan NDK, Isa MNM, Zainal Z
    Data Brief, 2017 Oct;14:548-550.
    PMID: 28861452 DOI: 10.1016/j.dib.2017.07.064
    Garcinia mangostana is a tropical fruit plant rich in antioxidant and bears recalcitrant seeds. The extent of water loss and low temperature tolerable by recalcitrant seed varies from regular orthodox seeds. Present study generates transcriptome resources for G. mangostana to postulate potential transcriptome differences between recalcitrant and orthodox seeds during seed germination process. Raw reads of pooled samples used for the assembly have been deposited in genbank accession SRR5412332.
    Matched MeSH terms: Seeds
  9. Jahurul MHA, Shian OK, Sharifudin MS, Hasmadi M, Lee JS, Mansoor AH, et al.
    J Food Sci Technol, 2021 Mar;58(3):902-910.
    PMID: 33678873 DOI: 10.1007/s13197-020-04604-1
    The objective of this study was to optimize the extraction of oil from pre-dried roselle seeds using response surface methodology (RSM). We also determined the oxidative stability of oil extracted from oven and freeze-dried roselle seed in terms of iodine value (IV), free fatty acid (FFA) value, peroxide value (PV), P-anisidine and total oxidation values (TOTOX value). The RSM was designated based on the central composite design with the usage of three optimum parameters ranged from 8 to 16 g of sample weight, 250-350 mL of solvent volume, and 6-8 h of extraction time. The highest oil yielded from roselle seed using the optimization process was 22.11% with the parameters at sample weight of 14.4 g, solvent volume of 329.70 mL, and extraction time of 7.6 h. Besides, the oil extracted from the oven dried roselle seed had the values of 89.04, 2.11, 4.13, 3.76 and 12.03 for IV, FFA, PV, P-anisidine, and TOTOX values, respectively. While for the oil extracted from freeze-dried roselle seed showed IV of 90.31, FFA of 1.64, PV of 2.47, P-anisidine value of 3.48, and TOTOX value of 8.42. PV and TOTOX values showed significant differences whereas; IV, FFA, and P-anisidine values showed no significant differences between the oven and freeze-dried roselle seed oils.
    Matched MeSH terms: Seeds
  10. Karim AA, Sufha EH, Zaidul IS
    J Agric Food Chem, 2008 Nov 26;56(22):10901-7.
    PMID: 18975963 DOI: 10.1021/jf8015442
    The effect of enzymatic pretreatment on the degree of corn and mung bean starch derivatization by propylene oxide was investigated. The starch was enzymatically treated in the granular state with a mixture of fungal alpha-amylase and glucoamylase at 35 degrees C for 16 h and then chemically modified to produce enzyme-hydrolyzed-hydroxypropyl (HP) starch. Partial enzyme hydrolysis of starch in the granular state appeared to enhance the subsequent hydroxypropylation, as judged from the significant increase in the molar substitution. A variable degree of granule modification was obtained after enzyme hydrolysis, and one of the determinants of the modification degree appeared to be the presence of natural pores in the granules. Enzyme-hydrolyzed-HP starch exhibited significantly different functional properties compared to hydroxypropyl starch prepared from untreated (native) starch. It is evident that the dual modification of starch using this approach provides a range of functional properties that can be customized for specific applications.
    Matched MeSH terms: Seeds/chemistry
  11. Nurul Hidayah Che Mat, Md Atiqur Rahman Bhuiyan, Senan S, Ratnam W, Zahira Yaakob
    Sains Malaysiana, 2015;44:1567-1572.
    Phenotypic selection of individuals is the first step in a selective breeding program for elite hybrid seed production. In
    this study, a total of 295 Jatropha curcas individuals raised from cuttings representing 21 accessions, collected from eight
    different countries were evaluated for growth performance. The evaluation was done at the Biodiesel Research Station
    of Universiti Kebangsaan Malaysia, Kuala Pilah from December 2012 to December 2013. Individual plants from each
    accession were observed on several agronomic and yield related traits and all the data were recorded periodically.
    Performance of each accession was analyzed using Statistical Analysis System (SAS) 9.4. Four traits which were plant
    height (PH), number of flowers per inflorescence (NFI), number of female flowers per inflorescence (NFFPI) and hundred
    seed weight (HSW) showed significant differences among the accessions after one year of planting. Maximum values for
    each trait were 115.5 cm for PH, 6 for number of branches per plant (BPP), 9 for number of inflorescences per plant
    (NIPP), 25 for number of fruits per plant (NFPP), 5 for number of fruits per inflorescence (NFPI), 191 for NFI, 10 for
    NFFPI, 81.0 g for HSW and 70 for number of seeds per plant (NSPP). Accession number 1 from Thailand showed the best
    performance for most traits. A highly significant and positive correlation was found between NFPP and NSPP. Based on
    superior trait values for NIPP, NFPP, NFPI, NFI, NFFPI and HSW, five plants from accession UKMJC 01, 04, 05, 13 and 14
    have been selected for generating elite intraspecific hybrids.
    Matched MeSH terms: Seeds
  12. Bhatti S, Ali Shah SA, Ahmed T, Zahid S
    Drug Chem Toxicol, 2018 Oct;41(4):399-407.
    PMID: 29742941 DOI: 10.1080/01480545.2018.1459669
    The present study investigates the neuroprotective effects of Foeniculum vulgare seeds in a lead (Pb)-induced brain neurotoxicity mice model. The dried seeds extract of Foeniculum vulgare was prepared with different concentrations of organic solvents (ethanol, methanol, n-hexane). The in vitro antioxidant activity of Foeniculum vulgare seed extracts was assessed through DPPH assay and the chemical composition of the extracts was determined by high-resolution 1H NMR spectroscopy. The age-matched male Balb/c mice (divided into 9 groups) were administered with 0.1% Pb and 75% and 100% ethanol extracts of Foeniculum vulgare seeds at a dose of 200 mg/kg/day and 20 mg/kg/day. The maximum antioxidant activity was found for 75% ethanol extract, followed by 100% ethanol extract. Gene expression levels of oxidative stress markers (SOD1 and Prdx6) and the three isoforms of APP (APP common, 770 and 695), in the cortex and hippocampus of the treated and the control groups were measured. Significant increase in APP 770 expression level while a substantial decrease was observed for SOD1, Prdx6 and APP 695 expression in Pb-treated groups. Interestingly, the deranged expression levels were significantly normalized by the treatment with ethanol extracts of Foeniculum vulgare seeds (specifically at dose of 200 mg/kg/day). Furthermore, the Pb-induced morphological deterioration of cortical neurons was significantly improved by the ethanol extracts of Foeniculum vulgare seeds. In conclusion, the present findings highlight the promising therapeutic potential of Foeniculum vulgare to minimize neuronal toxicity by normalizing the expression levels of APP isoforms and oxidative stress markers.
    Matched MeSH terms: Seeds
  13. Shuit SH, Lee KT, Kamaruddin AH, Yusup S
    Environ Sci Technol, 2010 Jun 1;44(11):4361-7.
    PMID: 20455588 DOI: 10.1021/es902608v
    Biodiesel from Jatropha curcas L. seed is conventionally produced via a two-step method: extraction of oil and subsequent esterification/transesterification to fatty acid methyl esters (FAME), commonly known as biodiesel. Contrarily, in this study, a single step in situ extraction, esterification and transesterification (collectively known as reactive extraction) of J. curcas L. seed to biodiesel, was investigated and optimized. Design of experiments (DOE) was used to study the effect of various process parameters on the yield of FAME. The process parameters studied include reaction temperature (30-60 degrees C), methanol to seed ratio (5-20 mL/g), catalyst loading (5-30 wt %), and reaction time (1-24 h). The optimum reaction condition was then obtained by using response surface methodology (RSM) coupled with central composite design (CCD). Results showed that an optimum biodiesel yield of 98.1% can be obtained under the following reaction conditions: reaction temperature of 60 degrees C, methanol to seed ratio of 10.5 mL/g, 21.8 wt % of H(2)SO(4), and reaction period of 10 h.
    Matched MeSH terms: Seeds/chemistry*
  14. Golestanbagh M, Ahamad IS, Idris A, Yunus R
    J Water Health, 2011 Sep;9(3):597-602.
    PMID: 21976206 DOI: 10.2166/wh.2011.035
    Moringa oleifera is an indigenous plant to Malaysia whose seeds are used for water purification. Many studies on Moringa oleifera have shown that it is highly effective as a natural coagulant for turbidity removal. In this study, two different methods for extraction of Moringa's active ingredient were investigated. Results of sodium chloride (NaCl) and distilled water extraction of Moringa oleifera seeds showed that salt solution extraction was more efficient than distilled water in extracting Moringa's active coagulant ingredient. The optimum dosage of shelled Moringa oleifera seeds extracted by the NaCl solution was comparable with that of the conventional chemical coagulant alum. Moreover, the turbidity removal efficiency was investigated for shelled Moringa oleifera seeds before drying in the oven under different storage conditions (i.e. open and closed containers at room temperature, 27 °C) and durations (fresh, and storage for 2, 4, 6 and 8 weeks from the time the seeds were picked from the trees). Our results indicate that there are no significant differences in coagulation efficiencies and, accordingly, turbidity removals between the examined storage conditions and periods.
    Matched MeSH terms: Seeds/chemistry*
  15. Chen M, Zhang B, Li C, Kulaveerasingam H, Chew FT, Yu H
    Plant Physiol, 2015 Sep;169(1):391-402.
    PMID: 26152712 DOI: 10.1104/pp.15.00943
    Seed storage reserves mainly consist of starch, triacylglycerols, and storage proteins. They not only provide energy for seed germination and seedling establishment, but also supply essential dietary nutrients for human beings and animals. So far, the regulatory networks that govern the accumulation of seed storage reserves in plants are still largely unknown. Here, we show that TRANSPARENT TESTA GLABRA1 (TTG1), which encodes a WD40 repeat transcription factor involved in many aspects of plant development, plays an important role in mediating the accumulation of seed storage reserves in Arabidopsis (Arabidopsis thaliana). The dry weight of ttg1-1 embryos significantly increases compared with that of wild-type embryos, which is accompanied by an increase in the contents of starch, total protein, and fatty acids in ttg1-1 seeds. FUSCA3 (FUS3), a master regulator of seed maturation, binds directly to the TTG1 genomic region and suppresses TTG1 expression in developing seeds. TTG1 negatively regulates the accumulation of seed storage proteins partially through transcriptional repression of 2S3, a gene encoding a 2S albumin precursor. TTG1 also indirectly suppresses the expression of genes involved in either seed development or synthesis/modification of fatty acids in developing seeds. In addition, we demonstrate that the maternal allele of the TTG1 gene suppresses the accumulation of storage proteins and fatty acids in seeds. Our results suggest that TTG1 is a direct target of FUS3 in the framework of the regulatory hierarchy controlling seed filling and regulates the accumulation of seed storage proteins and fatty acids during the seed maturation process.
    Matched MeSH terms: Seeds/genetics; Seeds/metabolism*
  16. Chehri K, Salleh B, Yli-Mattila T, Soleimani MJ, Yousefi AR
    Pak J Biol Sci, 2010 Dec 15;13(24):1178-86.
    PMID: 21313898
    Fusarium is one of the most important pathogenic and toxigenic fungi widely distributed all over the world, including Iran. Fusarium species are found frequently in stored agriculture products especially wheat. The objective of this study was to identify Fusarium species associated with stored wheat seeds and their pathogenicity on root and head of wheat in Kermanshah, the leading province in wheat production in Iran. In this survey 75 seed samples of stored wheat were collected from 10 different regions during 2006-2008 and tested for the presence of Fusarium. Fusarium spp. were found in 51 (68%) of 75 samples. A total of 580 Fusarium strains were isolated, identified and preserved. All these strains belong to 20 Fusarium spp. according to morphological characters. Each conidial suspension of selected strains representing all species was evaluated for their pathogenicity on roots and spikes of healthy wheat var. Fallat in the greenhouse. F. graminearum, F. crookwellense, F. trichothecioides, F. culmorum and F. verticillioides were the most pathogenic to wheat's head. Foot rot assessment revealed that F. pseudograminearum and F. culmorum were the most damaging species. Of the Fusarium isolates, F. graminearum was the most prevalent followed by F. verticillioides and F. proliferatum. This is the first comprehensive report on identity and distribution of Fusarium spp. from stored wheat seeds in Iran while F. nelsonii was reported for the first time from wheat seeds in Iran.
    Matched MeSH terms: Seeds/microbiology*
  17. Abu Bakar N', Hakim Abdullah MN, Lim V, Yong YK
    PMID: 33976701 DOI: 10.1155/2021/5525584
    Momordica charantia (MC) is popular for its medicinal uses especially for treating diabetic-related complications. However, the antiulcer activity of essential oil derived from the seeds has not been systematically studied. This study aims to evaluate the gastroprotective activities of essential oil derived from the seed of MC induced by hydrochloride acid/ethanol (HCl/EtOH) and indomethacin and pylorus-ligation model. Gastric ulceration was induced by oral administration of HCl/EtOH solution or indomethacin on day 7 after animals have been pretreated with testing compounds. The first group received just distilled water and the second group received ranitidine (100 mg/kg). Groups 3, 4, and 5 received 10, 50, and 100 mg/kg of essential oil based on their body weight (10 mL/kg), respectively. Macroscopically, pretreatment of essential oil extracted from MC significantly decreased ulceration induced by HCl/EtOH and indomethacin in vivo. Microscopically, essential oil also significantly suppressed the formation of edema, epithelial disruption, and mucosa erosions. Moreover, essential oil significantly elevated the pH without decreasing the total acidity of the gastric juice and was able to increase the amount of adherent mucus compared to control. Current results provide scientific basis to the ethno-pharmacological usage of the MC in preventing ulcer formation induced by HCl/EtOH and indomethacin.
    Matched MeSH terms: Seeds
  18. Mak C, Yap TC
    Theor Appl Genet, 1980 Sep;56(5):233-9.
    PMID: 24305859 DOI: 10.1007/BF00295454
    Seven varieties of long bean, which included three local and four exotic, were crossed in a complete diallel. This was an attempt to study the inheritance of crude protein content, protein yield, flowering date, pod yield and yield components.Both additive and non-additive gene effects were responsible for the genetic variation in the diallel population. However, dominance variance was more important than additive variance in crude protein content, number of pods per plant and number of seeds per pod. For seed weight and pod length, additive variance was more important.The crude protein content, protein yield and number of pods per plant appeared to be controlled by overdominance effects. Partial dominance seemed to be the case for flowering date, pod length and seed weight; complete to overdominance for pod yield. High protein appeared to be associated with recessive genes whereas there was a general trend of high yielding parents carrying more dominant genes.
    Matched MeSH terms: Seeds
  19. Zzaman, W., Issara, U., Febrianto, N.F., Yang, T.A.
    International Food Research Journal, 2014;21(3):10191-1023.
    MyJurnal
    The study was conducted to investigate fatty acid composition, rheological properties and crystal formation of rambutan fat and cocoa butter. The results showed that lauric acid, palmitic acid, and stearic fatty acid in rambutan fat were less than cocoa butter, but oleic acid found almost the same. The crystal formation of cocoa butter was not complex at 25oC, while rambutan fat and their mixture shown complicated network of crystal form. The Newton, Bingham and Casson plastic rheological models was used to describe fat flow in this experiment and the result showed that rambutan fat had higher viscosity than cocoa fat. Based on the results the study recommended that mixture proportion up to 30% rambutan seed fat can be used as a cocoa butter substitute whereas higher proportion completely alters original cocoa butter properties. Therefore, there is feasibility of using the rambutan fat to substitute cocoa butter and the mixtures of the two fats in suitable proportion in chocolate manufacturing.
    Matched MeSH terms: Seeds
  20. Issara, U., Zzaman, W., Yang, T.A.
    MyJurnal
    This review of literature provides an overview on the compositional data of Rambutan (Nephelium lappaceum Linn.) and rambutan seed fat for usage in chocolate product. It is a seasonal fruit native of west Malaysia and Sumatra. It is harvested when the fruit have reached optimum visual and organoleptic quality. Rambutans rapidly deteriorate unless proper handling techniques are employed. The rambutan fruits are deseeded during processing and these seeds (~ 4-9 g/100 g) are a waste by-product of the canning industry. And some studies was showed that rambutan seed possesses a relatively high amount of fat and these fats are similar to those of cocoa fat, although have some different physical properties. In the present research about rambutan seed fat continued increasing due to from previous research was found that this fat can use as substitute in cocoa butter for chocolate products. Therefore, the extracted fat from rambutan seed not only could be used for manufacturing candles, soaps, and fuels, but it also has a possible to be a source of natural edible fat with feasible industry use.
    Matched MeSH terms: Seeds
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links