Displaying publications 1 - 20 of 160 in total

Abstract:
Sort:
  1. Zainal N, Tan KK, Johari J, Hussein H, Wan Musa WR, Hassan J, et al.
    Microbiol. Immunol., 2018 Oct;62(10):659-672.
    PMID: 30259549 DOI: 10.1111/1348-0421.12652
    Dengue is the most prevalent mosquito-borne disease in Southeast Asia, where the incidence of systemic lupus erythematosus (SLE) is approximately 30 to 53 per 100,000. Severe dengue, however, is rarely reported among individuals with SLE. Here, whether sera of patients with SLE cross-neutralize dengue virus (DENV) was investigated. Serum samples were obtained from individuals with SLE who were dengue IgG and IgM serology negative. Neutralization assays were performed against the three major DENV serotypes. Of the dengue serology negative sera of individuals with SLE, 60%, 61% and 52% of the sera at 1/320 dilution showed more than 50% inhibition against dengue type-1 virus (DENV-1), DENV-2 and DENV-3, respectively. The neutralizing capacity of the sera was significantly greater against DENV-1 (P 
    Matched MeSH terms: Serogroup
  2. Yong SF, Tan SH, Wee J, Tee JJ, Sansom FM, Newton HJ, et al.
    Front Microbiol, 2010;1:123.
    PMID: 21687766 DOI: 10.3389/fmicb.2010.00123
    The detection of Legionella pneumophila in environmental and clinical samples is frequently performed by PCR amplification of the mip and/or 16S rRNA genes. Combined with DNA sequencing, these two genetic loci can be used to distinguish different species of Legionella and identify L. pneumophila. However, the recent Legionella genome sequences have opened up hundreds of possibilities for the development of new molecular targets for detection and diagnosis. Ongoing comparative genomics has the potential to fine tune the identification of Legionella species and serogroups by combining specific and general genetic targets. For example, the coincident detection of LPS biosynthesis genes and virulence genes may allow the differentiation of both pathogen and serogroup without the need for nucleotide sequencing. We tested this idea using data derived from a previous genomic subtractive hybridization we performed between L. pneumophila serogroup 1 and L. micdadei. Although not yet formally tested, these targets serve as an example of how comparative genomics has the potential to improve the scope and accuracy of Legionella molecular detection if embraced by laboratories undertaking Legionella surveillance.
    Matched MeSH terms: Serogroup
  3. Yap HY, Ghazali K, Wan Mohamad Nazarie WF, Mat Isa MN, Zakaria Z, Omar AR
    Genome Announc, 2013;1(5).
    PMID: 24136854 DOI: 10.1128/genomeA.00872-13
    Pasteurella multocida serotypes B:2 and E:2 are the main causative agents of ruminant hemorrhagic septicemia in Asia and Africa, respectively. Pasteurella multocida strain PMTB was isolated from a buffalo with hemorrhagic septicemia and has been determined to be serotype B:2. Here we report the draft genome sequence of strain PMTB.
    Matched MeSH terms: Serogroup
  4. Yahya MS, Soeung S, Singh NSS, Yunusa Z, Chinda FE, Rahim SKA, et al.
    Sensors (Basel), 2023 Jun 06;23(12).
    PMID: 37420526 DOI: 10.3390/s23125359
    In this study, a novel reconfigurable triple-band monopole antenna for LoRa IoT applications is fabricated on an FR-4 substrate. The proposed antenna is designed to function at three distinct LoRa frequency bands: 433 MHz, 868 MHz, and 915 MHz covering the LoRa bands in Europe, America, and Asia. The antenna is reconfigurable by using a PIN diode switching mechanism, which allows for the selection of the desired operating frequency band based on the state of the diodes. The antenna is designed using CST MWS® software 2019 and optimized for maximum gain, good radiation pattern and efficiency. The antenna with a total dimension of 80 mm × 50 mm × 0.6 mm (0.12λ0×0.07λ0 × 0.001λ0 at 433 MHz) has a gain of 2 dBi, 1.9 dBi, and 1.9 dBi at 433 MHz, 868 MHz, and 915 MHz, respectively, with an omnidirectional H-plane radiation pattern and a radiation efficiency above 90% across the three frequency bands. The fabrication and measurement of the antenna have been carried out, and the results of simulation and measurements are compared. The agreement among the simulation and measurement results confirms the design's accuracy and the antenna's suitability for LoRa IoT applications, particularly in providing a compact, flexible, and energy efficient communication solution for different LoRa frequency bands.
    Matched MeSH terms: Serogroup
  5. Willeam Peter SS, Hassan SS, Khei Tan VP, Ngim CF, Azreen Adnan NA, Pong LY, et al.
    Vector Borne Zoonotic Dis, 2019 07;19(7):549-552.
    PMID: 30668248 DOI: 10.1089/vbz.2018.2379
    Background:
    There is an escalation of frequency and magnitude of dengue epidemics in Malaysia, with a concomitant increase in patient hospitalization. Prolonged hospitalization (PH) due to dengue virus (DENV) infections causes considerable socioeconomic burden. Early identification of patients needing PH could optimize resource consumption and reduce health care costs. This study aims to identify clinicopathological factors present on admission that are associated with PH among patients with DENV infections.
    Methods:
    This study was conducted in a tertiary referral hospital in Southern Malaysia. Relevant clinical and laboratory data upon admission were retrieved from medical records of 253 consecutive DENV nonstructural protein 1 (NS1) antigen and PCR-positive hospitalized patients. The DENV serotype present in each patient was determined. Patients were stratified based on duration of hospital stay (<4 vs. ≥4 days). Data were analyzed using IBM® SPSS® 25.0. Multivariate logistic regression was performed to examine the association between PH and admission parameters.
    Results:
    Of 253 DENV hospitalized patients, 95 (37.5%) had PH (≥4 days). The mean duration of hospital stay was 3.43 ± 2.085 days (median = 3 days, interquartile range = 7 days). Diabetes mellitus (adjusted odds ratio [AOR] = 6.261, 95% confidence interval [CI] = 2.130-18.406, p = 0.001), DENV-2 serotype (AOR = 2.581, 95% CI = 1.179-5.650, p = 0.018), duration of fever ≤4 days (AOR = 2.423, 95% CI = 0.872-6.734, p = 0.09), and a shorter preadmission fever duration (AOR = 0.679, 95% CI = 0.481-0.957, p = 0.027) were independently associated with PH. However, PH was not found to be associated with symptoms on admission, secondary DENV infections or platelet count, hematocrit, or liver enzyme levels on admission.
    Conclusions:
    Early identification of these factors at presentation may alert clinicians to anticipate and recognize challenges in treating such patients, leading to more focused management plans that may shorten the duration of hospitalization.
    Matched MeSH terms: Serogroup
  6. Wan Sulaiman WA, Inche Mat LN, Hashim HZ, Hoo FK, Ching SM, Vasudevan R, et al.
    J Clin Neurosci, 2017 Sep;43:25-31.
    PMID: 28625589 DOI: 10.1016/j.jocn.2017.05.033
    Dengue is the most common arboviral disease affecting many countries worldwide. An RNA virus from the flaviviridae family, dengue has four antigenically distinct serotypes (DEN-1-DEN-4). Neurological involvement in dengue can be classified into dengue encephalopathy immune-mediated syndromes, encephalitis, neuromuscular or dengue muscle dysfunction and neuro-ophthalmic involvement. Acute disseminated encephalomyelitis (ADEM) is an immune mediated acute demyelinating disorder of the central nervous system following recent infection or vaccination. This monophasic illness is characterised by multifocal white matter involvement. Many dengue studies and case reports have linked ADEM with dengue virus infection but the association is still not clear. Therefore, this article is to review and discuss concerning ADEM in dengue as an immune-medicated neurological complication; and the management strategy required based on recent literature.
    Matched MeSH terms: Serogroup
  7. Wali S, Gupta R, Yu JJ, Mfuh A, Gao X, Guentzel MN, et al.
    Metabolomics, 2016 Apr;12(4).
    PMID: 27642272
    INTRODUCTION: Chlamydia trachomatis (Ct), is the leading cause of sexually transmitted infections worldwide. Host transcriptomic- or proteomic profiling studies have identified key molecules involved in establishment of Ct infection or the generation of anti Ct-immunity. However, the contribution of the host metabolome is not known.

    OBJECTIVES: The objective of this study was to determine the contribution of host metabolites in genital Ct infection.

    METHODS: We used high-performance liquid chromatography-mass spectrometry, and mapped lipid profiles in genital swabs obtained from female guinea pigs at days 3, 9, 15, 30 and 65 post Ct serovar D intravaginal infection.

    RESULTS: Across all time points assessed, 13 distinct lipid species including choline, ethanolamine and glycerol were detected. Amongst these metabolites, phosphatidylcholine (PC) was the predominant phospholipid detected from animals actively shedding bacteria i.e., at 3, 9, and 15 days post infection. However, at days 30 and 65 when the animals had cleared the infection, PC was observed to be decreased compared to previous time points. Mass spectrometry analyses of PC produced in guinea pigs (in vivo) and 104C1 guinea pig cell line (in vitro) revealed distinct PC species following Ct D infection. Amongst these, PC 16:0/18:1 was significantly upregulated following Ct D infection (p < 0.05, >twofold change) in vivo and in vitro infection models investigated in this report. Exogenous addition of PC 16:0/18:1 resulted in significant increase in Ct D in Hela 229 cells.

    CONCLUSION: This study demonstrates a role for host metabolite, PC 16:0/18:1 in regulating genital Ct infection in vivo and in vitro.

    Matched MeSH terms: Serogroup
  8. Ugwu CC, Hair-Bejo M, Nurulfiza MI, Omar AR, Aini I
    Open Vet J, 2023 Feb;13(2):171-178.
    PMID: 37073244 DOI: 10.5455/OVJ.2023.v13.i2.4
    BACKGROUND: Fowl adenovirus (FAdV) 8b and other serotypes cause inclusion body hepatitis (IBH) in chickens. Specific detection of aetiologic serotype in mixed infection and vaccine failure could be difficult.

    AIM: The objective of this study was to develop a TaqMan probe-based qPCR method for the detection and quantification of the FAdV 8b challenge virus.

    METHODS: Forty-eight broiler chickens inoculated with live attenuated or inactivated FAdV 8b strains at day 1 of age either with or without booster at day 14 post-inoculation were used. The chickens were challenged with a pathogenic strain of FAdV 8b at day 28 of age. Liver and cloacal swabs were collected on days 7 and 14 post-challenge. Primers and probes were designed, specificity confirmed, and used to carry out qPCR amplification.

    RESULTS: The assay amplified the FAdV DNA challenge virus, but not that of the live attenuated virus. It could detect FAdV 8b DNA as low as 0.001 ng/µl in liver and cloacal swab samples. Copy numbers obtained indicate virus load and shedding.

    CONCLUSIONS: It shows that a selective detection of FAdV 8b within serotype is possible. It can be useful for rapid detection and diagnosis of the disease, virus quantification and differentiation within species, determination of vaccination failure, and efficacy especially the virus load in the target organ and shedding.

    Matched MeSH terms: Serogroup
  9. Ugwu CC, Hair-Bejo M, Nurulfiza MI, Omar AR, Ideris A
    Open Vet J, 2024 Feb;14(2):617-629.
    PMID: 38549580 DOI: 10.5455/OVJ.2024.v14.i2.2
    BACKGROUND: Fowl adenovirus (FAdV) 8b causes huge economic losses in the poultry industry worldwide. Attenuated FAdV 8b could be useful in preventing FAdV infections globally and scale-up obstacles could be solved by bioreactor technology.

    AIM: This study was carried out to attenuate the FAdV 8b isolate, propagate it in a bioreactor, molecularly characterize the passage isolates, and determine the immunogenicity, efficacy, and shedding of the virus of chickens.

    METHODS: FAdV serotype 8b (UPM11142) isolate was passaged on chicken embryo liver (CEL) cells until attenuation and propagated in a bioreactor (UPM11142P20B1). Hexon and fiber genes of the isolates were sequenced and analyzed. UPM11142P20B1 was administered to 116-day-old broiler chickens divided into four groups, A (control), B (non-booster), C (booster with UPM11142P20B1), and D (booster with inactivated UPM11142P5B1). Eight chickens from each group were challenged. Body weight (BW) and liver weight (LW), liver: BW ratio (LBR), FAdV antibody titer, T lymphocyte sub-populations in the liver, spleen and thymus; and challenge virus load in the liver and shedding in cloaca were measured at weekly intervals.

    RESULTS: The isolate caused typical cytopathic effects on CEL cells typical of FAdV. Novel molecular changes in the genes occurred which could be markers for FAdV 8b attenuation. BW, LW, and LBR were similar among groups throughout the trial but the uninoculated control-challenged group (UCC) had significantly higher LBR than the inoculated and challenged groups at 35 dpi. Non-booster group had higher FAdV antibodies at all time points than the uninoculated control group (UCG); and the challenged booster groups had higher titer at 35 dpi than UCC. T lymphocytes increased at different time-points in the liver of inoculated chickens, and in the spleen and thymus as well, and was higher in the organs of inoculated challenged groups than the UCC. There was a significantly higher challenge virus load in the liver and cloaca of UCC chickens than in the non-booster chickens.

    CONCLUSION: UPM11142P20B1 was safe, efficacious, significantly reduced shedding, and is recommended as a candidate vaccine in the prevention and control of FAdV 8b infections in broiler chickens.

    Matched MeSH terms: Serogroup
  10. Tyagita, H., Bahaman, A.R., Jasni, S., Ibrahim, T.A.T., Fuzina, N.H.
    Jurnal Veterinar Malaysia, 2019;31(1):1-11.
    MyJurnal
    A tourist was infected with a new strain of leptospires namely, Leptospira icterohemorrhagiae serovar Lai strain Langkawi, when he was on vacation in Langkawi, Malaysia. The leptospiral strain was successfully isolated from the patient in the Netherland. In this study, the bacteria were retrieved from Holland and inoculated into fifteen guinea pigs in Universiti Putra Malaysia (UPM) to determine its pathogenicity. The main clinical symptoms in the guinea pigs were decreased appetite and jaundice. Blood profile showed high neutrophil, lymphocyte, PCV, RBC, haemoglobin, leukocyte and thrombocyte counts. Besides that, enhancement of electrolytes such as sodium (Na), chloride (Cl), and potassium (K) was also noted. Biochemical examination showed an increase alkaline phosphatase (ALP), aspartate transaminase (AST) and bilirubin levels. Albumin, alanine transaminase (ALT), blood urea, total protein and creatinine were low values. Histopathological examination under haematoxylin and eosin staining showed evidence of haemorrhages, congestion and oedema in all organs, with inflammatory cell infiltration characterized by neutrophils, lymphocytes and macrophages. Hydropic degeneration and cell necrosis were also common in the findings. Leptospires were detected from Day 2 p.i by silver staining and transmission electron microscopy (TEM). Rise in antibody titre was seen as early as Day 5 p.i and leptospiral DNA was detected by PCR in the kidneys and liver on Day 3 and Day 5, respectively. The findings were indicative of leptospirosis. This study demonstrated that guinea pigs are a suitable animal model to illustrate the clinical symptoms and pathological changes seen following infection with Leptospira icterohaemorrhagiae serovar Lai strain Langkawi. In general, the symptoms and changes seen in leptospirosis are similar to viral infections and the information and data from this present study would help differentiate infection due to leptospires from that of viral infection. Leptospiral infection has often been misdiagnosed to be viral infection such as influenza and dengue which have similar signs and symptoms as leptospirosis.
    Matched MeSH terms: Serogroup
  11. Tunung, R., Chai, L.C., Usha, M.R., Lee, H.Y., Fatimah, A.B., Farinazleen, M.G., et al.
    MyJurnal
    Salmonella enterica is one of the major causes of bacterial foodborne infection. The aims of this study were to determine the antibiotic resistance and the genetic diversity of Salmonella enterica isolated from street foods and clinical samples and to understand the correlation between the prevalence of serovars and genotypes with their source (street food and clinical samples) and geographic origin (Negeri Sembilan, Malacca and Selangor in Peninsular Malaysia). The enterobacterial repetitive intergenic consensus (ERIC) PCR analysis distinguished the Salmonella isolates into 19 ERIC types, with one untypable isolate. Dendrograms were specifically constructed for the S. Biafra and S. Typhi isolates. Identical or very similar ERIC types among the S. Biafra isolates from street food samples indicate transmission of the S. Biafra among the street foods, as well as possible cross-contamination of the street foods. In addition, the identical or very similar ERIC types among the S. Typhi isolates from human samples examined suggest possible similarity in their source of infection. All the twenty four isolates were resistant to rifampin and none were resistant to cefuroxime. Most isolates displayed multiple resistances. Dendrogram of antibiotic resistances produced six clusters, with similarity levels between 18.8% and 100%. Generally, street food and clinical isolates tend to cluster apart. Dendrogram to cluster the antibiotic groups showed that they could be grouped according to classes based on mode of inhibition. The findings suggest that street food contaminated with drug-resistant Salmonella enterica can be an important factor in the continuous emergence of antibiotic resistant Salmonella enterica.
    Matched MeSH terms: Serogroup
  12. Togami E, Chiew M, Lowbridge C, Biaukula V, Bell L, Yajima A, et al.
    PMID: 37064541 DOI: 10.5365/wpsar.2023.14.1.973
    The global burden of dengue, an emerging and re-emerging mosquito-borne disease, increased during the 20-year period ending in 2019, with approximately 70% of cases estimated to have been in Asia. This report describes the epidemiology of dengue in the World Health Organization's Western Pacific Region during 2013-2019 using regional surveillance data reported from indicator-based surveillance systems from countries and areas in the Region, supplemented by publicly available dengue outbreak situation reports. The total reported annual number of dengue cases in the Region increased from 430 023 in 2013 to 1 050 285 in 2019, surpassing 1 million cases for the first time in 2019. The reported case-fatality ratio ranged from 0.19% (724/376 972 in 2014 and 2030/1 050 285 in 2019) to 0.30% (1380/458 843 in 2016). The introduction or reintroduction of serotypes to specific areas caused several outbreaks and rare occurrences of local transmission in places where dengue was not previously reported. This report reinforces the increased importance of dengue surveillance systems in monitoring dengue across the Region.
    Matched MeSH terms: Serogroup
  13. Tin Sabai Aung, Amalina Emran, Chua Tock Hing, Tin Tin Thein, Win Win Than, Aye Aye Wynn, et al.
    MyJurnal
    Introduction: Dengue is caused by dengue virus (DENV) which is a member of the genus Flavivirus of the family Flaviviridae. The prevalence of dengue has been increasing all over the world especially in Southeast Asia and Western Pacific regions. In 2016 - 2017 dengue outbreaks were reported in Sandakan and Kudat of Sabah, Malay-sia. The aim of this study was to determine the serotypes of dengue viruses circulating in these two sites during the outbreaks. Methods: A total of 200 dengue patients’ sera tested positive with NS1 and IgM & IgG rapid test (PanBio) were collected from Hospital Duchess of Kent Sandakan and Hospital Kudat between June 2016 and December 2017. PCR was done at the Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah. One-Step Reverse transcriptase PCR (RT-PCR) and nested PCR was performed using C-prM amplimers designed by Lanciotti et al and later redesigned by Chien et al, followed by sequencing some of the PCR products. Results: Out of 200 sera tested 128 were PCR positive. All the four dengue serotypes were detected with PCR products with specific sizes in gel electrophoresis. However, in four samples, no serotype-specific band was amplified by the nested PCR, while they were dengue-positive in RT-PCR showing 511 base pair amplicon. Sequencing results revealed all four samples were found to belong to DENV4. The sequences of these samples were aligned with that of DENV 4 reverse primer rTS4. The DENV4 specific primer rTS4 was found to have four mismatched nucleotides to the DENV4 sequences. Conclusion: There was a co-circulation of DENV1 to 4 in Sandakan and Kudat in the study period. DENV1 was the predominant serotype. DENV4 specific C-prM primer rTS4 should be redesigned for the local DENV4 strain in Sabah in future research.
    Matched MeSH terms: Serogroup
  14. Thung TY, Radu S, Mahyudin NA, Rukayadi Y, Zakaria Z, Mazlan N, et al.
    Front Microbiol, 2017;8:2697.
    PMID: 29379488 DOI: 10.3389/fmicb.2017.02697
    The aim of the present study was to investigate the prevalence of Salmonella spp., Salmonella Enteritidis and Salmonella Typhimurium in retail beef from different retail markets of Selangor area, as well as, to assess their pathogenic potential and antimicrobial resistance. A total of 240 retail beef meat samples (chuck = 60; rib = 60; round = 60; sirloin = 60) were randomly collected. The multiplex polymerase chain reaction (mPCR) in combination with the most probable number (MPN) method was employed to detect Salmonella spp., S. Enteritidis and S. Typhimurium in the meat samples. The prevalence of Salmonella spp., S. Enteritidis and S. Typhimurium in 240 beef meat samples were 7.50, 1.25, and 0.83%, respectively. The microbial loads of total Salmonella was found in the range of <3 to 15 MPN/g. Eight different serovars of Salmonella were identified among the 23 isolates, and S. Agona was the predominant serovar (26.09%). Interestingly, all the Salmonella isolates were resistant to penicillin, erythromycin and vancomycin, but the sensitivity was observed for tetracycline, gentamicin and amoxicillin/clavulanic acid. All 23 isolates were resistant to at least three antibiotics. Two S. Typhimurium isolates (8.70%) exhibited the highest multiple antibiotic resistance (MAR) index value of 0.56 which shown resistance to nine antibiotics. PCR analysis of virulence genes showed that all Salmonella isolates (100%) were positive for the invA gene. Meanwhile, pefA was only identified in S. Enteritidis and S. Typhimurium. The findings in this study indicate that retail beef products tested were widely contaminated with multi-drug resistant (MDR) Salmonella and various virulence genes are present among the isolated Salmonella serovars.
    Matched MeSH terms: Serogroup
  15. Thisyakorn U, Carlos J, Chotpitayasunondh T, Dien TM, Gonzales MLAM, Huong NTL, et al.
    Hum Vaccin Immunother, 2022 Nov 30;18(6):2110759.
    PMID: 36084311 DOI: 10.1080/21645515.2022.2110759
    Invasive meningococcal disease (IMD) imposes a significant burden on the global community due to its high case fatality rate (4-20%) and the risk of long-term sequelae for one in five survivors. An expert group meeting was held to discuss the epidemiology of IMD and immunization policies in Malaysia, Philippines, Thailand, and Vietnam. Most of these countries do not include meningococcal immunization in their routine vaccination programs, except for high-risk groups such as immunocompromised people and pilgrims. It is difficult to estimate the epidemiology of IMD in the highly diverse Asia-Pacific region, but available evidence indicate serogroup B is increasingly dominant. Disease surveillance systems differ by country. IMD is not a notifiable disease in some of them. Without an adequate surveillance system in the region, the risk and the burden of IMD might well be underestimated. With the availability of new combined meningococcal vaccines and the World Health Organization roadmap to defeat bacterial meningitis by 2030, a better understanding of the epidemiology of IMD in the Asia-Pacific region is needed.
    Matched MeSH terms: Serogroup
  16. Ten Bosch QA, Singh BK, Hassan MR, Chadee DD, Michael E
    PLoS Negl Trop Dis, 2016 05;10(5):e0004680.
    PMID: 27159023 DOI: 10.1371/journal.pntd.0004680
    The epidemiology of dengue fever is characterized by highly seasonal, multi-annual fluctuations, and the irregular circulation of its four serotypes. It is believed that this behaviour arises from the interplay between environmental drivers and serotype interactions. The exact mechanism, however, is uncertain. Constraining mathematical models to patterns characteristic to dengue epidemiology offers a means for detecting such mechanisms. Here, we used a pattern-oriented modelling (POM) strategy to fit and assess a range of dengue models, driven by combinations of temporary cross protective-immunity, cross-enhancement, and seasonal forcing, on their ability to capture the main characteristics of dengue dynamics. We show that all proposed models reproduce the observed dengue patterns across some part of the parameter space. Which model best supports the dengue dynamics is determined by the level of seasonal forcing. Further, when tertiary and quaternary infections are allowed, the inclusion of temporary cross-immunity alone is strongly supported, but the addition of cross-enhancement markedly reduces the parameter range at which dengue dynamics are produced, irrespective of the strength of seasonal forcing. The implication of these structural uncertainties on predicted vulnerability to control is also discussed. With ever expanding spread of dengue, greater understanding of dengue dynamics and control efforts (e.g. a near-future vaccine introduction) has become critically important. This study highlights the capacity of multi-level pattern-matching modelling approaches to offer an analytic tool for deeper insights into dengue epidemiology and control.
    Matched MeSH terms: Serogroup
  17. Tang SS, Carlin NI, Talukder KA, Cam PD, Verma NK
    BMC Microbiol, 2016 Jun 27;16(1):127.
    PMID: 27349637 DOI: 10.1186/s12866-016-0746-z
    BACKGROUND: Shigella spp. are the primary causative agents of bacillary dysentery. Since its emergence in the late 1980s, the S. flexneri serotype 1c remains poorly understood, particularly with regard to its origin and genetic evolution. This article provides a molecular insight into this novel serotype and the gtrIC gene cluster that determines its unique immune recognition.

    RESULTS: A PCR of the gtrIC cluster showed that serotype 1c isolates from different geographical origins were genetically conserved. An analysis of sequences flanking the gtrIC cluster revealed remnants of a prophage genome, in particular integrase and tRNA(Pro) genes. Meanwhile, Southern blot analyses on serotype 1c, 1a and 1b strains indicated that all the tested serotype 1c strains may have had a common origin that has since remained distinct from the closely related 1a and 1b serotypes. The identification of prophage genes upstream of the gtrIC cluster is consistent with the notion of bacteriophage-mediated integration of the gtrIC cluster into a pre-existing serotype.

    CONCLUSIONS: This is the first study to show that serotype 1c isolates from different geographical origins share an identical pattern of genetic arrangement, suggesting that serotype 1c strains may have originated from a single parental strain. Analysis of the sequence around the gtrIC cluster revealed a new site for the integration of the serotype converting phages of S. flexneri. Understanding the origin of new pathogenic serotypes and the molecular basis of serotype conversion in S. flexneri would provide information for developing cross-reactive Shigella vaccines.

    Matched MeSH terms: Serogroup*
  18. Takkinsatian P, Silpskulsuk C, Prommalikit O
    Med J Malaysia, 2020 11;75(6):672-676.
    PMID: 33219176
    INTRODUCTION: Salmonella is a common organism, causing intestinal and extraintestinal infections among Thai children, especially infants, and leading to overwhelming antibiotic use.

    MATERIALS AND METHODS: In this retrospective review, data collected during 2006-2015 from the medical charts of patients with evidence of infection, caused by any Salmonella serogroup or clinical form, were examined. We aimed to assess the clinical manifestations, antibiotic susceptibility, and antibiotic use in children with Salmonella gastroenteritis over the ten years' period.

    RESULTS: A total of 419 patients had non-typhoidal Salmonella infection. Four-hundred (95.5%) patients were diagnosed with acute gastroenteritis, which was common in children aged <12 months (72.3%). The clinical features of patients with gastroenteritis included fever (74.5%), diarrhoea with bloody mucus (60.5%), watery diarrhoea (39.5%), and vomiting (19.8%). Serogroup B was most commonly detected in the stool specimens. The susceptibility of non-typhoidal Salmonella to ampicillin, norfloxacin, and co-trimoxazole was 36.3%, 98.0%, and 80.5%, respectively. Serogroup B was the most resistant strain, which was sensitive to ampicillin in only 21.6% of specimens, while it showed high susceptibility to norfloxacin and co-trimoxazole (98.1 and 84.0%, respectively). Third-generation cephalosporin and fluoroquinolone were most commonly prescribed.

    CONCLUSIONS: Acute gastroenteritis is the most common form of Salmonella infection. Gastroenteritis caused by serogroup B is still the most common infection, which mostly occurs among infants under one year of age. The majority of stool specimens were still susceptible to antimicrobial agents, especially fluoroquinolone and cotrimoxazole; however, there was an overuse of antibiotics without proper indications.

    Matched MeSH terms: Serogroup
  19. Takahashi S, Metcalf CJE, Arima Y, Fujimoto T, Shimizu H, Rogier van Doorn H, et al.
    J R Soc Interface, 2018 09 12;15(146).
    PMID: 30209044 DOI: 10.1098/rsif.2018.0507
    Outbreaks of hand, foot and mouth disease have been documented in Japan since 1963. This disease is primarily caused by the two closely related serotypes of Enterovirus A71 (EV-A71) and Coxsackievirus A16 (CV-A16). Here, we analyse Japanese virologic and syndromic surveillance time-series data from 1982 to 2015. As in some other countries in the Asia Pacific region, EV-A71 in Japan has a 3 year cyclical component, whereas CV-A16 is predominantly annual. We observe empirical signatures of an inhibitory interaction between the serotypes; virologic lines of evidence suggest they may indeed interact immunologically. We fit the time series to mechanistic epidemiological models: as a first-order effect, we find the data consistent with single-serotype susceptible-infected-recovered dynamics. We then extend the modelling to incorporate an inhibitory interaction between serotypes. Our results suggest the existence of a transient cross-protection and possible asymmetry in its strength such that CV-A16 serves as a stronger forcing on EV-A71. Allowing for asymmetry yields accurate out-of-sample predictions and the directionality of this effect is consistent with the virologic literature. Confirmation of these hypothesized interactions would have important implications for understanding enterovirus epidemiology and informing vaccine development. Our results highlight the general implication that even subtle interactions could have qualitative impacts on epidemic dynamics and predictability.
    Matched MeSH terms: Serogroup
  20. Suut L, Mazlan MN, Arif MT, Yusoff H, Abdul Rahim NA, Safii R, et al.
    Asia Pac J Public Health, 2016 07;28(5):450-7.
    PMID: 27183976 DOI: 10.1177/1010539516648003
    Leptospirosis is an important zoonotic disease globally and is endemic in Malaysia. A study was conducted in the Rejang basin of Sarawak from June 2011 to May 2013 to determine the seroprevalence of leptospirosis among the communities and dominant infecting Leptospira serovars. A total of 508 human sera were analyzed using ELISA and the microscopic agglutination test (MAT). The seroprevalence of leptospirosis in the study area was 37.4%, with the highest prevalence in Kapit division. More women were positive for leptospirosis (59.5%), and the mean age of seropositive individuals was 42.2 (SD = 18.7) years. Antibody titers between 1:50 and 1:1600 were reported, and serovars djasiman (22.1%), shermani (13.2%), and pomona (7.9%) predominated, with varied distribution between geographical locations. This study highlighted the endemicity and diversity of existing Leptospira serovars within the community. This information should be communicated to local health personnel and communities at risk, and rapid diagnostic capability should be made available to local health facilities.
    Matched MeSH terms: Serogroup
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links