Displaying publications 1 - 20 of 173 in total

Abstract:
Sort:
  1. Sow AY, Ismail A, Zulkifli SZ
    Environ Sci Pollut Res Int, 2013 Dec;20(12):8964-73.
    PMID: 23757028 DOI: 10.1007/s11356-013-1857-9
    The present study investigates the concentration of Pb, Cd, Ni, Zn, and Cu in the paddy field soils collected from Tumpat, Kelantan. Soil samples were treated with sequential extraction to distinguish the anthropogenic and lithogenic origin of Pb, Cd, Ni, Zn, and Cu. ELFE and oxidizable-organic fractions were detected as the lowest accumulation of Pb, Cd, Ni, Zn, and Cu. Therefore, all the heavy metals examined were concentrated, particularly in resistant fraction, indicating that those heavy metals occurred and accumulated in an unavailable form. The utilization of agrochemical fertilizers and pesticides might not elevate the levels of heavy metals in the paddy field soils. In comparison, the enrichment factor and geoaccumulation index for Pb, Cd, Ni, Zn, and Cu suggest that these heavy metals have the potential to cause environmental risk, although they present abundance in resistant fraction. Therefore, a complete study should be conducted based on the paddy cycle, which in turn could provide a clear picture of heavy metals distribution in the paddy field soils.
    Matched MeSH terms: Soil/chemistry
  2. Zhao X, Zhu M, Guo X, Wang H, Sui B, Zhao L
    Environ Sci Pollut Res Int, 2019 May;26(14):13746-13754.
    PMID: 30008165 DOI: 10.1007/s11356-018-2270-1
    The soil organic carbon accumulation in soda saline-alkaline soil and the humus composition changes with application of aluminum sulfate and rice straw were investigated by the controlled simulative experiments in laboratory. For evaluating the amelioration effect, organic carbon content and humus composition in soda saline-alkaline soil were investigated with different application amounts of rice straw and aluminum sulfate. Potassium dichromate oxidation titration (exogenous heat) method and Kumada method were used to analyze the contents of organic carbon and humus composition, respectively. The transformation of soil organic matter in the saline-alkali soil during the amelioration has been clarified in this paper. The results demonstrated that the contents of soil organic carbon were significantly increased (13-92%) with different application amounts of rice straw and aluminum sulfate. The contents of free fraction and combined fraction of humus and their compositions (humic acid and fulvic acid) were increased with different application amounts of rice straw. The free fraction of humus was increased more dramatically. Due to aluminum sulfate application, free fraction of humus and humic acid (HA) was transformed to combined fraction partially. Free HA was changed to be P type with rice straw application. With aluminum sulfate application, free form of HA was changed from type P to type Rp. For rice straw application, combined HA only was transferred within the area of type A. Aluminum sulfate addition had no significant effect on the type of combined form of HA. With the same amount of rice straw application, the contents of soil organic carbon were increased by increasing the amount of aluminum sulfate application. Both rice straw and aluminum sulfate applications could reduce the humification degree of free and combined fraction of HA. According to the types of HA, it could be concluded that humus became younger and renewed due to the application of rice straw and aluminum sulfate.
    Matched MeSH terms: Soil/chemistry*
  3. Chang J, Liang J, Zhang Y, Zhang R, Fang W, Zhang H, et al.
    J Hazard Mater, 2024 May 15;470:134152.
    PMID: 38552398 DOI: 10.1016/j.jhazmat.2024.134152
    Soil contamination by emerging pollutants tetrabromobisphenol A (TBBPA) and microplastics has become a global environmental issue in recent years. However, little is known about the effect of microplastics on degradation of TBBPA in soil, especially aged microplastics. In this study, the effect of aged polystyrene (PS) microplastics on the degradation of TBBPA in soil and the mechanisms were investigated. The results suggested that the aged microplastics exhibited a stronger inhibitory effect on the degradation of TBBPA in soil than the pristine microplastics, and the degradation efficiency of TBBPA decreased by 21.57% at the aged microplastic content of 1%. This might be related to the higher TBBPA adsorption capacity of aged microplastics compared to pristine microplastics. Aged microplastics strongly altered TBBPA-contaminated soil properties, reduced oxidoreductase activity and affected microbial community composition. The decrease in soil oxidoreductase activity and relative abundance of functional microorganisms (e.g., Bacillus, Pseudarthrobacter and Sphingomonas) caused by aged microplastics interfered with metabolic pathways of TBBPA. This study indicated the importance the risk assessment and soil remediation for TBBPA-contaminated soil with aged microplastics.
    Matched MeSH terms: Soil/chemistry
  4. Hussain H, Yusoff MK, Ramli MF, Abd Latif P, Juahir H, Zawawi MA
    Pak J Biol Sci, 2013 Nov 15;16(22):1524-30.
    PMID: 24511695
    Nitrate-nitrogen leaching from agricultural areas is a major cause for groundwater pollution. Polluted groundwater with high levels of nitrate is hazardous and cause adverse health effects. Human consumption of water with elevated levels of NO3-N has been linked to the infant disorder methemoglobinemia and also to non-Hodgkin's disease lymphoma in adults. This research aims to study the temporal patterns and source apportionment of nitrate-nitrogen leaching in a paddy soil at Ladang Merdeka Ismail Mulong in Kelantan, Malaysia. The complex data matrix (128 x 16) of nitrate-nitrogen parameters was subjected to multivariate analysis mainly Principal Component Analysis (PCA) and Discriminant Analysis (DA). PCA extracted four principal components from this data set which explained 86.4% of the total variance. The most important contributors were soil physical properties confirmed using Alyuda Forecaster software (R2 = 0.98). Discriminant analysis was used to evaluate the temporal variation in soil nitrate-nitrogen on leaching process. Discriminant analysis gave four parameters (hydraulic head, evapotranspiration, rainfall and temperature) contributing more than 98% correct assignments in temporal analysis. DA allowed reduction in dimensionality of the large data set which defines the four operating parameters most efficient and economical to be monitored for temporal variations. This knowledge is important so as to protect the precious groundwater from contamination with nitrate.
    Matched MeSH terms: Soil/chemistry*
  5. Ashraf MA, Maah MJ, Yusoff I
    ScientificWorldJournal, 2012;2012:125608.
    PMID: 22566758 DOI: 10.1100/2012/125608
    This study describes the chemical speciation of Pb, Zn, Cu, Cr, As, and Sn in soil of former tin mining catchment. Total five sites were selected for sampling and subsequent subsamples were collected from each site in order to create a composite sample for analysis. Samples were analysed by the sequential extraction procedure using optical emission spectrometry (ICP OES). Small amounts of Cu, Cr, and As retrieved from the exchangeable phase, the ready available for biogeochemical cycles in the ecosystem. Low quantities of Cu and As could be taken up by plants in these kind of acidic soils. Zn not detected in the bioavailable forms while Pb is only present in negligible amounts in very few samples. The absence of mobile forms of Pb eliminates the toxic risk both in the trophic chain and its migration downwards the soil profile. The results also indicate that most of the metals have high abundance in residual fraction indicating lithogenic origin and low bioavailability of the metals in the studied soil. The average potential mobility for the metals giving the following order: Sn > Cu > Zn > Pb > Cr > As.
    Matched MeSH terms: Soil/chemistry
  6. Foster WA, Snaddon JL, Turner EC, Fayle TM, Cockerill TD, Ellwood MD, et al.
    Philos Trans R Soc Lond B Biol Sci, 2011 Nov 27;366(1582):3277-91.
    PMID: 22006968 DOI: 10.1098/rstb.2011.0041
    The conversion of natural forest to oil palm plantation is a major current threat to the conservation of biodiversity in South East Asia. Most animal taxa decrease in both species richness and abundance on conversion of forest to oil palm, and there is usually a severe loss of forest species. The extent of loss varies significantly across both different taxa and different microhabitats within the oil palm habitat. The principal driver of this loss in diversity is probably the biological and physical simplification of the habitat, but there is little direct evidence for this. The conservation of forest species requires the preservation of large reserves of intact forest, but we must not lose sight of the importance of conserving biodiversity and ecosystem processes within the oil palm habitat itself. We urgently need to carry out research that will establish whether maintaining diversity supports economically and ecologically important processes. There is some evidence that both landscape and local complexity can have positive impacts on biodiversity in the oil palm habitat. By intelligent manipulation of habitat complexity, it could be possible to enhance not only the number of species that can live in oil palm plantations but also their contribution to the healthy functioning of this exceptionally important and widespread landscape.
    Matched MeSH terms: Soil/chemistry
  7. Siraz MMM, Roy D, Dewan MJ, Alam MS, A M J, Rashid MB, et al.
    Environ Monit Assess, 2023 Feb 10;195(3):382.
    PMID: 36759352 DOI: 10.1007/s10661-023-10921-7
    This is the first attempt in the world to depict the vertical distribution of radionuclides in the soil samples along several heights (900 feet, 1550 feet, and 1650 feet) of Marayon Tong hill in the Chittagong Hill Tracts, Bandarban by HPGe gamma-ray spectrometry. The average activity concentrations of 232Th, 226Ra, and 40K were found to be 37.15 ± 3.76 Bqkg-1, 19.69 ± 2.15 Bqkg-1, and 347.82 ± 24.50 Bqkg-1, respectively, where in most cases, 232Th exceeded the world average value of 30 Bqkg-1. According to soil characterization, soils ranged from slightly acidic to moderately acidic, with low soluble salts. The radium equivalent activity, outdoor and indoor absorbed dose rate, external and internal hazard indices, external and internal effective dose rates, gamma level index, and excess lifetime cancer risk were evaluated and found to be below the recommended or world average values; but a measurable activity of 137Cs was found at soils collected from ground level and at an altitude of 1550 feet, which possibly arises from the nuclear fallout. The evaluation of cumulative radiation doses to the inhabitants via periodic measurement is recommended due to the elevated levels of 232Th.This pioneering work in mapping the vertical distribution of naturally occurring radioactive materials (NORMs) can be an essential factual baseline data for the scientific community that may be used to evaluate the variation in NORMs in the future, especially after the commissioning of the Rooppur Nuclear Power Plant in Bangladesh in 2024.
    Matched MeSH terms: Soil/chemistry
  8. Xu H, Detto M, Fang S, Chazdon RL, Li Y, Hau BCH, et al.
    Commun Biol, 2020 06 19;3(1):317.
    PMID: 32561898 DOI: 10.1038/s42003-020-1041-y
    Legumes provide an essential service to ecosystems by capturing nitrogen from the atmosphere and delivering it to the soil, where it may then be available to other plants. However, this facilitation by legumes has not been widely studied in global tropical forests. Demographic data from 11 large forest plots (16-60 ha) ranging from 5.25° S to 29.25° N latitude show that within forests, leguminous trees have a larger effect on neighbor diversity than non-legumes. Where soil nitrogen is high, most legume species have higher neighbor diversity than non-legumes. Where soil nitrogen is low, most legumes have lower neighbor diversity than non-legumes. No facilitation effect on neighbor basal area was observed in either high or low soil N conditions. The legume-soil nitrogen positive feedback that promotes tree diversity has both theoretical implications for understanding species coexistence in diverse forests, and practical implications for the utilization of legumes in forest restoration.
    Matched MeSH terms: Soil/chemistry*
  9. Anyika C, Abdul Majid Z, Ibrahim Z, Zakaria MP, Yahya A
    Environ Sci Pollut Res Int, 2015 Mar;22(5):3314-41.
    PMID: 25345923 DOI: 10.1007/s11356-014-3719-5
    Amending polycyclic aromatic hydrocarbon (PAH)-contaminated soils with biochar may be cheaper and environmentally friendly than other forms of organic materials. This has led to numerous studies on the use of biochar to either bind or stimulate the microbial degradation of organic compounds in soils. However, very little or no attention have been paid to the fact that biochars can give simultaneous impact on PAH fate processes, such as volatilization, sorption and biodegradation. In this review, we raised and considered the following questions: How does biochar affect microbes and microbial activities in the soil? What are the effects of adding biochar on sorption of PAHs? What are the effects of adding biochar on degradation of PAHs? What are the factors that we can manipulate in the laboratory to enhance the capability of biochars to degrade PAHs? A triphasic concept of how biochar can give simultaneous impact on PAH fate processes in soils was proposed, which involves rapid PAH sorption into biochar, subsequent desorption and modification of soil physicochemical properties by biochar, which in turn stimulates microbial degradation of the desorbed PAHs. It is anticipated that biochar can give simultaneous impact on PAH fate processes in soils.
    Matched MeSH terms: Soil/chemistry
  10. Ahmad MF, Abdullah H, Hassan MN, Jamaludin MI, Sivam A, Komatsu K, et al.
    Int J Mol Sci, 2023 Jan 03;24(1).
    PMID: 36614337 DOI: 10.3390/ijms24010872
    Soil ecosystems are home to a diverse range of microorganisms, but they are only partially understood because no single-cell sequencing or whole-community sequencing provides a complete picture of these complex communities. Using one of such metagenomics approaches, we succeeded in monitoring the microbial diversity and stress-response gene in the soil samples. This study aims to test whether known differences in taxonomic diversity and composition are reflected in functional gene profiles by implementing whole gene sequencing (WGS) metagenomic analysis of geographically dispersed soils from two distinct pristine forests. The study was commenced by sequencing three rainforest soil samples and three peat swamp soil samples. Soil richness effects were assessed by exploring the changes in specific functional gene abundances to elucidate physiological constraints acting on different soil systems and identify variance in functional pathways relevant to soil biogeochemical cycling. Proteobacteria shows abundances of microbial diversity for 52.15% in Royal Belum Reserved Forest and 48.28% in Raja Musa; 177 out of 1,391,841 and 449 out of 3,586,577 protein coding represent acidic stress-response genes for Royal Belum and Raja Musa, respectively. Raja Musa indicates pH 2.5, which is extremely acidic. The analysis of the taxonomic community showed that Royal Belum soils are dominated by bacteria (98% in Sungai Kooi (SK), 98% in Sungai Papan (SP), and 98% in Sungai Ruok (SR), Archaea (0.9% in SK, 0.9% in SP, and 1% in SR), and the remaining were classed under Eukaryota and viruses. Likewise, the soils of Raja Muda Musa are also dominated by bacteria (95% in Raja Musa 1 (RM1), 98% in Raja Musa 2 (RM2), and 96% in Raja Musa 3 (RM3)), followed by Archaea (4% in RM1, 1% in RM2, and 3% in RM3), and the remaining were classed under Eukaryota and viruses. This study revealed that RBFR (Royal Belum Foresr Reserve) and RMFR (Raja Musa Forest Reserve) metagenomes contained abundant stress-related genes assigned to various stress-response pathways, many of which did not show any difference among samples from both sites. Our findings indicate that the structure and functional potential of the microbial community will be altered by future environmental potential as the first glimpse of both the taxonomic and functional composition of soil microbial communities.
    Matched MeSH terms: Soil/chemistry
  11. Chen GX, He WW, Wang Y, Zou YD, Liang JB, Liao XD, et al.
    Sci Total Environ, 2014 May 1;479-480:241-6.
    PMID: 24561929 DOI: 10.1016/j.scitotenv.2014.01.124
    The degradation behavior of veterinary antibiotics in soil is commonly studied using the following methods of adding antibiotics to the soil: (i) adding manure collected from animals fed with a diet containing antibiotics, (ii) adding antibiotic-free animal manure spiked with antibiotics and (iii) directly adding antibiotics. No research simultaneously comparing different antibiotic addition methods was found. Oxytetracycline (OTC) was used as a model antibiotic to compare the effect of the three commonly used antibiotic addition methods on OTC degradation behavior in soil. The three treatment methods have similar trends, though OTC degradation half-lives show the following significant differences (P<0.05): manure from swine fed OTC (treatment A)soil. Because the main entry route for veterinary antibiotics into soil is via the manure of animals given with antibiotics, the most appropriate method to study the degradation and ecotoxicity of antibiotic residues in soil may be to use manure from animals that are given a particular antibiotic, rather than by adding it directly to the soil.
    Matched MeSH terms: Soil/chemistry*
  12. Li Q, Wang Y, Zou YD, Liao XD, Liang JB, Xin W, et al.
    Sci Total Environ, 2015 Sep 15;527-528:126-34.
    PMID: 25958362 DOI: 10.1016/j.scitotenv.2015.04.117
    The behavior of veterinary antibiotics in the soil is commonly studied using the following methods to add antibiotics to the soil: (A) adding manure collected from animals fed a diet that includes antibiotics; (B) adding antibiotic-free animal manure spiked with antibiotics; and (C) the direct addition of antibiotics. However, most studies have only used methods (B) and (C) in their research, and few studies have simultaneously compared the different antibiotic addition methods. This study used tylosin A (TYLA) as a model antibiotic to compare the effects of these three commonly used antibiotic addition methods on the dissipation rates of TYLA and the numbers of resistance genes in laboratory incubation experiments. The results showed that the three treatment methods produced similar TYLA degradation trends; however, there were significant differences (P<0.05) in the TYLA degradation half-life (t1/2) among the three methods. The half-life of TYLA degradation in treatments A, B and C was 2.44 ± 0.04, 1.21 ± 0.03 and 5.13 ± 0.11 days, respectively. The presence of manure resulted in a higher electrical conductivity (EC), higher relative abundance of Citrobacter amalonaticus, higher macrolide resistant gene (ermB, ermF and ermT) count and lower ecological toxicity in the soil, which could partially explain the higher TYLA degradation rate in the treatments containing manure. The higher degradation rate of TYLA in treatment B when compared to treatment A could be due to the lower concentrations of tylosin B (TYLB) and tylosin D (TYLD). The main route for veterinary antibiotics to enter the soil is via the manure of animals that have been administered antibiotics. Therefore, the more appropriate method to study the degradation and ecotoxicity of antibiotic residues in the soil is by using manure from animals fed/administered the particular antibiotic rather than by adding the antibiotic directly to the soil.
    Matched MeSH terms: Soil/chemistry*
  13. Wang Y, Bi L, Liao Y, Lu D, Zhang H, Liao X, et al.
    Ecotoxicol Environ Saf, 2019 Sep 30;180:80-87.
    PMID: 31078019 DOI: 10.1016/j.ecoenv.2019.04.066
    Ammonia emissions is an important issue during composting because it can cause secondary pollution and a significant of nitrogen loss. Based on research adding Bacillus stearothermophilus can reduce ammonia emissions during composting because it can use sugar in organic matter fermentation to produce organic acids over 50 °C. This study conducted the batch experiments by adding different concentrations of Bacillus stearothermophilus to reduce the ammonia emissions and find out its characteristic during layer manure composting by using an aerobic composting reactor with sawdust as a bulking agent. The results show that the application of Bacillus stearothermophilus can accelerate the rate of temperature and significantly decrease pH, the warming period was 2 days in the treatment with Bacillus stearothermophilus, while it was 4 days in the treatment without Bacillus stearothermophilus. Ammonia emissions were mainly occurred in warming and high temperature period during composting. The ammonia emissions in the treatment with 8.00 g/kg initial Bacillus stearothermophilus were significantly lower than the other lower Bacillus stearothermophilus treatment and control during composting (p  0.05). MiSeq System Sequencing results find that the addition of Bacillus stearothermophilus changed the bacterial community structure under warming and high-temperature periods during composting, increased the relative abundance of lactic acid bacillus and nitrification bacteria. Therefore, the reason for the low ammonia emission in 8.00 g/kg initial Bacillus stearothermophilus treatments might be not only due to the Bacillus stearothermophilus itself, but also Bacillus stearothermophilus can change the indigenous microorganism community, including increase the relative content of lactic acid Bacillus and nitrification bacteria, thus reducing the pH and promoting nitrification, and reducing ammonia emissions.
    Matched MeSH terms: Soil/chemistry
  14. Lim SL, Wu TY
    J Agric Food Chem, 2016 Mar 2;64(8):1761-9.
    PMID: 26844586 DOI: 10.1021/acs.jafc.6b00531
    The valorization process involves transforming low-value materials such as wastes into high-value-added products. The current study aims to determine the potential of using a valorization process such as vermicomposting technology to convert palm oil mill byproduct, namely, decanter cake (DC), into organic fertilizer or vermicompost. The maturity of the vermicompost was characterized through various chemical and instrumental characterization to ensure the end product was safe and beneficial for agricultural application. The vermicomposting of DC showed significantly higher nutrient recovery and decreases in C:N ratio in comparison with the controls, particularly in the treatment with 2 parts DC and 1 part rice straw (w/w) (2DC:1RS). 2DC:1RS vermicompost had a final C:N ratio of 9.03 ± 0.12 and reasonably high levels of calcium (1.13 ± 0.05 g/kg), potassium (25.47 ± 0.32 g/kg), magnesium (4.87 ± 0.19 g/kg), sodium (7.40 ± 0.03 g/kg), and phosphorus (3.62 ± 0.27 g/kg). In addition, instrumental characterization also revealed a higher degree of maturity in the vermicompost. Ratios of 2921:1633 and DTG2:DTG3 also showed significant linear correlations with the C:N ratio, implying that those ratios could be used to characterize the progression of vermicompost maturity during the valorization process of DC.
    Matched MeSH terms: Soil/chemistry*
  15. Peng Y, Fornara DA, Wu Q, Heděnec P, Yuan J, Yuan C, et al.
    Sci Total Environ, 2023 Jan 20;857(Pt 3):159686.
    PMID: 36302428 DOI: 10.1016/j.scitotenv.2022.159686
    Plant litter decomposition is not only the major source of soil carbon and macronutrients, but also an important process for the biogeochemical cycling of trace elements such as iron (Fe), manganese (Mn), zinc (Zn), and copper (Cu). The concentrations of plant litter trace elements can influence litter decomposition and element cycling across the plant and soil systems. Yet, a global perspective of the patterns and driving factors of trace elements in plant litter is missing. To bridge this knowledge gap, we quantitatively assessed the concentrations of four common trace elements, namely Fe, Mn, Zn, and Cu, of freshly fallen plant litter with 1411 observations extracted from 175 publications across the globe. Results showed that (1) the median of the average concentrations of litter Fe, Mn, Zn, and Cu were 0.200, 0.555, 0.032, and 0.006 g/kg, respectively, across litter types; (2) litter concentrations of Fe, Zn, and Cu were generally stable regardless of variations in multiple biotic and abiotic factors (e.g., plant taxonomy, climate, and soil properties); and (3) litter Mn concentration was more sensitive to environmental conditions and influenced by multiple factors, but mycorrhizal association and soil pH and nitrogen concentration were the most important ones. Overall, our study provides a clear global picture of plant litter Fe, Mn, Zn, and Cu concentrations and their driving factors, which is important for improving our understanding on their biogeochemical cycling along with litter decomposition processes.
    Matched MeSH terms: Soil/chemistry
  16. Chai EW, H'ng PS, Peng SH, Wan-Azha WM, Chin KL, Chow MJ, et al.
    Environ Technol, 2013 Sep-Oct;34(17-20):2859-66.
    PMID: 24527651
    In Malaysia, large amounts of organic materials, which lead to disposal problems, are generated from agricultural residues especially from palm oil industries. Increasing landfill costs and regulations, which limit many types of waste accepted at landfills, have increased the interest in composting as a component of waste management. The objectives of this study were to characterize compost feedstock properties of common organic waste materials available in Malaysia. Thus, a ratio modelling of matching ingredients for empty fruit bunches (EFBs) co-composting using different organic materials in Malaysia was done. Organic waste materials with a C/N ratio of < 30 can be applied as a nitrogen source in EFB co-composting. The outcome of this study suggested that the percentage of EFB ranged between 50% and 60%, which is considered as the ideal mixing ratio in EFB co-composting. Conclusively, EFB can be utilized in composting if appropriate feedstock in term of physical and chemical characteristics is coordinated in the co-composting process.
    Matched MeSH terms: Soil/chemistry*
  17. Hulbert D, Raja Jamil RZ, Isaacs R, Vandervoort C, Erhardt S, Wise J
    Chemosphere, 2020 Feb;241:125091.
    PMID: 31683442 DOI: 10.1016/j.chemosphere.2019.125091
    Soil columns were collected from a blueberry field, and insecticide solutions were allowed to leach through these columns. Insecticides from four different chemical classes were applied at two different rates: the concentration at which the insecticides wash off blueberries under rainfall conditions and the labeled field rate at which they are sprayed. The soil columns were divided into thirds; top, middle and bottom. Soil bioassays using Eisenia foetida Savigny, as an indicator species, were set up to determine the toxicity of the insecticides at a top, middle and bottom layer of the soil column. The mass of E. foetida was also measured after the bioassay experiment was completed. The concentrations at which insecticides wash-off of blueberries from rainfall were not lethal to E. foetida. In order to support mortality data, insecticide residues were quantified in the soil layers for each insecticide. Under field rate leaching conditions, carbaryl showed the high levels of toxicity in the top and middle layers of soil suggesting that it has the highest risk to organisms from leaching. This study will help blueberry growers make informed decisions about insecticide use, which can help minimize contamination of the environment.
    Matched MeSH terms: Soil/chemistry
  18. Gan S, Yap CL, Ng HK, Venny
    J Hazard Mater, 2013 Nov 15;262:691-700.
    PMID: 24121640 DOI: 10.1016/j.jhazmat.2013.09.023
    This study aims to investigate the impacts of ethyl lactate (EL) based Fenton treatment on soil quality for polycyclic aromatic hydrocarbons (PAHs)-contaminated soils. Accumulation of oxygenated-polycyclic aromatic hydrocarbons (oxy-PAHs) was observed, but quantitative measurement on the most abundant compound 9,10-anthraquinone (ATQ) showed lower accumulation of the compound than that reported for ethanol (ET) based Fenton treatment. In general, as compared to conventional water (CW) based Fenton treatment, the EL based Fenton treatment exerted either a lower or higher negative impact on soil physicochemical properties depending on the property type and shared the main disadvantage of reduced soil pH. For revegetation, EL based Fenton treatment was most appropriately adopted for soil with native pH >/~ 6.2 in order to obtain a final soil pH >/~ 4.9 subject to the soil buffering capacity.
    Matched MeSH terms: Soil/chemistry
  19. Brown C, Boyd DS, Sjögersten S, Vane CH
    PLoS One, 2023;18(3):e0280187.
    PMID: 36989287 DOI: 10.1371/journal.pone.0280187
    Tropical peatlands are important carbon stores that are vulnerable to drainage and conversion to agriculture. Protection and restoration of peatlands are increasingly recognised as key nature based solutions that can be implemented as part of climate change mitigation. Identification of peatland areas that are important for protection and restauration with regards to the state of their carbon stocks, are therefore vital for policy makers. In this paper we combined organic geochemical analysis by Rock-Eval (6) pyrolysis of peat collected from sites with different land management history and optical remote sensing products to assess if remotely sensed data could be used to predict peat conditions and carbon storage. The study used the North Selangor Peat Swamp forest, Malaysia, as the model system. Across the sampling sites the carbon stocks in the below ground peat was ca 12 times higher than the forest (median carbon stock held in ground vegetation 114.70 Mg ha-1 and peat soil 1401.51 Mg ha-1). Peat core sub-samples and litter collected from Fire Affected, Disturbed Forest, and Managed Recovery locations (i.e. disturbed sites) had different decomposition profiles than Central Forest sites. The Rock-Eval pyrolysis of the upper peat profiles showed that surface peat layers at Fire Affected, Disturbed Forest, and Managed Recovery locations had lower immature organic matter index (I-index) values (average I-index range in upper section 0.15 to -0.06) and higher refractory organic matter index (R -index) (average R-index range in upper section 0.51 to 0.65) compared to Central Forest sites indicating enhanced decomposition of the surface peat. In the top 50 cm section of the peat profile, carbon stocks were negatively related to the normalised burns ratio (NBR) (a satellite derived parameter) (Spearman's rho = -0.664, S = 366, p-value = <0.05) while there was a positive relationship between the hydrogen index and the normalised burns ratio profile (Spearman's rho = 0.7, S = 66, p-value = <0.05) suggesting that this remotely sensed product is able to detect degradation of peat in the upper peat profile. We conclude that the NBR can be used to identify degraded peatland areas and to support identification of areas for conversation and restoration.
    Matched MeSH terms: Soil/chemistry
  20. Lsmail BS, Choo LY, Salmijah S, Halimah M, Tayeb MA
    J Environ Biol, 2015 Sep;36(5):1105-11.
    PMID: 26521552
    The sorption and desorption of cyfluthrin mixture isomers were determined using batch equilibration method and mobility was studied under laboratory conditions, using packed soil column. The soil types used in the study were clayey, clay loam and sandy clay loam obtained from three tomato farms in Cameron Highlands. A low Freundlich adsorption distribution coefficient K(ads(f)) for cyfluthrin was observed for clayey, clay loam and sandy clay loam soils (95.69, 21.64 and 8.99 l/kg, respectively). Results showed that cyfluthrin had high Freundlich organic matter (OM) distribution coefficient K(oc) values of 5799, 2278 and 1635 lkg(-1) for clayey, clay loam and sandy clay loam soils, respectively. These values indicate that cyfluthrin is considered immobile in Malaysian soils with different textures, based on the value of K(oc) by McCall. Adsorption of cyfluthrin was significantly (P < 0.05) affected with soil pH, fertilizer NPK, organic matter content and temperature. It was observed that approximately 95.8%, 93.8% and 91.8% of the adsorbed cyfluthrin remained sorbed after four successive rinses for clayey, clay loam and sandy clay loam soils. Soil column test showed that cyfluthrin was not detected in leachate. Cyfluthrin was detected in topsoil and its concentration decreased with depth. The downward movement of cyfluthrin in sandy clay loam soil was more than that in clay loam and clayey soils. Approximately, 80.9%, 77.8% and 67.3% cyfluthrin was observed at the depth of 0-5 cm (rainfall 350 mm) for clayey, clay loam and sandy clay loam soils respectively. Mobility of cyfluthrin showed that the percentage of cyfluthrin leached into soil was not affected by the amount of rainfall. The result clearly showed that cyfluthrin molecules were bound strongly to all the three Malaysian soil types.
    Matched MeSH terms: Soil/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links