Displaying publications 1 - 20 of 51 in total

Abstract:
Sort:
  1. Tekeleselassie AW, Goh YM, Rajion MA, Motshakeri M, Ebrahimi M
    ScientificWorldJournal, 2013;2013:757593.
    PMID: 24294136 DOI: 10.1155/2013/757593
    This study was aimed to investigate the effects of dietary fatty acids on the accretion pattern of major fat pads, inguinal fat cellularity, and their relation with plasma leptin concentration. Forty Sprague-Dawley rats were randomly assigned into four groups and received the following diets for 22 weeks: (1) standard rat chow diet (CTRL), (2) CTRL + 10% (w/w) butter (HFAR), (3) CTRL + 3.33% (w/w) menhaden fish oil + 6.67% (w/w) soybean oil (MFAR), and (4) CTRL + 6.67% (w/w) menhaden fish oil + 3.33% (w/w) soybean oil (LFAR). Inguinal fat cellularity and plasma leptin concentration were measured in this study. Results for inguinal fat cellularity showed that the mean adipocyte number for the MFAR (9.2 ∗ 10⁵ ± 3.6) and LFAR (8.5 ∗ 10⁵ ± 5.1) groups was significantly higher (P < 0.05) than the rest, while the mean adipocyte diameter of HFAR group was larger (P < 0.05) (46.2 ± 2.8) than the rest. The plasma leptin concentration in the HFAR group was higher (P < 0.05) (3.22 ± 0.32 ng/mL), than the other groups. The higher inguinal fat cellularity clearly indicated the ability of the polyunsaturated fatty acids (PUFA) and butter supplemented diets to induce hyperplasia and hypertrophy of fat cells, respectively, which caused adipocyte remodeling due to hyperleptinemia.
    Matched MeSH terms: Soybean Oil/administration & dosage; Soybean Oil/pharmacology
  2. Adam SK, Das S, Soelaiman IN, Umar NA, Jaarin K
    Tohoku J. Exp. Med., 2008 Jul;215(3):219-26.
    PMID: 18648182
    Repeated heating of soy oil may promote lipid peroxidation. Oxidized unsaturated fatty acids may contribute to the pathogenesis of atherosclerosis, especially in estrogen-deficient states. This study was performed to explore the deleterious effects of repeatedly heated soy oil on the development of atherosclerosis using ovariectomized rats, which represent an estrogen-deficient state. Twenty-four female Sprague-Dawley rats were ovariectomized and were divided equally into four groups. The control group was fed with 2% cholesterol diet without any oil. The three treatment groups each received 2% cholesterol diet fortified with fresh, once-heated or five-times-heated (repeatedly heated) soy oil, respectively. Serum thiobarbituric acid reactive substances (TBARS), lipid profile and homocysteine levels were measured prior to ovariectomy and at the end of four months. Ovariectomized rats treated with repeatedly heated soy oil showed significant increases in lipid peroxidation and low-density lipoprotein (LDL) levels. Treatment with once-heated or repeatedly heated soy oil caused a significant increase in total cholesterol, while fresh soy oil caused significant reduction in homocysteine level as compared to other groups. Repeatedly heated soy oil caused significant increases in TBARS and LDL as compared to fresh oil. The higher level of homocysteine in the ovariectomized rats fed with repeatedly heated oil, as compared to those fed with fresh oil, also suggests the repeatedly heated oil contributes to the development of atherosclerosis. Importantly, the protective effect of the soy oil may be lost once it was being repeatedly heated. In conclusion, the consumption of repeatedly heated oil may predispose to atherosclerosis in estrogen-deficient states.
    Matched MeSH terms: Soybean Oil/chemistry*
  3. Shaarani FW, Bou JJ
    Sci Total Environ, 2017 Nov 15;598:931-936.
    PMID: 28458211 DOI: 10.1016/j.scitotenv.2017.04.184
    Although carbon dioxide (CO2) is well known as one of the major green-house gases, it is also an economical C1 resource. Thus, CO2has been regarded as an appealing starting material for the synthesis of polymers, like polycarbonates by the reaction with epoxides. Herein the reaction between natural epoxidized soybean oil (ESO), propylene oxide (PO) and CO2under high pressure (4.0MPa) with the presence of Co-Zn double metal cyanide (Co-Zn DMC) catalyst was studied. Temperature and reaction time were varied accordingly and the products obtained were characterized by FTIR, GPC and1H NMR. The results obtained indicate the formation of polycarbonates in the samples collected with yields vary from 60 to 85%. The number average molecular weight (Mn) of the resultant polymer prepared at reaction temperature of 80°C and reaction time of 6h can reach up to 6498g/mol.
    Matched MeSH terms: Soybean Oil
  4. Gouk SW, Cheng SF, Mok JS, Ong AS, Chuah CH
    Br J Nutr, 2013 Dec 14;110(11):1987-95.
    PMID: 23756564 DOI: 10.1017/S0007114513001475
    The present study aimed to determine the effect of positional distribution of long-chain SFA in TAG, especially at the sn-1, 3 positions, on fat deposition using the C57BL/6 mouse model. Throughout the 15 weeks of the study, mice were fed with diets fortified with palm olein (POo), chemically interesterified POo (IPOo) and soyabean oil (SOY). Mice receiving the SOY-enriched diet gained significantly higher amounts of subcutaneous fat (P= 0·011) and total fat (P= 0·013) compared with the POo group, despite similar body mass gain being recorded. During normalisation with food consumption to obtain the fat:feed ratio, mice fed with the POo-enriched diet exhibited significantly lower visceral (P= 0·044), subcutaneous (P= 0·006) and total (P= 0·003) fat:feed than those fed with the SOY-enriched diet. It is noteworthy that mice fed with the IPOo-enriched diet gained 14·3 % more fat per food consumed when compared with the POo group (P= 0·013), despite their identical total fatty acid compositions. This was mainly attributed to the higher content of long-chain SFA at the sn-1, 3 positions of TAG in POo, which results in delayed absorption after deacylation as evidenced by the higher amounts of long-chain SFA excreted in the faeces of mice fed with the POo-enriched diet. Negative correlations were found between the subcutaneous, visceral as well as total fat accretion per food consumption and the total SFA content at the sn-1, 3 positions, while no relationships were found for MUFA and PUFA. The present results show that the positional distribution of long-chain SFA exerts a more profound effect on body fat accretion than the total SFA content.
    Matched MeSH terms: Soybean Oil/metabolism; Soybean Oil/chemistry
  5. Marzuki A, Arshad F, Razak TA, Jaarin K
    Am J Clin Nutr, 1991 04;53(4 Suppl):1010S-1014S.
    PMID: 1901440 DOI: 10.1093/ajcn/53.4.1010S
    We studied the effects of saturated (palm olein) and polyunsaturated (soybean oil) cooking oils on the lipid profiles of Malaysian male adolescents eating normal Malaysian diets for 5 wk. Diets cooked with palm olein did not significantly alter plasma total-cholesterol, LDL cholesterol, and HDL cholesterol concentrations or the ratio of total cholesterol to HDL cholesterol compared with diets cooked with soybean oil. However, the diet cooked with palm olein significantly increased apolipoprotein A-I (11%) and apolipoprotein B (9%) concentrations. Unexpectedly, soybean-oil-cooked diets caused a significant increase (47%) in plasma triglycerides compared with palm-olein-cooked diets. We conclude that palm olein, when used as cooking oil, has no detrimental effects on plasma lipid profiles in Malaysian adolescents.
    Matched MeSH terms: Soybean Oil/metabolism*
  6. Ima-Nirwana S, Ahmad SN, Yee LJ, Loh HC, Yew SF, Norazlina M, et al.
    Singapore Med J, 2007 Mar;48(3):200-6.
    PMID: 17342287
    The short-term and long- term effects of heated soy oil on bone metabolism in ovariectomised Sprague-Dawley rats were studied.
    Matched MeSH terms: Soybean Oil/pharmacology*; Soybean Oil/chemistry
  7. Yang J, Ching YC, Chuah CH, Liou NS
    Polymers (Basel), 2020 Dec 29;13(1).
    PMID: 33383626 DOI: 10.3390/polym13010094
    This study examined the development of starch/oil palm empty fruit bunch-based bioplastic composites reinforced with either epoxidized palm oil (EPO) or epoxidized soybean oil (ESO), at various concentrations, in order to improve the mechanical and water-resistance properties of the bio-composites. The SEM micrographs showed that low content (0.75 wt%) of epoxidized oils (EOs), especially ESO, improved the compatibility of the composites, while high content (3 wt%) of EO induced many voids. The melting temperature of the composites was increased by the incorporation of both EOs. Thermal stability of the bioplastics was increased by the introduction of ESO. Low contents of EO led to a huge enhancement of tensile strength, while higher contents of EO showed a negative effect, due to the phase separation. The tensile strength increased from 0.83 MPa of the control sample to 3.92 and 5.42 MPa for the composites with 1.5 wt% EPO and 0.75 wt% ESO, respectively. EOs reduced the composites' water uptake and solubility but increased the water vapor permeability. Overall, the reinforcing effect of ESO was better than EPO. These results suggested that both EOs can be utilized as modifiers to prepare starch/empty-fruit-bunch-based bioplastic composites with enhanced properties.
    Matched MeSH terms: Soybean Oil
  8. Zulkiply SH, Balasubramaniam V, Abu Bakar NA, Abd Rashed A, Ismail SR
    PLoS One, 2019;14(8):e0220877.
    PMID: 31415611 DOI: 10.1371/journal.pone.0220877
    INTRODUCTION: Vegetable oil is an important source of fatty acids, and as palm oil being the highest consumed vegetable oil in many countries, its high saturated fatty acid content has led many concerns on cardiometabolic health. Dietary fatty acids has also been linked to affect glucose metabolism and insulin sensitivity. This systematic review is aimed at critically evaluating the available evidence on the association of palm oil with the biomarkers of glucose metabolism as compared to other vegetable oils.

    METHODS: We systemically searched PubMed, CENTRAL and Scopus up to June 2018. We searched for published interventional studies on biomarkers of glucose metabolism (defined as fasting glucose, fasting insulin, HOMA, 2-hour post prandial glucose and HbA1C) that compared palm oil- or palm olein-rich diets with other edible vegetable oils (such as olive oil, canola oil and soybean oil). Two reviewers independently extracted data and assessed study risks of bias. Mean differences of outcomes were pooled for the meta-analysis.

    RESULTS: We identified 1921 potentially eligible articles with only eight included studies. Seven randomised cross-over trials and one parallel trial were included. Study population were among young to middle-aged, healthy, non-diabetic, and normal weight participants. Intervention duration ranged from three to seven weeks, and fat substitution ranged from 15% to 20% energy. There were insignificant differences in fasting glucose when compared to partially hydrogenated soybean oil [-0.15mmol/L (-0.46,0.16) P = 0.33, I2 = 48%], soybean oil [0.05mmol/L (-0.09,0.18) P = 0.49, I2 = 0%] and olive oil [0.04mmol/L (-0.09,0.17) P = 0.76, I2 = 0%]. Insignificant effects were also seen on fasting insulin when compared to partially hydrogenated soybean oil [1.72pmol/L (-11.39,14.84) P = 0.80, I2 = 12%] and olive oil diet [-0.14pmol/L (-4.87,4.59) P = 0.95, I2 = 0%].

    CONCLUSION: Current evidence on the effects of palm oil consumption on biomarkers of glucose metabolism is poor and limited to only healthy participants. We conclude that little or no additional benefit will be obtained by replacing palm oil with other oils rich in mono or polyunsaturated fatty acids for changes in glucose metabolism.

    Matched MeSH terms: Soybean Oil
  9. Olusesan AT, Azura LK, Forghani B, Bakar FA, Mohamed AK, Radu S, et al.
    N Biotechnol, 2011 Oct;28(6):738-45.
    PMID: 21238617 DOI: 10.1016/j.nbt.2011.01.002
    Thermostable lipase produced by a genotypically identified extremophilic Bacillus subtilis NS 8 was purified 500-fold to homogeneity with a recovery of 16% by ultrafiltration, DEAE-Toyopearl 650M and Sephadex G-75 column. The purified enzyme showed a prominent single band with a molecular weight of 45 kDa. The optimum pH and temperature for activity of lipase were 7.0 and 60°C, respectively. The enzyme was stable in the pH range between 7.0 and 9.0 and temperature range between 40 and 70°C. It showed high stability with half-lives of 273.38 min at 60°C, 51.04 min at 70°C and 41.58 min at 80°C. The D-values at 60, 70 and 80°C were 788.70, 169.59 and 138.15 min, respectively. The enzyme's enthalpy, entropy and Gibb's free energy were in the range of 70.07-70.40 kJ mol(-1), -83.58 to -77.32 kJ mol(-1)K(-1) and 95.60-98.96 kJ mol(-1), respectively. Lipase activity was slightly enhanced when treated with Mg(2+) but there was no significant enhancement or inhibition of the activity with Ca(2+). However, other metal ions markedly inhibited its activity. Of all the natural vegetable oils tested, it had slightly higher hydrolytic activity on soybean oil compared to other oils. On TLC plate, the enzyme showed non-regioselective activity for triolein hydrolysis.
    Matched MeSH terms: Soybean Oil/chemistry*
  10. Zulkurnain M, Balasubramaniam VM, Maleky F
    Molecules, 2019 Aug 06;24(15).
    PMID: 31390764 DOI: 10.3390/molecules24152853
    Different fractions of fully hydrogenated soybean oil (FHSBO) in soybean oil (10-30% w/w) and the addition of 1% salt (sodium chloride) were used to investigate the effect of high-pressure treatments (HP) on the crystallization behaviors and physical properties of the binary mixtures. Sample microstructure, solid fat content (SFC), thermal and rheological properties were analyzed and compared against a control sample (crystallized under atmospheric condition). The crystallization temperature (Ts) of all model fats under isobaric conditions increased quadratically with pressure until reaching a pressure threshold. As a result of this change, the sample induction time of crystallization (tc) shifted from a range of 2.74-0.82 min to 0.72-0.43 min when sample crystallized above the pressure threshold under adiabatic conditions. At the high solid mass fraction, the addition of salt reduced the pressure threshold to induce crystallization during adiabatic compression. An increase in pressure significantly reduced mean cluster diameter in relation to the reduction of tc regardless of the solid mass fraction. In contrast, the sample macrostructural properties (SFC, storage modulus) were influenced more significantly by solid mass fractions rather than pressure levels. The creation of lipid gel was observed in the HP samples at 10% FHSBO. The changes in crystallization behaviors indicated that high-pressure treatments were more likely to influence crystallization mechanisms at low solid mass fraction.
    Matched MeSH terms: Soybean Oil/chemistry
  11. Ng, Tony Kock Wai
    MyJurnal
    Introduction: The content of polar compounds (PC) and polymeric triglycerides build up in fried and recycled/reused oils and therefore, these undesirable components are often used as markers of deterioration in edible oil quality. Expert and authoritative agencies have recommended an upper limit of 25% for PC in fried/reused edible oils; beyond this level the oil is considered unsuitable for human consumption. The safety of recycled or repeatedly-heated oils is still very much a concern of both the health authorities and the general public.
    Objective: The present study evaluates the safety of long-tern consumption of heated vegetable oils containing 25% of PC on growth, effect on major body organs and reproduction outcome, using the Sprague-Dawley rat model.
    Methods: Refined, bleached and deodorised palm olein (PO) and partially hydrogenated soybean oil (HSBO) were repeatedly heated for 5 hours daily with no topping-up at Isoac until a polar compound (PC) content of25% was attained. Refined soybean oil was similarly heated up to 50% PC and used in the positive control diet. All five experimental oils, namely unheated PO (No PC), heated PO (25% PC), unheated HSBO (No PC), heated HSBO (25% PC), and positive control oil (50% PC) were separately incorporated at 30% energy (15% w/w) as the sole dietary fat into nutritionally-adequate purified diets. Each experimental diet was provided ad libitum to a different dietary group comprising 14 male and 20 female Swiss albino rats. After 13 weeks (90 days), 10 males were selected from each group and each male was paired with two females from the same dietary group for the reproductive study. After 4 weeks into the reproductive study (total of 17 weeks on the experimental diets), all 10 males in each group were sacrificed and the usual toxicity tests consisting of blood cell type counts, liver and kidney function tests, and examination (organ-to-body weight ratios and histology) of the liver, kidney, heart and spleen were performed.
    Results: The heated PO and HSBO diets were well-tolerated by the animals. However, these heated test oils inhibited growth marginally (p>0.05), enlarged the liver, kidney and heart, and markedly raised serum alkaline phosphatase (liver function test) compared to the unheated oils (p
    Matched MeSH terms: Soybean Oil
  12. Nuraznee Mashodi, Nurul Yani Rahim, Norhayati Muhammad, Saliza Asman
    MyJurnal
    Extra virgin olive oil (EVOO) is categorized as expensive oil due to high-quality nutritional value. Unfortunately, EVOO is easily adulterated with other low-quality edible oils. Therefore, this study was done to differentiate and analyze the adulteration of EVOO with other edible oils using Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy. The study was used several edible oils included canola oil, corn oil, sunflower oil, and soybean oil as an adulterant for EVOO. The adulterant EVOO samples were prepared by mixing with dissimilar concentrations of the solely edible oils (20 %, 40 %, 60 % and 80 % (v/v)). The main functional groups of EVOO and other edible oils are O-H, C-H, C=C and C=O groups were assigned around 3500 cm-1, 2925 cm-1, 3006 cm-1 and 1745 cm-1 wavenumbers, respectively. From the comparison of EVOO and other adulterant edibles oil spectra, it showed that the EVOO has the lowest absorbance intensity at around 3006 cm-1 represented double bond which is closely related to the composition of oil sample. The adulteration of EVOO was evaluated by analysing the changes in the absorbance based on the linear regression analysis graph of the bands at 3006 and 2925 cm-1 and the limit of detection (LOD) was measured. The graph of A3008/A2925 with good relative coefficients (R2) and lower LOD is more favourable than the linear regression graph of A3006 versus percentage of edible oils added in EVOO. This study showed that ATR-FTIR spectroscopy is a convenient tool for analysing the adulteration of EVOO.
    Matched MeSH terms: Soybean Oil
  13. Leong XF, Mustafa MR, Das S, Jaarin K
    Lipids Health Dis, 2010;9:66.
    PMID: 20573259 DOI: 10.1186/1476-511X-9-66
    Poor control of blood pressure leads to hypertension which is a major risk factor for development of cardiovascular disease. The present study aimed to explore possible mechanisms of elevation in blood pressure following consumption of heated vegetable oil.
    Matched MeSH terms: Soybean Oil/administration & dosage; Soybean Oil/toxicity; Soybean Oil/chemistry*
  14. Karupaiah T, Chuah KA, Chinna K, Matsuoka R, Masuda Y, Sundram K, et al.
    Lipids Health Dis, 2016 Aug 17;15(1):131.
    PMID: 27535127 DOI: 10.1186/s12944-016-0301-9
    BACKGROUND: Mayonnaise is used widely in contemporary human diet with widespread use as a salad dressing or spread on breads. Vegetable oils used in its formulation may be a rich source of ω-6 PUFAs and the higher-PUFA content of mayonnaise may be beneficial in mediating a hypocholesterolemic effect. This study, therefore, evaluated the functionality of mayonnaise on cardiometabolic risk within a regular human consumption scenario.

    METHODS: Subjects underwent a randomized double-blind crossover trial, consuming diets supplemented with 20 g/day of either soybean oil-based mayonnaise (SB-mayo) or palm olein-based mayonnaise (PO-mayo) for 4 weeks each with a 2-week wash-out period. The magnitude of changes for metabolic outcomes between dietary treatments was compared with PO-mayo serving as the control. The data was analyzed by ANCOVA using the GLM model. Analysis was adjusted for weight changes.

    RESULTS: Treatments resulted in significant reductions in TC (diff = -0.25 mmol/L; P = 0.001), LDL-C (diff = -0.17 mmol/L; P = 0.016) and HDL-C (diff = -0.12 mmol/L; P  0.05). Lipoprotein particle change was significant with large LDL particles increasing after PO-mayo (diff = +63.2 nmol/L; P = 0.007) compared to SB-mayo but small LDL particles remained unaffected. Plasma glucose, apolipoproteins and oxidative stress markers remained unchanged.

    CONCLUSIONS: Daily use with 20 g of linoleic acid-rich SB-mayo elicited reductions in TC and LDL-C concentrations without significantly changing LDL-C:HDL-C ratio or small LDL particle distributions compared to the PO-mayo diet.

    TRIAL REGISTRATION: This clinical trial was retrospectively registered with the National Medical Research Register, National Institute of Health, Ministry of Health Malaysia, (NMRR-15-40-24035; registered on 29/01/2015; https://www.nmrr.gov.my/fwbPage.jsp?fwbPageId=ResearchISRForm&fwbAction=Update&fwbStep=10&pk.researchID=24035&fwbVMenu=3&fwbResearchAction=Update ). Ethical approval was obtained from the National University of Malaysia's Medical Ethics Committee (UKM 1.5.3.5/244/SPP/NN-054-2011, approved on 25/05/2011).

    Matched MeSH terms: Soybean Oil/administration & dosage*
  15. Yap SC, Choo YM, Hew NF, Yap SF, Khor HT, Ong AS, et al.
    Lipids, 1995 Dec;30(12):1145-50.
    PMID: 8614305
    The oxidative susceptibilities of low density lipoproteins (LDL) isolated from rabbits fed high-fat atherogenic diets containing coconut, palm, or soybean oil were investigated. New Zealand white rabbits were fed atherogenic semisynthetic diets containing 0.5% cholesterol and either (i) 13% coconut oil and 2% corn oil (CNO), (ii) 15% refined, bleached, and deodorized palm olein (RBDPO), (iii) 15% crude palm olein (CPO), (iv) 15% soybean oil (SO), or (v) 15% refined, bleached, and deodorized palm olein without cholesterol supplementation [RBDPO(wc)], for a period of twelve weeks. Total fatty acid compositions of the plasma and LDL were found to be modulated (but not too drastically) by the nature of the dietary fats. Cholesterol supplementation significantly increased the plasma level of vitamin E and effectively altered the plasma composition of long-chain fatty acids in favor of increasing oleic acid. Oxidative susceptibilities of LDL samples were determined by Cu2(+)-catalyzed oxidation which provide the lag times and lag-phase slopes. The plasma LDL from all palm oil diets [RBDPO, CPO, and RBDPO(wc)] were shown to be equally resistant to the oxidation, and the LDL from SO-fed rabbits were most susceptible, followed by the LDL from the CNO-fed rabbits. These results reflect a relationship between the oxidative susceptibility of LDL due to a combination of the levels of polyunsaturated fatty acids and vitamin E.
    Matched MeSH terms: Soybean Oil/administration & dosage
  16. Rashid Jusoh A, Das S, Kamsiah J, Qodriyah HM, Faizah O
    Clin Ter, 2013;164(4):307-13.
    PMID: 24045513 DOI: 10.7417/CT.2013.1578
    Consumption of repeatedly heated soy oil has been linked with incidence of atherosclerosis particularly in oestrogen deficient states. In the present study, effect of curcumin extract on the prevention of atherosclerosis was evaluated.
    Matched MeSH terms: Soybean Oil/administration & dosage; Soybean Oil/adverse effects*
  17. Jaarin K, Hwa TC, Umar NA, Siti Aishah MA, Das S
    Clin Ter, 2010;161(5):429-33.
    PMID: 21057734
    Consumption of heated edible oils may be harmful. The present study aimed to observe the histological changes due to concurrent consumption of soy oil (either fresh or heated) and fatty diet and the changes in the level of alanine transaminase (ALT) and alkaline phosphatase (ALP).
    Matched MeSH terms: Soybean Oil/administration & dosage*
  18. Soo YN, Tan CP, Tan PY, Khalid N, Tan TB
    J Sci Food Agric, 2021 Apr;101(6):2455-2462.
    PMID: 33034060 DOI: 10.1002/jsfa.10871
    BACKGROUND: The popularity of coffee, the second most consumed beverage in the world, contributes to the high demand for liquid non-dairy creamer (LNDC). In this study, palm olein emulsions (as LNDCs) were investigated as alternatives to the more common soybean oil-based LNDCs. LNDCs were prepared via different homogenization pressures (100-300 bar) using different types of oil (palm olein and soybean oil) and concentrations of DATEM emulsifier (5-20 g kg-1 ).

    RESULTS: Increases in homogenization pressure and emulsifier concentration were observed to have significant (P soybean oil LNDCs prepared using 15 g kg-1 and 10 g kg-1 DATEM emulsifier, respectively, were determined to be the most stable (as observed throughout a 15-day storage period at ambient temperature of 28 ± 2 °C), with properties closest to those of a commercial LNDC. When added to black coffee, both LNDCs displayed a good whitening effect by increasing the L* value from 26.73 ± 0.16 (black coffee) to ≥40.82 ± 0.56 (black coffee + LNDCs). Sensory evaluation showed that there were no significant (P > 0.05) differences between the prepared and commercial LNDCs in terms of their color, appearance, and overall acceptability.

    CONCLUSION: Shelf-stable LNDCs with qualities comparable to commercial LNDC were successfully fabricated. Valuable insights into the effects of homogenization pressure, oil type, and emulsifier concentration, as well as functionality and consumer acceptance of the LNDCs when added into black coffee, were obtained. © 2020 Society of Chemical Industry.

    Matched MeSH terms: Soybean Oil/chemistry*
  19. Mohammed IA, Al-Mulla EA, Kadar NK, Ibrahim M
    J Oleo Sci, 2013;62(12):1059-72.
    PMID: 24292358
    Palm and soya oils were converted to monoglycerides via transesterification of triglycerides with glycerol by one step process to produce renewable polyols. Thermoplastic polyurethanes (TPPUs) were prepared from the reaction of the monoglycerides which act as polyol with 4,4'-methylenediphenyldiisocyanate (MDI) whereas, thermosetting polyurethanes (TSPUs) were prepared from the reaction of glycerol, MDI and monoglycerides in one pot. Characterization of the polyurethanes was carried out by FT-IR, (1)H NMR, and iodine value and sol-gel fraction. The TSPUs showed good thermal properties compared to TPPUs as well as TSPUs exhibits good properties in pencil hardness and adhesion, however poorer in flexural and impact strength compared to TPPUs. The higher percentage of cross linked fraction, the higher degree of cross linking occurred, which is due to the higher number of double bond presents in the TSPUs. These were reflected in iodine value test as the highest iodine value of the soya-based thermosetting polyurethanes confirmed the highest degree of cross linking. Polyurethanes based on soya oil showed better properties compared to palm oil. This study is a breakthrough development of polyurethane resins using palm and soya oils as one of the raw materials.
    Matched MeSH terms: Soybean Oil/chemistry*
  20. Mohammed IA, Abd Khadir NK, Jaffar Al-Mulla EA
    J Oleo Sci, 2014;63(2):193-200.
    PMID: 24420063
    New polyurethane (PU) nanocomposites were prepared from a dispersion of 0 - 5% montmorillonite (MMT) clay with isocyanate and soya oil polyol that was synthesized via transesterification of triglycerides to reduce petroleum dependence. FT-IR spectra indicate the presence of hydrogen bonding between nanoclay and the polymer matrix, whereas the exfoliated structure of clay layers was confirmed by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Optical microscopy, mechanical and thermal analyses were done to investigate significant improvement of the nanocomposites. The results showed PU-3% nanoclay (NC) showed optimum results in mechanical properties such as tensile and flexural strength but the lowest in impact strength.
    Matched MeSH terms: Soybean Oil*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links