Displaying publications 1 - 20 of 34 in total

Abstract:
Sort:
  1. Ahmad H, Albaqawi HS, Yusoff N, Yi CW
    Sci Rep, 2020 Jun 17;10(1):9860.
    PMID: 32555280 DOI: 10.1038/s41598-020-66664-9
    A wide-band and tunable Q-switched erbium-doped fiber (EDF) laser operating at 1560.5 nm with a tungsten ditelluride (WTe2) saturable absorber (SA) is demonstrated. The semi-metallic nature of WTe2 as well as its small band gap and excellent nonlinear optical properties make it an excellent SA material. The laser cavity uses an 89.5 cm long EDF, pumped by a 980 nm laser diode as the linear gain while the WTe2 based SA generates the pulsed output. The WTe2 based SA has a modulation depth, non-saturable loss and saturation intensity of about 21.4%, 78.6%, and 0.35 kW/cm2 respectively. Stable pulses with a maximum repetition rate of 55.56 kHz, narrowest pulse width of 1.77 µs and highest pulse energy of 18.09 nJ are obtained at the maximum pump power of 244.5 mW. A 56 nm tuning range is obtained in the laser cavity, and the output is observed having a signal to noise ratio (SNR) of 48.5 dB. The demonstrated laser has potential for use in a large number of photonics applications.
    Matched MeSH terms: Tungsten
  2. Arifin K, Daud WR, Kassim MB
    PMID: 24508875 DOI: 10.1016/j.saa.2013.12.107
    Bis(dithiolene) tungsten carbonyl complex, W(S2C2Ph2)2(CO)2 was successfully synthesized and the structure, frontier molecular orbital and optical properties of the complex were investigated theoretically using density functional theory calculations. The investigation started with a molecular structure construction, followed by an optimization of the structural geometry using generalized-gradient approximation (GGA) in a double numeric plus polarization (DNP) basis set at three different functional calculation approaches. Vibrational frequency analysis was used to confirm the optimized geometry of two possible conformations of [W(S2C2Ph2)2(CO)2], which showed distorted octahedral geometry. Electronic structure and optical characterization were done on the ground states. Metal to ligand and ligand to metal charge transfer were dominant in this system.
    Matched MeSH terms: Tungsten/chemistry*
  3. Niu Jy Jy, You Xz Xz, Duan Cy Cy, Fun Hk Hk, Zhou Zy Zy
    Inorg Chem, 1996 Jul 03;35(14):4211-4217.
    PMID: 11666630
    A solvated complex of alpha-H(4)SiW(12)O(40).4HMPA.2H(2)O composed the heteropolytungstate alpha-H(4)SiW(12)O(40) and the organic substrate hexamethylphosphoramide (HMPA) has been synthesised, purified, and characterized. The electronic spectra (lambda = 220-500 nm) as well as the (1)H NMR spectra for the title compound dissolved in CD(3)CN establish that this complex dissociates into free SiW(12)O(40)(4)(-) and HMPA moieties in solution unless the organic substrate HMPA is present in very high concentrations. The solid reflectance electronic spectra and IR spectra indicate that there is interaction between the alpha-H(4)SiW(12)O(40) and the organic substrate. The complex has no photosensitivity under irradiation of sunlight, but under the near-UV light result in a charge transfer by oxidation of the HMPA and the reduction of the polyoxometalate. Light yellow polyhedrons of the title compound crystallize from the aqueous solvent of acetonitrile and aqueous solution as the formula of alpha-H(4)SiW(12)O(40).4HMPA.2H(2)O in the monoclinic, space group P2(1). The unit cell has a = 12.791(3) Å, b = 22.103(6) Å, c = 15.532(4) Å, beta = 102.860(10) degrees, and Z = 2. From the bond-valence parameters, it was found that the four hydrogen atoms of the polyoxometalate were combined with the N atoms of the four HMPA respectively. The title compound shows a certain second-order and third-order nonlinear optical response of I(2)(omega) = 0.7I(2)(omega)(KDP) and chi((3)) = 2.63 x 10(-)(11) esu, respectively.
    Matched MeSH terms: Tungsten Compounds
  4. Lim XB, Ong WJ
    Nanoscale Horiz, 2021 May 21.
    PMID: 34018529 DOI: 10.1039/d1nh00127b
    The ceaseless increase of pollution cases due to the tremendous consumption of fossil fuels has steered the world towards an environmental crisis and necessitated urgency to curtail noxious sulfur oxide emissions. Since the world is moving toward green chemistry, a fuel desulfurization process driven by clean technology is of paramount significance in the field of environmental remediation. Among the novel desulfurization techniques, the oxidative desulfurization (ODS) process has been intensively studied and is highlighted as the rising star to effectuate sulfur-free fuels due to its mild reaction conditions and remarkable desulfurization performances in the past decade. This critical review emphasizes the latest advances in thermal catalytic ODS and photocatalytic ODS related to the design and synthesis routes of myriad materials. This encompasses the engineering of metal oxides, ionic liquids, deep eutectic solvents, polyoxometalates, metal-organic frameworks, metal-free materials and their hybrids in the customization of advantageous properties in terms of morphology, topography, composition and electronic states. The essential connection between catalyst characteristics and performances in ODS will be critically discussed along with corresponding reaction mechanisms to provide thorough insight for shaping future research directions. The impacts of oxidant type, solvent type, temperature and other pivotal factors on the effectiveness of ODS are outlined. Finally, a summary of confronted challenges and future outlooks in the journey to ODS application is presented.
    Matched MeSH terms: Tungsten Compounds
  5. Khuzaimah Arifin, Wan Ramli Wan Daud, Mohammad B. Kassim
    Sains Malaysiana, 2014;43:95-101.
    A novel bimetallic double thiocyanate-bridged ruthenium and tungsten metal complex containing bipyridyl and dithiolene co-ligands was synthesized and the behavior of the complex as a dye-sensitizer for a photoelectrochemical (PEG) cell for a direct water splitting reaction was investigated. The ligands and metal complexes were characterized on the basis of elemental analysis as well as uv-Vis, Fourier transform infrared ( Pim) and nuclear magnetic resonance (11I and 13C NMR) spectroscopy. Cyclic voltammetry of the bimetallic complex showed multiple redox couples, in which half potentials E 112 at 0 .625 , 0.05 and 0.61 V were assigned as the formal redox processes of Ru(III)IRu(II) reduction, W(IV)IW(V) and W(V)IW(VI) oxidations, respectively. Photocurrent measurements were performed in homogeneous system and TiO2 was used as the photoanode for photocurrent measurements. Current density generated by the bimetallic complex was higher than that of N3 commercial dye which suggested that the bimetallic complex donated more electrons to the semiconductor.
    Matched MeSH terms: Tungsten
  6. Al-Amery SM, Ngeow WC, Nambiar P, Naidu M
    Int J Oral Maxillofac Surg, 2018 Sep;47(9):1153-1160.
    PMID: 29735199 DOI: 10.1016/j.ijom.2018.04.013
    The lingual guttering technique for third molar surgery carries the risk of injury to the lingual nerve if the surgical bur comes into direct contact with it. This study investigated the extent of nerve injury caused by two different burs, a tungsten carbide bur and the Dentium implant bur; the latter is designed to be soft tissue friendly. This study also examined whether ultrasound and magnetic resonance imaging are able to detect any injury inflicted. This cadaveric research involved subjecting 12 lingual nerves to the drilling effect of two different burs at two different speeds. The amount of damage caused was measured using different imaging modalities to assess their ability to detect the injury inflicted. At high speed, the Dentium bur caused a deeper and wider laceration than the carbide bur. At low speed, the laceration depths and widths caused by the two burs did not differ significantly. Ultrasound scanning was able to detect the nerve laceration at damaged sites observed using optical coherence tomography. Thus, a carbide bur (at low speed) would be preferable for lingual bone guttering, as it causes less laceration to the lingual nerve. In the event of a suspected injury, ultrasound scanning would provide an objective evaluation of the amount of nerve damage in vivo.
    Matched MeSH terms: Tungsten Compounds
  7. Athirah Ab Rahman, Adam Husein, Hany Mohamed Aly Ahmed, Dasmawati Mohamad, Wan Zaripah Wan Bakar, Manal Farea, et al.
    MyJurnal
    Light intensity output is one of the determinants for adequate curing of visible light-cured materials. The aim of this survey was to evaluate the light intensity outputs (LIOs) of light curing units (LCUs) in dental clinics of Hospital Universiti Sains Malaysia (HUSM) and School of Dental Sciences, Universiti Sains Malaysia (USM). The respective LIOs of all functioning Quartz Tungsten Halogen (QTH) and Light Emitting Diode (LED) LCUs were tested using two light radiometers. For cordless LED LCUs, the testing procedure was done in situ and after being fully charged. Statistical analysis using Kruskal Wallis and Wilcoxon signed ranks tests were performed to compare the LIOs between groups and between the LIOs of in situ and post-charged cordless LED LCUs, respectively. The level of significance was set at 0.05 (p
    Matched MeSH terms: Tungsten
  8. Mojani, M.S., Ghasemzadeh, A., Rahmat, A., Loh, S.P., Ramasamy, R.
    MyJurnal
    In current work, the nutritional composition, bioactive compounds, total phenolic contents and anti-oxidant activity of young Malaysian ginger rhizome were investigated. Proximate analysis and high performance liquid chromatography (HPLC) recruited to determine nutritional composition and bioactive compounds. The total flavonoid (TF) and total phenolic contents (TPC) of ginger rhizome were determined by aluminium chloride calorimetric assay and Folin-Ciocalteau reagent, respectively. 2,2’-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging method were used to measure antioxidant capacity. The rhizome contained high moisture content and low level of carbohydrate and energy. 6-gingerol was the most abundant component in the selected ginger, and total flavonoid and phenolic content were reported to be 3.66±0.45 mg gallic acid/g and 10.22±0.87 mg quercetin/g of dry weight of rhizome, respectively. The rhizome also showed lower antioxidant activity than controls, with the IC 50 value of 46.5 vs. 15.5 for α-tocopherol and 22 for BHT. The results of this study predicted that the young ginger rhizome originated from Malaysia may exhibit anti-oxidative and anti-inflammatory potentials due to high levels of gingerols, total flavonoid and phenolic compounds and antioxidant capacity.
    Matched MeSH terms: Tungsten Compounds
  9. Alhassan FH, Rashid U, Taufiq-Yap YH
    J Oleo Sci, 2015;64(1):91-9.
    PMID: 25492234 DOI: 10.5650/jos.ess14161
    The solid acid Ferric-manganese doped tungstated/molybdena nananoparticle catalyst was prepared via impregnation reaction followed by calcination at 600°C for 3 h. The characterization was done using X-ray diffraction (XRD), Raman spectroscopy, thermal gravimetric analysis (TGA), temperature programmed desorption of NH3 (TPD-NH3), X-ray fluorescence (XRF), Transmission electron microscope (TEM) and Brunner-Emmett-Teller surface area measurement (BET). Moreover, dependence of biodiesel yield on the reaction variables such as the reaction temperature, catalyst loading, as well as molar ratio of methanol/oil and reusability were also appraised. The catalyst was reused six times without any loss in activity with maximum yield of 92.3% ±1.12 achieved in the optimized conditions of reaction temperature of 200°C; stirring speed of 600 rpm, 1:25 molar ratio of oil to alcohol, 6 % w/w catalyst loading as well as 8 h as time of the reaction. The fuel properties of WCOME's were evaluated, including the density, kinematic viscosity, pour point, cloud point and flash point whereas all properties were compared with the limits in the ASTM D6751 standard.
    Matched MeSH terms: Tungsten Compounds/chemistry*
  10. Azman NZ, Siddiqui SA, Low IM
    Mater Sci Eng C Mater Biol Appl, 2013 Dec 1;33(8):4952-7.
    PMID: 24094209 DOI: 10.1016/j.msec.2013.08.023
    Characteristics of X-ray transmissions were investigated for epoxy composites filled with 2-10 vol% WO3 loadings using synchrotron X-ray absorption spectroscopy (XAS) at 10-40 keV. The results obtained were used to determine the equivalent X-ray energies for the operating X-ray tube voltages of mammography and radiology machines. The results confirmed the superior attenuation ability of nano-sized WO3-epoxy composites in the energy range of 10-25 keV when compared to their micro-sized counterparts. However, at higher synchrotron radiation energies (i.e., 30-40 keV), the X-ray transmission characteristics were similar with no apparent size effect for both nano-sized and micro-sized WO3-epoxy composites. The equivalent X-ray energies for the operating X-ray tube voltages of the mammography unit (25-49 kV) were in the range of 15-25 keV. Similarly, for a radiology unit operating at 40-60 kV, the equivalent energy range was 25-40 keV, and for operating voltages greater than 60 kV (i.e., 70-100 kV), the equivalent energy was in excess of 40 keV. The mechanical properties of epoxy composites increased initially with an increase in the filler loading but a further increase in the WO3 loading resulted in deterioration of flexural strength, modulus and hardness.
    Matched MeSH terms: Tungsten/chemistry*
  11. Nur Azida Che Lah, Aidy Ali, Napsiah Ismail
    MyJurnal
    Welding process is most widely used in joining components or structures in industry. Although welding is part of a larger category called metals joining, the weld itself still gives significant problems to engineers, researchers and manufacturers until today. Several widely used welding processes, such as the Metal Inert Gas (MIG), Tungsten Inert Gas (TIG), and Manual Metal Arc (MMA), were studied. In the present paper, the characterization of the macrostructure, microstructure, hardness and residual stress distribution are highlighted and discussed to achieve a better understanding of the welded quality which is crucial in determining the welded products.
    Matched MeSH terms: Tungsten
  12. Sri Yulis M. Amin, Norhamidi Muhamad, Khairur Rijal Jamaludin, Fayyaz A, Heng SY
    Sains Malaysiana, 2014;43:123-128.
    Feedstock preparation, as well as its characterization, is crucial in the production of highly sintered parts with minimal defect. The hard metal powder - particularly, cemented carbide (wc-co) used in this study was investigated both physically and thermally to determine its properties before the mixing and injection molding stage. Several analyses were conducted, such as scanning electron microscopy, energy dispersive X-ray diffraction, pycnometer density, critical powder volume percentage (cPvP), as well as thermal tests, such as thermogravimetric analysis and differential scanning calorimetry. On the basis of the CPVP value, the feedstock, consisting of wc-co powder, was mixed with 60% palm stearin and 40% polyethylene at an optimal powder loading, within 2 to 5% lower than the CPVP value. The CPVP spotted value was 65%. The feedstock optimal value at 61% showed good rheological properties (pseudoplastic behavior) with an n value lower than 1, considerably low activation energy and high moldability index. These preliminary properties of the feedstock serve as a benchmark in designing the schedule for the next whole steps (i.e. injection, debinding and sintering processes).
    Matched MeSH terms: Tungsten
  13. Lui, J.L., Chan, C.L., Yap, K.T.
    Ann Dent, 2006;13(1):6-11.
    MyJurnal
    The aim of the study was to determine the depth of cure of a new nanocomposite when exposed to different curing times and also when different shades were polymerized. The nanocomposite, Filtek Supreme (3M ESPE), was packed into 96 plastic cylindrical moulds measuring 4 mm in internal diameter and 8 mm in length and then polymerized using a conventional quartz-tungsten-halogen light curing unit. The first part of the study involved curing 16 samples each of A2 shade of the nanocomposite at exposure times of 20s, 40s, 60s and 120s. For the second part, a similar number of samples of the dentinal opacity shades of A2, B3 and A4 of the nanocomposite were polymerized at a constant exposure time of 40s. The depth of polymerization of the nanocomposite in each sample was measured using a digimatic indicator. Curing depths were found to increase significantly (P < 0.05) with longer exposure time (20s < 40s < 60s < 120s) and decrease significantly with darker shades (A2 > B3 > A4).
    Matched MeSH terms: Tungsten
  14. Othman AR, Abdullah N, Ahmad S, Ismail IS, Zakaria MP
    PMID: 25652309 DOI: 10.1186/s12906-015-0528-4
    BACKGROUND: The Jatropha curcas plant or locally known as "Pokok Jarak" has been widely used in traditional medical applications. This plant is used to treat various conditions such as arthritis, gout, jaundice, wound and inflammation. However, the nature of compounds involved has not been well documented. Hence, this study was conducted to investigate the anti-inflammatory activity of different parts of J. curcas plant and to identify the active compounds involved.
    METHODS: In this study, methanol (80%) extraction of four different parts (leaves, fruits, stem and root) of J. curcas plant was carried out. Phenolic content of each part was determined by using Folin-Ciocalteau reagent. Gallic acid was used as the phenol standard. Each plant part was screened for anti-inflammatory activity using cultured macrophage RAW 264.7 cells. The active plant part was then partitioned with hexane, chloroform, ethyl acetate and water. Each partition was again screened for anti-inflammatory activity. The active partition was then fractionated using an open column chromatography system. Single spots isolated from column chromatography were assayed for anti-inflammatory and cytotoxicity activities. Spots that showed activity were subjected to gas chromatography mass spectrophotometry (GC-MS) analysis for identification of active metabolites.
    RESULTS: The hexane partition from root extract showed the highest anti-inflammatory activity. However, it also showed high cytotoxicity towards RAW 264.7 cells at 1 mg/mL. Fractionation process using column chromatography showed five spots. Two spots labeled as H-4 and H-5 possessed anti-inflammatory activity, without cytotoxicity activity. Analysis of both spots by GC-MS showed the presence of hexadecanoic acid methyl ester, octadecanoic acid methyl ester and octadecanoic acid.
    CONCLUSION: This finding suggests that hexadecanoic acid methyl ester, octadecanoic acid methyl ester and octadecanoic acid could be responsible for the anti-inflammatory activity of the J. curcas root extract.
    Matched MeSH terms: Tungsten Compounds
  15. Chew YH, Tang JY, Tan LJ, Choi BWJ, Tan LL, Chai SP
    Chem Commun (Camb), 2019 May 28;55(44):6265-6268.
    PMID: 31086906 DOI: 10.1039/c9cc01449g
    The engineering of surface oxygen vacancies (OVs) in WO3 was primitively done using a facile solvothermal method. The photocatalytic activities of the as-prepared samples were studied by evaluating their performances in the photocatalytic OER. The best sample (W-3) yielded 57.6 μmol of O2 in 6 h under the illumination of simulated sunlight.
    Matched MeSH terms: Tungsten
  16. Ali SKI, Khandaker MU, Kassim HA
    Appl Radiat Isot, 2018 May;135:239-250.
    PMID: 29448240 DOI: 10.1016/j.apradiso.2018.01.035
    186
    Re (T1/2= 89.24 h, [Formula: see text] 346.7 keV, [Formula: see text] ), an intense beta-emitter shows great potential to be used as an active material in therapeutic radiopharmaceuticals due to its suitable physico-chemical properties.186Re can be produced in several ways, however charged-particle induced reactions show to be promising towards no carrier added production. In this work, production cross-sections of186Re were evaluated following the light-charged particle induced reactions on tungsten. An effective evaluation technique such as Simultaneous Evaluation on KALMAN code combined with least squares concept was used to obtain the evaluated data together with covariances. Knowledge of the underlying uncertainties in evaluated nuclear data, i.e., covariances are useful to improve the accuracy of nuclear data.
    Matched MeSH terms: Tungsten
  17. Lee WH, Lai CW, Hamid SBA
    Materials (Basel), 2015 Aug 28;8(9):5702-5714.
    PMID: 28793530 DOI: 10.3390/ma8095270
    WO₃-decorated TiO₂ nanotube arrays were successfully synthesized using an in situ anodization method in ethylene glycol electrolyte with dissolved H₂O₂ and ammonium fluoride in amounts ranging from 0 to 0.5 wt %. Anodization was carried out at a voltage of 40 V for a duration of 60 min. By using the less stable tungsten as the cathode material instead of the conventionally used platinum electrode, tungsten will form dissolved ions (W(6+)) in the electrolyte which will then move toward the titanium foil and form a coherent deposit on the titanium foil. The fluoride ion content was controlled to determine the optimum chemical dissolution rate of TiO₂ during anodization to produce a uniform nanotubular structure of TiO₂ film. Nanotube arrays were then characterized using FESEM, EDAX, XRD, as well as Raman spectroscopy. Based on the FESEM images obtained, nanotube arrays with an average pore diameter of up to 65 nm and a length of 1.8 µm were produced. The tungsten element in the samples was confirmed by EDAX results which showed varying tungsten content from 0.22 to 2.30 at%. XRD and Raman results showed the anatase phase of TiO₂ after calcination at 400 °C for 4 h in air atmosphere. The mercury removal efficiency of the nanotube arrays was investigated by photoirradiating samples dipped in mercury chloride solution with TUV (Tube ultraviolet) 96W UV-B Germicidal light. The nanotubes with the highest aspect ratio (15.9) and geometric surface area factor (92.0) exhibited the best mercury removal performance due to a larger active surface area, which enables more Hg(2+) to adsorb onto the catalyst surface to undergo reduction to Hg⁰. The incorporation of WO₃ species onto TiO₂ nanotubes also improved the mercury removal performance due to improved charge separation and decreased charge carrier recombination because of the charge transfer from the conduction band of TiO₂ to the conduction band of WO₃.
    Matched MeSH terms: Tungsten
  18. Zakaria R, Zainuddin NAM, Leong TC, Rosli R, Rusdi MF, Harun SW, et al.
    Micromachines (Basel), 2019 Jul 11;10(7).
    PMID: 31336745 DOI: 10.3390/mi10070465
    In this paper, we report the effects of a side-polished fiber (SPF) coated with titanium (Ti) films in different thicknesses, namely 5 nm, 13 nm, and 36 nm, protected by a thin layer of transition metal dichalcogenides (TMDCs) such as molybdenum disulfide (MoS2) and tungsten disulfide (WS2), which provide ultra-sensitive sensor-based surface plasmon resonance (SPR) covering from the visible to mid-infrared region. The SPF deposited with Ti exhibits strong evanescent field interaction with the MoS2 and WS2, and good optical absorption, hence resulting in high-sensitivity performance. Incremental increases in the thickness of the Ti layer contribute to the enhancement of the intensity of transmission with redshift and broad spectra. The findings show that the optimum thickness of Ti with 36 nm combined with MoS2 causes weak redshifts of the longitudinal localized surface plasmon resonance (LSPR) mode, while the same thickness of Ti with WS2 causes large blueshifts. The redshifts are possibly due to a reduced plasmon-coupling effect with the excitonic region of MoS2. The observed blueshifts of the LSPR peak position are possibly due to surface modification between WS2 and Ti. Changing the relative humidity from 58% to 88% only elicited a response in Ti/MoS2. Thus, MoS2 shows more sensitivity on 36-nm thickness of Ti compared with WS2. Therefore, the proposed fiber-optic sensor with integration of 2D materials is capable of measuring humidity in any environment.
    Matched MeSH terms: Tungsten
  19. Zhu T, Chong MN, Chan ES
    ChemSusChem, 2014 Nov;7(11):2974-97.
    PMID: 25274424 DOI: 10.1002/cssc.201402089
    The recent developments of nanostructured WO3 thin films synthesized through the electrochemical route of electrochemical anodization and cathodic electrodeposition for the application in photoelectrochemical (PEC) water splitting are reviewed. The key fundamental reaction mechanisms of electrochemical anodization and cathodic electrodeposition methods for synthesizing nanostructured WO3 thin films are explained. In addition, the effects of metal oxide precursors, electrode substrates, applied potentials and current densities, and annealing temperatures on size, composition, and thickness of the electrochemically synthesized nanostructured WO3 thin films are elucidated in detail. Finally, a summary is given for the general evaluation practices used to calculate the energy conversion efficiency of nanostructured WO3 thin films and a recommendation is provided to standardize the presentation of research results in the field to allow for easy comparison of reported PEC efficiencies in the near future.
    Matched MeSH terms: Tungsten/chemistry*
  20. Chelliah, Kanaga Kumari, Lumin, Felecia
    MyJurnal
    Mamografi adalah cara paling efektif untuk mengesan keabnormalan payudara di kalangan wanita. Namun, mamografi dipercayai boleh menyebabkan karsinogenesis aruhan sinaran. Justeru pengukuran dos adalah penting untuk menganggar risiko dan mengawal kualiti imej. Kajian ini dijalankan untuk membandingkan dos glandular purata (AGD) yang diperolehi fantom payudara berdasarkan dua kombinasi anod/penuras yang berbeza iaitu tungsten/rhodium (W/Rh) dan tungsten/argentum (W/Ag). Fantom payudara CIRS 012A didedahkan pada projeksi kraniokaudal (CC) menggunakan sistem mamografi digital Hologic Selenia. Kerma udara kemasukan permukaan (ESAK) diukur menggunakan dosimeter pendar cahaya terma (TLD). AGD diperolehi daripada pengiraan asas ESAK dengan faktor penukaran berdasarkan formula Euref. Ujian t tak bersandar menunjukkan perbezaan bererti dalam purata AGD yang diperolehi. Purata AGD W/Rh adalah lebih tinggi berbanding purata AGD W/Ag (p = 0.002, 95% CI: 0.22, 0.53). Kesimpulannya, penggunaan W/Ag menyumbang kepada pengurangan dos semasa pemeriksaan mamografi.
    Matched MeSH terms: Tungsten
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links