Displaying publications 1 - 20 of 86 in total

Abstract:
Sort:
  1. Frimayanti N, Zain SM, Lee VS, Wahab HA, Yusof R, Abd Rahman N
    In Silico Biol. (Gedrukt), 2011;11(1-2):29-37.
    PMID: 22475750 DOI: 10.3233/ISB-2012-0442
    Publication year=2011-2012
    Matched MeSH terms: Viral Nonstructural Proteins/antagonists & inhibitors*
  2. Chan LC, Mat Yassim AS, Ahmad Fuaad AAH, Leow TC, Sabri S, Radin Yahaya RS, et al.
    Sci Rep, 2023 Nov 17;13(1):20178.
    PMID: 37978223 DOI: 10.1038/s41598-023-47511-z
    COVID-19 results from SARS-CoV-2, which mutates frequently, challenging current treatments. Therefore, it is critical to develop new therapeutic drugs against this disease. This study explores the interaction between SARS-CoV-2 3CLpro and RetroMAD1, a well-characterized coronavirus protein and potential drug target, using in-silico methods. The analysis through the HDOCK server showed stable complex formation with a binding energy of -12.3, the lowest among reference drugs. The RetroMAD1-3CLpro complex underwent a 100 ns molecular dynamics simulation (MDS) in an explicit solvation system, generating various trajectories, including RMSD, RMSF, hydrogen bonding, radius of gyration, and ligand binding energy. MDS results confirmed intact interactions within the RetroMAD1-3CLpro complex during simulations. In vitro experiments validated RetroMAD1's ability to inhibit 3CLpro enzyme activity and prevent SARS-CoV-2 infection in human bronchial cells. RetroMAD1 exhibited antiviral efficacy comparable to Remdesivir without cytotoxicity at effective concentrations. These results suggest RetroMAD1 as a potential drug candidate against SARS-CoV-2, warranting further in vivo and clinical studies to assess its efficiency.
    Matched MeSH terms: Viral Nonstructural Proteins/metabolism
  3. Teoh BT, Sam SS, Tan KK, Johari J, Abd-Jamil J, Hooi PS, et al.
    Sci Rep, 2016 06 09;6:27663.
    PMID: 27278716 DOI: 10.1038/srep27663
    Timely and accurate dengue diagnosis is important for differential diagnosis and immediate implementation of appropriate disease control measures. In this study, we compared the usefulness and applicability of NS1 RDT (NS1 Ag Strip) and qRT-PCR tests in complementing the IgM ELISA for dengue diagnosis on single serum specimen (n = 375). The NS1 Ag Strip and qRT-PCR showed a fair concordance (κ = 0.207, p = 0.001). While the NS1 Ag Strip showed higher positivity than qRT-PCR for acute (97.8% vs. 84.8%) and post-acute samples (94.8% vs. 71.8%) of primary infection, qRT-PCR showed higher positivity for acute (58.1% vs. 48.4%) and post-acute (50.0% vs.41.4%) samples in secondary infection. IgM ELISA showed higher positivity in samples from secondary dengue (74.2-94.8%) than in those from primary dengue (21.7-64.1%). More primary dengue samples showed positive with combined NS1 Ag Strip/IgM ELISA (99.0% vs. 92.8%) whereas more secondary samples showed positive with combined qRT-PCR/IgM ELISA (99.4% vs. 96.2%). Combined NS1 Ag Strip/IgM ELISA is a suitable combination tests for timely and accurate dengue diagnosis on single serum specimen. If complemented with qRT-PCR, combined NS1 Ag Strip/IgM ELISA would improve detection of secondary dengue samples.
    Matched MeSH terms: Viral Nonstructural Proteins/genetics*
  4. Shafee N, AbuBakar S
    J Gen Virol, 2003 Aug;84(Pt 8):2191-2195.
    PMID: 12867651 DOI: 10.1099/vir.0.19022-0
    Apoptosis was detected in Vero cell cultures expressing transfected dengue virus type 2 (DENV-2) genes. Approximately 17.5 and 51.5 % of cells expressing NS3 serine protease and NS2B-NS3(185) serine protease precursor protein [NS2B-NS3(185)(pro)] genes, respectively, were apoptotic. The percentage of apoptotic cells was significantly higher in cell cultures expressing NS2B-NS3(185)(pro). NS2B-NS3(185)(pro) was detected as NS2B-NS3(185)(pro)-EGFP fusion protein in cytoplasmic vesicular structures in the apoptotic cells. Site-directed mutagenesis which replaced His(51) with Ala within the protease catalytic triad significantly reduced the ability of the expressed NS3 and NS2B-NS3(185)(pro) to induce apoptosis. Results from the present study showed that DENV-2-encoded NS3 serine protease induces apoptosis, which is enhanced in cells expressing its precursor, NS2B-NS3(185)(pro). These findings suggest the importance of NS2B as a cofactor to NS3 protease-induced apoptosis.
    Matched MeSH terms: Viral Nonstructural Proteins/metabolism*; Viral Nonstructural Proteins/chemistry
  5. Wong SS, Abd-Jamil J, Abubakar S
    Viral Immunol, 2007 Sep;20(3):359-68.
    PMID: 17931106
    Outbreaks involving dengue viruses (DENV) of the same genotype occur in a cyclical pattern in Malaysia. Two cycles of outbreaks involving dengue virus type 2 (DENV-2) of the same genotype occurred in the 1990s in the Klang Valley, Malaysia. Sera of patients from the first outbreak and sera of mice inoculated with virus from the same outbreak had poorer neutralization activity against virus of the second outbreak. Conversely, patient sera from the second outbreak showed higher neutralization titer against virus of the early outbreak. At subneutralizing concentrations, sera of mice immunized with second outbreak virus did not significantly enhance infection with viruses from the earlier outbreak. Amino acid substitution from valine to isoleucine at position 129 of the envelope protein (E), as well as threonine to alanine at position 117 and lysine to arginine at position 272 of the NS1 protein, differentiated viruses of the two outbreaks. These findings highlight the potential influence of specific intragenotypic variations in eliciting varied host immune responses against the different DENV subgenotypes. This could be an important contributing factor in the recurring homogenotypic dengue virus outbreaks seen in dengue-endemic regions.
    Matched MeSH terms: Viral Nonstructural Proteins/genetics
  6. Yahiro T, Takaki M, Chandrasena TGAN, Rajindrajith S, Iha H, Ahmed K
    Infect Genet Evol, 2018 11;65:170-186.
    PMID: 30055329 DOI: 10.1016/j.meegid.2018.07.014
    A human-porcine reassortant rotavirus, strain R1207, was identified from 74 group A rotaviruses detected in 197 (37.6%) stool samples collected from patients who attended a tertiary care hospital in Ragama, Sri Lanka. This is the first report of a human-porcine reassortant rotavirus in Sri Lanka. The patient was a 12-month-old boy who had been hospitalized with fever and acute diarrhea with a duration of 6 days. The family had pigs at home before the birth of this boy. However, the neighbors still practice pig farming. The genotype constellation of R1207 was G4-P[6]-I1-R1-C1-M1-A1-N1-T1-E1-H1. This is based on the assignment of all the eleven gene segments a full genome-based genotyping system. R1207 showed a 4-2-3-2 genomic electrophoretic migration pattern, which is characteristic of group A rotaviruses. Our analyses revealed that five (NSP2, NSP4, VP1, VP2, and VP7) of the 11 genes were closely related to the respective genes of porcine strains. Although the remaining six genes (NSP1, NSP3, NSP5, VP3, VP4, and VP6) were related to human strains, with the exception of the gene sequence of NSP1, all of these human strains were human-porcine reassortants. With a genogroup 1 genetic backbone, this strain was possibly formed via multiple genetic reassortments. We do not know whether this strain is circulating in pigs, as no data are available on porcine rotaviruses in Sri Lanka. Surveillance should be strengthened to determine the epidemiology of this genotype of rotavirus in Sri Lanka and to assess whether the infection was limited or sustained by ongoing human-to-human transmission.
    Matched MeSH terms: Viral Nonstructural Proteins/genetics*
  7. Shalayel MH, Al-Mazaideh GM, Aladaileh SH, Al-Swailmi FK, Al-Thiabat MG
    Pak J Pharm Sci, 2020 Sep;33(5):2179-2186.
    PMID: 33824127
    Novel coronavirus disease (COVID-19) has become a pandemic threat to public health. Vaccines and targeted therapeutics to prevent infections and stop virus proliferation are currently lacking. Endoribonuclease Nsp15 plays a vital role in the life cycle, including replication and transcription as well as virulence of the virus. Here, we investigated Vitamin D for its in silico potential inhibition of the binding sites of SARS-CoV-2 endoribonuclease Nsp15. In this study, we selected Remdesivir, Chloroquine, Hydroxychloroquine and Vitamin D to study the potential binding affinity with the putative binding sites of endoribonuclease Nsp15 of COVID-19. The docking study was applied to rationalize the possible interactions of the target compounds with the active site of endoribonuclease Nsp 15. Among the results, Vitamin D was found to have the highest potency with strongest interaction in terms of LBE, lowest RMSD, and lowest inhibition intensity Ki than the other standard compounds. The investigation results of endoribonuclease Nsp15 on the PrankWeb server showed that there are three prospective binding sites with the ligands. The singularity of Vitamin D interaction with the three pockets, particularly in the second pocket, may write down Vitamin D as a potential inhibitor of COVID-19 Nsp15 endoribonuclease binding sites and favour addition of Vitamin D in the treatment plan for COVID-19 alone or in combination with the other used drugs in this purpose, which deserves exploration in further in vitro and in vivo studies.
    Matched MeSH terms: Viral Nonstructural Proteins/metabolism
  8. Sivasothy Y, Liew SY, Othman MA, Abdul Wahab SM, Hariono M, Mohd Nawi MS, et al.
    Trop Biomed, 2021 Jun 01;38(2):79-84.
    PMID: 33973577 DOI: 10.47665/tb.38.2.044
    The NS2B/NS3 protease is crucial for the pathogenesis of the DENV. Therefore, the inhibition of this protease is considered to be the key strategy for the development of new antiviral drugs. In the present study, malabaricones C (3) and E (4), acylphenols from the fruits of Myristica cinnamomea King, have been respectively identified as moderate (27.33 ± 5.45 μM) and potent (7.55 ± 1.64 μM) DENV-2 NS2B/NS3 protease inhibitors, thus making this the first report on the DENV-2 NS2B/NS3 protease inhibitory activity of acylphenols. Based on the molecular docking studies, compounds 3 and 4 both have π-π interactions with Tyr161. While compound 3 has hydrogen bonding interactions with Gly151, Gly153 and Tyr161, compound 4 however, forms hydrogen bonds with Ser135, Asp129, Phe130 and Ile86 instead. The results from the present study suggests that malabaricones C (3) and E (4) could be employed as lead compounds for the development of new dengue antivirals from natural origin.
    Matched MeSH terms: Viral Nonstructural Proteins
  9. Chow VT, Seah CL, Chan YC
    Intervirology, 1994;37(5):252-8.
    PMID: 7698880
    By a combination of PCR and direct-cycle sequencing using consensus primers, we analyzed approximately 400-bp fragments within the NS3 genes of twenty-one dengue virus type 3 strains isolated from five neighboring Southeast Asian countries at different time intervals from 1956 to 1992. The majority of base disparities were silent mutations, with few predicted amino acid substitutions, thus emphasizing the strict conservation of the NS3 gene. Phylogenetic trees constructed on the basis of these nucleotide differences revealed distinct but related clusters of strains from the Philippines, Indonesia, and strains from Singapore and Malaysia of the 1970s and early 1980s, while the Thai cluster was relatively more distant. This genetic relationship was compatible with that proposed by other workers who have studied other dengue 3 virus genes such as E, M and prM. However, we observed that the more recent, epidemic-associated dengue 3 strains from Singapore and Malaysia of the late 1980s and early 1990s were more closely related to the Thai cluster, implying their evolution from the latter, and emphasizing the importance of viral spread via increasing travel within the Southeast Asian area and elsewhere. Nucleotide sequence analysis of the NS3 genes of dengue viruses can serve to advance the understanding of the epidemiology and evolution of these viruses.
    Matched MeSH terms: Viral Nonstructural Proteins/genetics*; Viral Nonstructural Proteins/chemistry
  10. Tan CW, Sam IC, Chong WL, Lee VS, Chan YF
    Antiviral Res, 2017 07;143:186-194.
    PMID: 28457855 DOI: 10.1016/j.antiviral.2017.04.017
    Zika virus (ZIKV) is an arthropod-borne flavivirus that causes newborn microcephaly and Guillian-Barré syndrome in adults. No therapeutics are available to treat ZIKV infection or other flaviviruses. In this study, we explored the inhibitory effect of glycosaminoglycans and analogues against ZIKV infection. Highly sulfated heparin, dextran sulfate and suramin significantly inhibited ZIKV infection in Vero cells. De-sulfated heparin analogues lose inhibitory effect, implying that sulfonate groups are critical for viral inhibition. Suramin, an FDA-approved anti-parasitic drug, inhibits ZIKV infection with 3-5 log10 PFU viral reduction with IC50value of ∼2.5-5 μg/ml (1.93 μM-3.85 μM). A time-of-drug-addition study revealed that suramin remains potent even when administrated at 1-24 hpi. Suramin inhibits ZIKV infection by preventing viral adsorption, entry and replication. Molecular dynamics simulation revealed stronger interaction of suramin with ZIKV NS3 helicase than with the envelope protein. Suramin warrants further investigation as a potential antiviral candidate for ZIKV infection. Heparan sulfate (HS) is a cellular attachment receptor for multiple flaviviruses. However, no direct ZIKV-heparin interaction was observed in heparin-binding analysis, and downregulate or removal of cellular HS with sodium chlorate or heparinase I/III did not inhibit ZIKV infection. This indicates that cell surface HS is not utilized by ZIKV as an attachment receptor.
    Matched MeSH terms: Viral Nonstructural Proteins/drug effects; Viral Nonstructural Proteins/chemistry
  11. Lai JKF, Sam IC, Verlhac P, Baguet J, Eskelinen EL, Faure M, et al.
    Viruses, 2017 07 04;9(7).
    PMID: 28677644 DOI: 10.3390/v9070169
    Viruses have evolved unique strategies to evade or subvert autophagy machinery. Enterovirus A71 (EV-A71) induces autophagy during infection in vitro and in vivo. In this study, we report that EV-A71 triggers autolysosome formation during infection in human rhabdomyosarcoma (RD) cells to facilitate its replication. Blocking autophagosome-lysosome fusion with chloroquine inhibited virus RNA replication, resulting in lower viral titres, viral RNA copies and viral proteins. Overexpression of the non-structural protein 2BC of EV-A71 induced autolysosome formation. Yeast 2-hybrid and co-affinity purification assays showed that 2BC physically and specifically interacted with aN-ethylmaleimide-sensitive factor attachment receptor (SNARE) protein, syntaxin-17 (STX17). Co-immunoprecipitation assay further showed that 2BC binds to SNARE proteins, STX17 and synaptosome associated protein 29 (SNAP29). Transient knockdown of STX17, SNAP29, and microtubule-associated protein 1 light chain 3B (LC3B), crucial proteins in the fusion between autophagosomes and lysosomes) as well as the lysosomal-associated membrane protein 1 (LAMP1) impaired production of infectious EV-A71 in RD cells. Collectively, these results demonstrate that the generation of autolysosomes triggered by the 2BC non-structural protein is important for EV-A71 replication, revealing a potential molecular pathway targeted by the virus to exploit autophagy. This study opens the possibility for the development of novel antivirals that specifically target 2BC to inhibit formation of autolysosomes during EV-A71 infection.
    Matched MeSH terms: Viral Nonstructural Proteins/metabolism*
  12. Aw-Yong KL, Sam IC, Koh MT, Chan YF
    PLoS One, 2016;11(11):e0165659.
    PMID: 27806091 DOI: 10.1371/journal.pone.0165659
    Enterovirus A71 (EV-A71) is one of the main causative agents of hand, foot and mouth disease (HFMD). Unlike other enteroviruses that cause HFMD, EV-A71 is more frequently associated with severe neurological complications and fatality. To date, no effective licensed antivirals are available to combat EV-A71 infection. Little is known about the immunogenicity of viral non-structural proteins in humans. Previous studies have mainly focused on characterization of epitopes of EV-A71 structural proteins by using immunized animal antisera. In this study, we have characterized human antibody responses against the structural and non-structural proteins of EV-A71. Each viral protein was cloned and expressed in either bacterial or mammalian systems, and tested with antisera by western blot. Results revealed that all structural proteins (VP1-4), and non-structural proteins 2A, 3C and 3D were targets of EV-A71 IgM, whereas EV-A71 IgG recognized all the structural and non-structural proteins. Sixty three synthetic peptides predicted to be immunogenic in silico were synthesized and used for the characterization of EV-A71 linear B-cell epitopes. In total, we identified 22 IgM and four IgG dominant epitopes. Synthetic peptide PEP27, corresponding to residues 142-156 of VP1, was identified as the EV-A71 IgM-specific immunodominant epitope. PEP23, mapped to VP1 41-55, was recognized as the EV-A71 IgG cross-reactive immunodominant epitope. The structural protein VP1 is the major immunodominant site targeted by anti-EV-A71 IgM and IgG antibodies, but epitopes against non-structural proteins were also detected. These data provide new understanding of the immune response to EV-A71 infection, which benefits the development of diagnostic tools, potential therapeutics and subunit vaccine candidates.
    Matched MeSH terms: Viral Nonstructural Proteins/genetics; Viral Nonstructural Proteins/immunology*
  13. Abubakar S, Azila A, Suzana M, Chang LY
    Malays J Pathol, 2002 Jun;24(1):29-36.
    PMID: 16329553
    At least three major antigenic dengue 2 virus proteins were recognized by pooled dengue fever patients' sera in infected Aedes albopictus (C6/36) mosquito cells. Dengue virus envelope (E), premembrane (PrM) and non-structural protein 1 (NS 1) dimer were detected beginning on day 3 postinfection in both the cell membrane and cytosolic fractions. Using the patients' sera, the presence of antigenic intermediate core protein (C)-PrM and NS1-non-structural protein 2a (NS2a) in the cytoplasmic fraction of dengue 2 virus infected cells was revealed. The presence of a approximately 92 and approximately 84 kDa NS 1 dimer in the membrane (NS 1m) and cytosolic (NS 1c) fractions of C6/36 cells, respectively, was also recognized. Using individual patient's serum, it was further confirmed that all patients' sera contained antibodies that specifically recognized E, NS 1 and PrM present in the dengue 2 virus-infected cell membrane fractions, suggesting that these glycosylated virus proteins were the main antigenic proteins recognized in vivo. Detection of dengue 2 virus C antibody in some patients further suggested that C could be antigenic if presented in vivo.
    Matched MeSH terms: Viral Nonstructural Proteins/immunology; Viral Nonstructural Proteins/metabolism
  14. AbuBakar S, Azmi A, Mohamed-Saad N, Shafee N, Chee HY
    Malays J Pathol, 1997 Jun;19(1):41-51.
    PMID: 10879241
    The present study was undertaken to investigate the antibody responses of dengue fever (DF) patients to specific dengue virus proteins. Partially purified dengue 2 New Guinea C (NGC) strain virus was used as antigen. Under the present experimental protocols, it was observed that almost all DF patients' sera had detectable presence of antibodies which recognize the dengue 2 envelope (E) protein. The convalescent-phase sera especially had significant detectable IgG, IgM and IgE against the protein. In addition, IgGs specific against the NS1 dimer and PrM were also detected. Antibody against the core (C) protein, however, was not detectable in any of the DF patients' sera. The substantial presence of IgG against the PrM in the convalescent-phase sera, and the presence of IgE specific for the E, reflect the potential importance of these antibody responses in the pathogenesis of dengue.
    Matched MeSH terms: Viral Nonstructural Proteins/immunology*
  15. Zhang W, Jiang B, Zeng M, Duan Y, Wu Z, Wu Y, et al.
    J Virol, 2020 04 16;94(9).
    PMID: 32075929 DOI: 10.1128/JVI.01850-19
    Duck Tembusu virus (DTMUV), which is similar to other mosquito-borne flaviviruses that replicate well in most mammalian cells, is an emerging pathogenic flavivirus that has caused epidemics in egg-laying and breeding waterfowl. Immune organ defects and neurological dysfunction are the main clinical symptoms of DTMUV infection. Preinfection with DTMUV makes the virus impervious to later interferon (IFN) treatment, revealing that DTMUV has evolved some strategies to defend against host IFN-dependent antiviral responses. Immune inhibition was further confirmed by screening for DTMUV-encoded proteins, which suggested that NS2A significantly inhibited IFN-β and IFN-stimulated response element (ISRE) promoter activity in a dose-dependent manner and facilitated reinfection with duck plague virus (DPV). DTMUV NS2A was able to inhibit duck retinoic acid-inducible gene-I (RIG-I)-, and melanoma differentiation-associated gene 5 (MDA5)-, mitochondrial-localized adaptor molecules (MAVS)-, stimulator of interferon genes (STING)-, and TANK-binding kinase 1 (TBK1)-induced IFN-β transcription, but not duck TBK1- and interferon regulatory factor 7 (IRF7)-mediated effective phases of IFN response. Furthermore, we found that NS2A competed with duTBK1 in binding to duck STING (duSTING), impaired duSTING-duSTING binding, and reduced duTBK1 phosphorylation, leading to the subsequent inhibition of IFN production. Importantly, we first identified that the W164A, Y167A, and S361A mutations in duSTING significantly impaired the NS2A-duSTING interaction, which is important for NS2A-induced IFN-β inhibition. Hence, our data demonstrated that DTMUV NS2A disrupts duSTING-dependent antiviral cellular defenses by binding with duSTING, which provides a novel mechanism by which DTMUV subverts host innate immune responses. The potential interaction sites between NS2A and duSTING may be the targets of future novel antiviral therapies and vaccine development.IMPORTANCE Flavivirus infections are transmitted through mosquitos or ticks and lead to significant morbidity and mortality worldwide with a spectrum of manifestations. Infection with an emerging flavivirus, DTMUV, manifests with clinical symptoms that include lesions of the immune organs and neurological dysfunction, leading to heavy egg drop and causing serious harm to the duck industry in China, Thailand, Malaysia, and other Southeast Asian countries. Mosquito cells, bird cells, and mammalian cell lines are all susceptible to DTMUV infection. An in vivo study revealed that BALB/c mice and Kunming mice were susceptible to DTMUV after intracerebral inoculation. Moreover, there are no reports about DTMUV-related human disease, but antibodies against DTMUV and viral RNA were detected in serum samples of duck industry workers. This information implies that DTMUV has expanded its host range and may pose a threat to mammalian health. However, the pathogenesis of DTMUV is largely unclear. Our results show that NS2A strongly blocks the STING-induced signal transduction cascade by binding with STING, which subsequently blocks STING-STING binding and TBK1 phosphorylation. More importantly, the W164, Y167, or S361 residues in duSTING were identified as important interaction sites between STING and NS2A that are vital for NS2A-induced IFN production and effective phases of IFN response. Uncovering the mechanism by which DTMUV NS2A inhibits IFN in the cells of its natural hosts, ducks, will help us understand the role of NS2A in DTMUV pathogenicity.
    Matched MeSH terms: Viral Nonstructural Proteins/metabolism
  16. Kumarasamy V, Chua SK, Hassan Z, Wahab AH, Chem YK, Mohamad M, et al.
    Singapore Med J, 2007 Jul;48(7):669-73.
    PMID: 17609831
    INTRODUCTION: The aim of this report is to establish an accurate diagnosis of acute dengue virus infection early, in order to provide timely information for the management of patients and early public health control of dengue outbreak.
    METHODS: 224 serum samples from patients with a clinical diagnosis of acute dengue infection, which were subsequently confirmed by laboratory tests, were used to evaluate the performance of a commercially-available dengue NS1 antigen-capture ELISA kit.
    RESULTS: The dengue NS1 antigen-capture ELISA gave an overall sensitivity rate of 93.3 percent (209/224). The sensitivity rate was significantly higher in acute primary dengue (97.4 percent) than in acute secondary dengue (68.8 percent). In comparison, the virus isolation gave an overall positive isolation rate of 64.7 percent, with a positive rate of 70.8 percent and 28.1 percent, for acute primary dengue and acute secondary dengue, respectively. Molecular detection of dengue RNA by RT-PCR gave an overall positive detection rate of 63.4 percent, with a positive rate of 62.5 percent and 68.8 percent, for acute primary dengue and acute secondary dengue, respectively. Of the 224 acute serum samples from patients with laboratory-confirmed acute dengue infection, dengue IgM was detected in 88 specimens, comprising 68 acute primary dengue specimens and 20 acute secondary dengue specimens. NS1 antigen-capture ELISA kit gave an overall sensitivity rate of 88.6 percent in the presence of anti-dengue IgM and 96.3 percent in the absence of anti-dengue IgM.
    CONCLUSION: Of the 224 acute serum samples, the sample ages of 166 acute serum samples are known. The positive detection rate of dengue NS1 antigen-capture ELISA, on the whole, was higher than the other three established diagnostic test methods for laboratory diagnosis of acute dengue infection.
    Matched MeSH terms: Viral Nonstructural Proteins/blood*; Viral Nonstructural Proteins/immunology
  17. Kumarasamy V, Wahab AH, Chua SK, Hassan Z, Chem YK, Mohamad M, et al.
    J Virol Methods, 2007 Mar;140(1-2):75-9.
    PMID: 17140671
    A commercial dengue NS1 antigen-capture ELISA was evaluated to demonstrate its potential application for early laboratory diagnosis of acute dengue virus infection. Dengue virus NS1 antigen was detected in 199 of 213 acute serum samples from patients with laboratory confirmation of acute dengue virus infection but none of the 354 healthy blood donors' serum specimens. The dengue NS1 antigen-capture ELISA gave an overall sensitivity of 93.4% (199/213) and a specificity of 100% (354/354). The sensitivity was significantly higher in acute primary dengue (97.3%) than in acute secondary dengue (70.0%). The positive predictive value of the dengue NS1 antigen-capture ELISA was 100% and negative predictive value was 97.3%. Comparatively, virus isolation gave an overall positive isolation rate of 68.1% with a positive isolation rate of 73.9 and 31.0% for acute primary dengue and acute secondary dengue, respectively. Molecular detection of dengue RNA by RT-PCR gave an overall positive detection rate of 66.7% with a detection rate of 65.2 and 75.9% for acute primary dengue and acute secondary dengue, respectively. The results indicate that the commercial dengue NS1 antigen-capture ELISA may be superior to virus isolation and RT-PCR for the laboratory diagnosis of acute dengue infection based on a single serum sample.
    Matched MeSH terms: Viral Nonstructural Proteins/blood*
  18. Zainah S, Wahab AH, Mariam M, Fauziah MK, Khairul AH, Roslina I, et al.
    J Virol Methods, 2009 Feb;155(2):157-60.
    PMID: 19022293 DOI: 10.1016/j.jviromet.2008.10.016
    The performance of a commercial immunochromatography test for rapid detection of dengue NS1 antigen present in serum or plasma of patients was evaluated against a commercial dengue NS1 antigen-capture ELISA. The rapid immunochromatography test gave an overall sensitivity of 90.4% with a specificity of 99.5%. The sensitivity was highest for serum samples from which virus was isolated (96.3%) and lowest for those from which virus was not isolated and RT-PCR was negative (76.4%). The sensitivity was significantly higher for serum samples from patients with acute primary dengue (92.3%) than those from patients with acute secondary dengue (79.1%). The positive predictive value and negative predictive value of this commercial immunochromatography test were 99.6% and 87.9% respectively.
    Matched MeSH terms: Viral Nonstructural Proteins/blood*; Viral Nonstructural Proteins/immunology
  19. Dighe SN, Ekwudu O, Dua K, Chellappan DK, Katavic PL, Collet TA
    Eur J Med Chem, 2019 Aug 15;176:431-455.
    PMID: 31128447 DOI: 10.1016/j.ejmech.2019.05.010
    Dengue is the most important arthropod-borne viral disease of humans, with more than half of the global population living in at-risk areas. Despite the negative impact on public health, there are no antiviral therapies available, and the only licensed vaccine, Dengvaxia®, has been contraindicated in children below nine years of age. In an effort to combat dengue, several small molecules have entered into human clinical trials. Here, we review anti-DENV molecules and their drug targets that have been published within the past five years (2014-2018). Further, we discuss their probable mechanisms of action and describe a role for classes of clinically approved drugs and also an unclassified class of anti-DENV agents. This review aims to enhance our understanding of novel agents and their cognate targets in furthering innovations in the use of small molecules for dengue drug therapies.
    Matched MeSH terms: Viral Nonstructural Proteins/antagonists & inhibitors*
  20. Fry SR, Meyer M, Semple MG, Simmons CP, Sekaran SD, Huang JX, et al.
    PLoS Negl Trop Dis, 2011 Jun;5(6):e1199.
    PMID: 21713023 DOI: 10.1371/journal.pntd.0001199
    BACKGROUND: Serological tests for IgM and IgG are routinely used in clinical laboratories for the rapid diagnosis of dengue and can differentiate between primary and secondary infections. Dengue virus non-structural protein 1 (NS1) has been identified as an early marker for acute dengue, and is typically present between days 1-9 post-onset of illness but following seroconversion it can be difficult to detect in serum.
    AIMS: To evaluate the performance of a newly developed Panbio® Dengue Early Rapid test for NS1 and determine if it can improve diagnostic sensitivity when used in combination with a commercial IgM/IgG rapid test.
    METHODOLOGY: The clinical performance of the Dengue Early Rapid was evaluated in a retrospective study in Vietnam with 198 acute laboratory-confirmed positive and 100 negative samples. The performance of the Dengue Early Rapid in combination with the IgM/IgG Rapid test was also evaluated in Malaysia with 263 laboratory-confirmed positive and 30 negative samples.
    KEY RESULTS: In Vietnam the sensitivity and specificity of the test was 69.2% (95% CI: 62.8% to 75.6%) and 96% (95% CI: 92.2% to 99.8) respectively. In Malaysia the performance was similar with 68.9% sensitivity (95% CI: 61.8% to 76.1%) and 96.7% specificity (95% CI: 82.8% to 99.9%) compared to RT-PCR. Importantly, when the Dengue Early Rapid test was used in combination with the IgM/IgG test the sensitivity increased to 93.0%. When the two tests were compared at each day post-onset of illness there was clear differentiation between the antigen and antibody markers.
    CONCLUSIONS: This study highlights that using dengue NS1 antigen detection in combination with anti-glycoprotein E IgM and IgG serology can significantly increase the sensitivity of acute dengue diagnosis and extends the possible window of detection to include very early acute samples and enhances the clinical utility of rapid immunochromatographic testing for dengue.
    Matched MeSH terms: Viral Nonstructural Proteins/blood
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links