Displaying publications 1 - 20 of 169 in total

Abstract:
Sort:
  1. Zulkifli A, Khairul Anuar A, Atiya AS, Yano A
    JUMMEC, 1999;4:99-103.
    A survey of malnutrition and helminth infections among 268 pre-school children living in the Kuala Betis Orang Asli resttlement villages in Kelantan. The prevalence of helminth infections was 47.4% with Ascaris lumbricoides being the most common helminth (43.9%), followed by Trichuris trichiura (29.7%) and hookworm (6.3%). The prevalence of Ascaris lumbricoides and Trichuris trichiura infections increased with age, with the highest prevalence found in the 6-7 years age group. The overall prevalence of stunting, underweight and wasting were 61.7%, 60.4% and 17.5% respectively. Both stunting and underweight were significantly higher among the infected children. Factors associated with helminth infections in the pre-school children were older age group, poor water supply and households with more than 5 members. Rountine regular deworming is recommended based on the World Health Organisation recommendations for school children.
    Matched MeSH terms: Water Supply
  2. Zuharah WF, Lester PJ
    J Vector Ecol, 2010 Dec;35(2):347-53.
    PMID: 21175942 DOI: 10.1111/j.1948-7134.2010.00093.x
    The occurrence and abundance of mosquito populations may be associated with the abundance of predators. We examined the relationship between aquatic predators and populations of mosquitoes in animal water troughs in Waikanae, New Zealand. We also investigated the effects of water volume and environmental factors (temperature, rainfall, wind speed, humidity, and pressure) in order to further understand factors influencing mosquito and predator populations. Logistic regression indicated that the presence or absence of mosquitoes was primarily affected by three factors: predator abundance, week of observation, and water volume. Pearson's correlation indicated that the presence of predators had a positive correlation with water volume (r² = 0.176, p< 0.05). Otherwise, the presence of mosquito larvae in water troughs was negatively correlated with water volume (r² =-0.159, p=0.022) and wind speed (r² =0.142, p=0.041). We established a translocation experiment in which predators or mosquitoes were moved between troughs in order to examine the prey survival rate after exposure to Anisops wakefieldi predators. The survival rate of mosquitoes was not significantly different, between 0-0.1%, irrespective of the number of predators translocated (1-9) or the initial mosquito density (20-70 larvae). Our results suggested that A. wakefieldi predators may have the potential to be a promising biological control tool for the control of mosquito populations by altering mosquito population dynamics.
    Matched MeSH terms: Water Supply*
  3. Zomorodian M, Lai SH, Homayounfar M, Ibrahim S, Fatemi SE, El-Shafie A
    J Environ Manage, 2018 Dec 01;227:294-304.
    PMID: 30199725 DOI: 10.1016/j.jenvman.2018.08.097
    In recent years, water resources management has become more complicated and controversial due to the impacts of various factors affecting hydrological systems. System Dynamics (SD) has in turn become increasingly popular due to its advantages as a tool for dealing with such complex systems. However, SD also has some limitations. This review contains a comprehensive survey of the existing literature on SD as a potential method to deal with the complexity of system integrated modeling, with a particular focus on the application of SD to the integrated modeling of water resources systems. It discusses the limitations of SD in these contexts, and highlights a number of studies which have applied a combination of SD and other methods to overcome these limitations. Finally, our study makes a number of recommendations for future modifications in the application of SD methods in order to enhance their performance.
    Matched MeSH terms: Water Supply
  4. Zomorodian M, Lai SH, Homayounfar M, Ibrahim S, Pender G
    PLoS One, 2017;12(12):e0188489.
    PMID: 29216200 DOI: 10.1371/journal.pone.0188489
    Conflicts over water resources can be highly dynamic and complex due to the various factors which can affect such systems, including economic, engineering, social, hydrologic, environmental and even political, as well as the inherent uncertainty involved in many of these factors. Furthermore, the conflicting behavior, preferences and goals of stakeholders can often make such conflicts even more challenging. While many game models, both cooperative and non-cooperative, have been suggested to deal with problems over utilizing and sharing water resources, most of these are based on a static viewpoint of demand points during optimization procedures. Moreover, such models are usually developed for a single reservoir system, and so are not really suitable for application to an integrated decision support system involving more than one reservoir. This paper outlines a coupled simulation-optimization modeling method based on a combination of system dynamics (SD) and game theory (GT). The method harnesses SD to capture the dynamic behavior of the water system, utilizing feedback loops between the system components in the course of the simulation. In addition, it uses GT concepts, including pure-strategy and mixed-strategy games as well as the Nash Bargaining Solution (NBS) method, to find the optimum allocation decisions over available water in the system. To test the capability of the proposed method to resolve multi-reservoir and multi-objective conflicts, two different deterministic simulation-optimization models with increasing levels of complexity were developed for the Langat River basin in Malaysia. The later is a strategic water catchment that has a range of different stakeholders and managerial bodies, which are however willing to cooperate in order to avoid unmet demand. In our first model, all water users play a dynamic pure-strategy game. The second model then adds in dynamic behaviors to reservoirs to factor in inflow uncertainty and adjust the strategies for the reservoirs using the mixed-strategy game and Markov chain methods. The two models were then evaluated against three performance indices: Reliability, Resilience and Vulnerability (R-R-V). The results showed that, while both models were well capable of dealing with conflict resolution over water resources in the Langat River basin, the second model achieved a substantially improved performance through its ability to deal with dynamicity, complexity and uncertainty in the river system.
    Matched MeSH terms: Water Supply*
  5. Zin, Thant, SabaiAung, Tin, Sahipudin Saupin, Myint, Than, KhinSN, Daw, Aung, Meiji Soe, et al.
    MyJurnal
    The lower percentage of water, sanitation and hygiene are the root causes of diarrhoea and cholera. Cholera is a sudden onset of acute watery diarrhoea which can progress to severe dehydration and death if untreated. The current pandemic, Vibrio Cholera O1 started in 1961. This study explores water, sanitation, hygiene and cholera and diarrhoea in three affected villages of Beluran District, Sabah Malaysia to support effective and timely public health intervention. This cross sectional study uses purposive sampling. All (114) households were interviewed and household water samples collected. The study reported lower coverage improved sanitation facilities (35.3% to 52.3%), no latrine at home (37% to 63%), improved water supply (52% to 60%), and prevalence of hand washing after toilet (57% - 74%). For water quality, Ecoli was present in household water (32% to 37%) but Vibrio cholerae was not isolated in any of the water samples tested. Statistically significant associations were found for; 1) occupation−nonagriculture and unimproved sanitation facility and 2) house ownership and correct knowledge of ORS preparation. Predictors for household water quality were: latrine at home, and improved household toilet. Aggressive strategies to improve water supply, sanitation and hygiene−hand washing after toilet−were recommended for future prevention of cholera and diarrhoea in the affected area.
    Matched MeSH terms: Water Supply
  6. Zhu JJ, Liu Z
    J Environ Public Health, 2023;2023:6739550.
    PMID: 36824232 DOI: 10.1155/2023/6739550
    This article considers and adds empirical nuances to the recent conceptualization of pro-poor water management. Using the concept of pro-poor hydraulic governmentality along the Vietnam-Cambodia border of Thường Phước commune, we argue that water management is linked to local rural livelihoods in a complex and dynamic pro-poor mechanism. While certain policies organize local populations according to cost-effectiveness ignoring local customs, the practicalities of dealing with such constraints are much more ambivalent. This article demonstrates the structural pro-poor complexity among sand excavation, riverbank landslides, water management, local livelihoods, and populace resettlement. The government's resettlement plans and the perceptions of residents of these plans are intertwined with a wider political, economic, social, and cultural significance in the context of strong institutional power in Vietnam. Limitations and future research agenda are also indicated in the discussion and conclusion section.
    Matched MeSH terms: Water Supply*
  7. Zaini Hamzah, Siti Afiqah Abdul Rahman, Ahmad Saat, Siti Shahrina Agos, Zaharudin Ahmad
    MyJurnal
    The presence of 226 Ra in water is a great concern in human life since it can cause health risk to a certain extent. In the state of Kelantan, being known of its granitic area, there is a lack measurement of 226 Ra content in river water, since water is the major source of water supply. According to the INTERIM National Water Quality Standards for Malaysia (INWQS), 226 Ra activity concentration in water cannot exceed 0.1 Bq/L. For this reasons, this research was planned to carry out a systematic measurement of water along Sungai Kelantan. Liquid Scintillation Counting was used for measurement of 226 Ra in water samples from Sungai Kelantan mainly in district of Kuala Krai. In this paper, the results obtained is about 26 water samples, filtered and unfiltered, collected along Sungai Lebir, Sungai Sok and Bukit Sabah. Thus, the assessment activity concentration of 226 Ra in river water was obtained as well as annual effective dose for consumption of drinking water.
    Matched MeSH terms: Water Supply
  8. Zainal-Abideen M, Aris A, Yusof F, Abdul-Majid Z, Selamat A, Omar SI
    Water Sci Technol, 2012;65(3):496-503.
    PMID: 22258681 DOI: 10.2166/wst.2012.561
    In this study of coagulation operation, a comparison was made between the optimum jar test values for pH, coagulant and coagulant aid obtained from traditional methods (an adjusted one-factor-at-a-time (OFAT) method) and with central composite design (the standard design of response surface methodology (RSM)). Alum (coagulant) and polymer (coagulant aid) were used to treat a water source with very low pH and high aluminium concentration at Sri-Gading water treatment plant (WTP) Malaysia. The optimum conditions for these factors were chosen when the final turbidity, pH after coagulation and residual aluminium were within 0-5 NTU, 6.5-7.5 and 0-0.20 mg/l respectively. Traditional and RSM jar tests were conducted to find their respective optimum coagulation conditions. It was observed that the optimum dose for alum obtained through the traditional method was 12 mg/l, while the value for polymer was set constant at 0.020 mg/l. Through RSM optimization, the optimum dose for alum was 7 mg/l and for polymer was 0.004 mg/l. Optimum pH for the coagulation operation obtained through traditional methods and RSM was 7.6. The final turbidity, pH after coagulation and residual aluminium recorded were all within acceptable limits. The RSM method was demonstrated to be an appropriate approach for the optimization and was validated by a further test.
    Matched MeSH terms: Water Supply/standards*
  9. Yusop Z, Chan CH, Katimon A
    Water Sci Technol, 2007;56(8):41-8.
    PMID: 17978431
    Rainfall-runoff processes in a small oil palm catchment (8.2 ha) in Johor, Malaysia were examined. Storm hydrographs show rapid responses to rainfall with a short time to peak. The estimated initial hydrologic loss for the oil palm catchment is 5 mm. Despite the low initial loss, the catchment exhibits a high proportion of baseflow, approximately 54% of the total runoff. On an event basis, the stormflow response factor and runoff coefficient ranges from 0.003 to 0.21, and 0.02 to 0.44, respectively. Peakflow and stormflow volume were moderately correlated with rainfall. The hydrographs were satisfactorily modelled using the Hydrologic Engineering Centre-Hydrologic Modelling System (HEC-HMS). The efficiency indexes of the calibration and validation exercises are 0.81 and 0.82, respectively. Based on these preliminary findings, it could be suggested that an oil palm plantation would be able to serve reasonably well in regulating basic hydrological functions.
    Matched MeSH terms: Water Supply*
  10. Yusop Z, Tan LW, Ujang Z, Mohamed M, Nasir KA
    Water Sci Technol, 2005;52(9):125-32.
    PMID: 16445181
    Runoff quality draining from 17.14 km2 urban catchment in Johor Bahru, Malaysia, was analysed. The land-use consists of residential (30.3%), agricultural (27.3%), open space (27.9%), industrial (8.1%) and commercial (6.4%) areas. Three storm events were sampled in detail. These storms produced stormflow between 0.84 mm and 27.82 mm, and peakflow from 2.19 m3/s to 42.36 m3/s. Water quality showed marked variation during storms especially for TSS, BOD and COD with maximum concentrations of 778 mg/l, 135 mg/l and 358 mg/l, respectively. Concentrations of TOC, DOC, NH3-N, Fe and level of colour were also high. In general, the river quality is badly polluted and falls in Class V based on the Malaysian Interim National Water Quality Standards. Event Mean Concentrations (EMC) for various parameters varied considerably between storms. The largest storm produced higher EMC for TSS, NO3-N and SS whereas the smaller storms tend to register higher EMC for BOD, COD, NH3-N, TOC, Ca, K, Mg, Fe and Zn. Such variations could be explained in terms of pollutant availability and the effects of flushing and dilution. Based on a three-month average recurrence interval (ARI) of rainfall, the estimated event loadings (ton/ha) of TSS, BOD, COD, TOC, NH3-N and NO3-N were 0.055, 0.016, 0.012, 0.039, 0.010, 0.0007 and 0.0002, respectively. Heavy metals present in trace quantities. Storms with 3 months ARI could capture about 70% of the total annual loads of major pollutants.
    Matched MeSH terms: Water Supply/standards*
  11. Yunus AJ, Nakagoshi N, Salleh KO
    J Environ Sci (China), 2003 Mar;15(2):249-62.
    PMID: 12765268
    This study investigate the relationships between geomorphometric properties and the minimum low flow discharge of undisturbed drainage basins in the Taman Bukit Cahaya Seri Alam Forest Reserve, Peninsular Malaysia. The drainage basins selected were third-order basins so as to facilitate a common base for sampling and performing an unbiased statistical analyses. Three levels of relationships were observed in the study. Significant relationships existed between the geomorphometric properties as shown by the correlation network analysis; secondly, individual geomorphometric properties were observed to influence minimum flow discharge; and finally, the multiple regression model set up showed that minimum flow discharge (Q min) was dependent of basin area (AU), stream length (LS), maximum relief (Hmax), average relief (HAV) and stream frequency (SF). These findings further enforced other studies of this nature that drainage basins were dynamic and functional entities whose operations were governed by complex interrelationships occurring within the basins. Changes to any of the geomorphometric properties would influence their role as basin regulators thus influencing a change in basin response. In the case of the basin's minimum low flow, a change in any of the properties considered in the regression model influenced the "time to peak" of flow. A shorter time period would mean higher discharge, which is generally considered the prerequisite to flooding. This research also conclude that the role of geomorphometric properties to control the water supply within the stream through out the year even though during the drought and less precipitations months. Drainage basins are sensitive entities and any deteriorations involve will generate reciprocals and response to the water supply as well as the habitat within the areas.
    Matched MeSH terms: Water Supply*
  12. Yousuf FA, Siddiqui R, Khan NA
    Rev Inst Med Trop Sao Paulo, 2017 Jun 01;59:e32.
    PMID: 28591260 DOI: 10.1590/S1678-9946201759032
    Rotavirus and pathogenic free-living amoebae are causative agents of important health problems, especially for developing countries like Pakistan where the population has limited access to clean water supplies. Here, we evaluated the prevalence of rotavirus and free-living amoebae (Acanthamoeba spp., Balamuthia mandrillaris, Naegleria fowleri) in drinking water supplies of Karachi, Pakistan. Six water filtration plants that supply drinking water to the population of Karachi were investigated. Additionally, drinking water samples from households were analyzed for the presence of rotavirus and free-living amoebae. Rotavirus was present in 35% of the water samples collected from water filtration plants; however, domestic tap water samples had a prevalence of only 5%. Out of 20 water samples from filtration plants, 13 (65%) were positive for Acanthamoeba spp., and one (5%) was positive for B. mandrillaris. Out of 20 drinking water samples collected from different areas of Karachi, 35% were positive for Acanthamoeba spp. Rotavirus was detected in 5% of the drinking water samples tested. Overall, these findings showed for the first time the presence of rotavirus, in addition to pathogenic free-living amoebae in drinking water supplies of Karachi that could be an important public health risk for the affected population.
    Matched MeSH terms: Water Supply*
  13. Yong SF, Goh FN, Ngeow YF
    J Water Health, 2010 Mar;8(1):92-100.
    PMID: 20009251 DOI: 10.2166/wh.2009.002
    In this study, we investigated the distribution of Legionella species in water cooling towers located in different parts of Malaysia to obtain information that may inform public health policies for the prevention of legionellosis. A total of 20 water samples were collected from 11 cooling towers located in three different states in east, west and south Malaysia. The samples were concentrated by filtration and treated with an acid buffer before plating on to BCYE agar. Legionella viable counts in these samples ranged from 100 to 2,000 CFU ml(-1); 28 isolates from the 24 samples were examined by latex agglutination as well as 16S rRNA and rpoB PCR-DNA sequencing. These isolates were identified as Legionella pneumophila serogroup 1 (35.7%), L. pneumophila serogroup 2-14 (39%), L. pneumophila non-groupable (10.7%), L. busanensis, L. gormanii, L. anisa and L. gresilensis. L. pneumophila was clearly the predominant species at all sampling sites. Repeat sampling from the same cooling tower and testing different colonies from the same water sample showed concurrent colonization by different serogroups and different species of Legionella in some of the cooling towers.
    Matched MeSH terms: Water Supply*
  14. Yahya B, Md Naim AK
    Family Physician, 1992;4:17-19.
    A cross-sectional study was conducted in four Orang Asli settlements, in the district of Kuala Langat, to determine the knowledge and practice associated with diarrhoeal disease among the Orang asli children (0-5 years). It was seen that the social and environmental factors of the settlements were poor. Only 26% of the households had sanitary latrines and 36% had access to safer water supplies. Ninety-five percent of them had monthly income below the national poverty line. The diarrhoeal incidence was high, ie 240/1000 and the most affected were the older children in the age group of 49 - 60 months. Knowledge of diarrhoeal disease was poor. But the majority (84.2%) knew that breast feeding is the best milk for the child in order to avoid diarrhoeal disease.
    Matched MeSH terms: Water Supply
  15. Wong LW, Ong KS, Khoo JR, Goh CBS, Hor JW, Lee SM
    Expert Rev Gastroenterol Hepatol, 2020 Nov;14(11):1093-1105.
    PMID: 32755242 DOI: 10.1080/17474124.2020.1806711
    INTRODUCTION: Intestinal parasitic infection (IPI) is a global health concern among socioeconomically deprived communities in many developing countries. Many preventative strategies have been deployed to control IPI, however, there is a lack in standards on the techniques used to diagnose and monitor the prevalence of IPI.

    AREAS COVERED: The present article will review the diseases associated with IPI and discuss the current IPI control strategies such as the water, sanitation, and hygiene (WASH) interventions, community-led total sanitation (CLTS) approach, and regular anthelminthic treatments. For the first time, this review will also evaluate all currently practised diagnostic techniques for the detection of intestinal parasites and provide insights on future IPI control strategies.

    EXPERT OPINION: Advanced and improved diagnostic methods such as qPCR coupled with a high-resolution melting curve, aptamers, biosensors, and detection of extracellular vesicles can be used for detection of IPI. Vaccination against intestinal parasites can be made available to increase antibodies to interfere with the blood-feeding process by the parasites, which subsequently reduces the reproductive rates of the parasites. These methods collectively can serve as future management strategies for intestinal parasitic infections.

    Matched MeSH terms: Water Supply
  16. Wee SY, Aris AZ, Yusoff FM, Praveena SM
    Sci Rep, 2020 10 20;10(1):17755.
    PMID: 33082440 DOI: 10.1038/s41598-020-74061-5
    Contamination by endocrine disrupting compounds (EDCs) concerns the security and sustainability of a drinking water supply system and human exposure via water consumption. This study analyzed the selected EDCs in source (river water, n = 10) and supply (tap water, n = 155) points and the associated risks. A total of 14 multiclass EDCs was detected in the drinking water supply system in Malaysia. Triclosan (an antimicrobial agent) and 4-octylphenol (a plasticizer) were only detected in the tap water (up to 9.74 and 0.44 ng/L, respectively). Meanwhile, chloramphenicol and 4-nonylphenol in the system were below the method detection limits. Bisphenol A was observed to be highest in tap water at 66.40 ng/L (detection: 100%; median concentration: 0.28 ng/L). There was a significant difference in triclosan contamination between the river and tap water (p water supply system regarding treatment sustainability and water security. Further exploration of smart monitoring and management using Big Data and Internet of Things and the need to invent rapid, robust, sensitive, and efficient sensors is warranted.
    Matched MeSH terms: Water Supply*
  17. Wang L, Li Y, Liang S, Xu M, Qu S
    Sci Total Environ, 2021 Dec 20;801:149781.
    PMID: 34467898 DOI: 10.1016/j.scitotenv.2021.149781
    Increasing trade cooperation under the Belt and Road (B&R) Initiative has promoted economic development and intensified the water scarcity risk transmission between China and countries along the route (B&R countries). Local water scarcity risk (LWSR, the potential direct production losses induced by local water scarcity) can transcend geographical boundaries through global supply chains and influence production activities in downstream economies. To understand the vulnerability of the Initiative to water scarcity, we investigated the impacts of LWSR in China and B&R countries on each other's economies during 2001-2013, using a global environmentally extended multi-regional input-output model. Results reveal that more than 80% of China's trade-related water scarcity risk imports (TWSR imports, the vulnerability to foreign water scarcity risk through imports) originates from B&R countries. The share of TWSR from China in total imports of B&R countries has steadily increased. In particular, India, Thailand, Iran, Pakistan and Kazakhstan have the largest TWSR exports (LWSR in each nation transmitted to other nations through its exports) to China, while South Korea, Thailand, Malaysia, Singapore and Indonesia have the largest imports from China. Water scarcity to their Agriculture sectors is responsible for TWSR transmission between them. Our study can contribute to the policy-making of governments and firms involved in mitigating the supply chain wide water scarcity risk. It also reveals the need for nations to collectively manage water resources to achieve sustainable development.
    Matched MeSH terms: Water Supply
  18. Wan Mohtar WHM, Abdul Maulud KN, Muhammad NS, Sharil S, Yaseen ZM
    Environ Pollut, 2019 May;248:133-144.
    PMID: 30784832 DOI: 10.1016/j.envpol.2019.02.011
    Malaysia depends heavily on rivers as a source for water supply, irrigation, and sustaining the livelihood of local communities. The evolution of land use in urban areas due to rapid development and the continuous problem of illegal discharge have had a serious adverse impact on the health of the country's waterways. Klang River requires extensive rehabilitation and remediation before its water could be utilised for a variety of purposes. A reliable and rigorous remediation work plan is needed to identify the sources and locations of streams that are constantly polluted. This study attempts to investigate the feasibility of utilising a temporal and spatial risk quotient (RQ) based analysis to make an accurate assessment of the current condition of the tributaries in the Klang River catchment area. The study relies on existing data sets on Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), Total Suspended Solids (TSS), and Ammonia (NH3) to evaluate the water quality at thirty strategic locations. Analysis of ammonia pollution is not only based on the limit established for river health but was expanded to include the feasibility of using the water for water intake, recreational activities, and sustaining fish population. The temporal health of Klang River was evaluated using the Risk Matrix Approach (RMA) based on the frequency of RQ > 1 and associated colour-coded hazard impacts. By using the developed RMA, the hazard level for each parameter at each location was assessed and individually mapped using Geographic Information System (GIS). The developed risk hazard mapping has high potential as one of the essential tools in making decisions for a cost-effective river restoration and rehabilitation.
    Matched MeSH terms: Water Supply
  19. Wan Alwi SR, Manan ZA, Samingin MH, Misran N
    J Environ Manage, 2008 Jul;88(2):219-52.
    PMID: 17449168
    Water pinch analysis (WPA) is a well-established tool for the design of a maximum water recovery (MWR) network. MWR, which is primarily concerned with water recovery and regeneration, only partly addresses water minimization problem. Strictly speaking, WPA can only lead to maximum water recovery targets as opposed to the minimum water targets as widely claimed by researchers over the years. The minimum water targets can be achieved when all water minimization options including elimination, reduction, reuse/recycling, outsourcing and regeneration have been holistically applied. Even though WPA has been well established for synthesis of MWR network, research towards holistic water minimization has lagged behind. This paper describes a new holistic framework for designing a cost-effective minimum water network (CEMWN) for industry and urban systems. The framework consists of five key steps, i.e. (1) Specify the limiting water data, (2) Determine MWR targets, (3) Screen process changes using water management hierarchy (WMH), (4) Apply Systematic Hierarchical Approach for Resilient Process Screening (SHARPS) strategy, and (5) Design water network. Three key contributions have emerged from this work. First is a hierarchical approach for systematic screening of process changes guided by the WMH. Second is a set of four new heuristics for implementing process changes that considers the interactions among process changes options as well as among equipment and the implications of applying each process change on utility targets. Third is the SHARPS cost-screening technique to customize process changes and ultimately generate a minimum water utilization network that is cost-effective and affordable. The CEMWN holistic framework has been successfully implemented on semiconductor and mosque case studies and yielded results within the designer payback period criterion.
    Matched MeSH terms: Water Supply/economics*
  20. Vincent L, Michel L, Catherine C, Pauline R
    Water Sci Technol, 2014;70(5):787-94.
    PMID: 25225924 DOI: 10.2166/wst.2014.290
    Finding alternative resources to secure or increase water availability is a key issue in most urban areas. This makes the research of alternative and local water resources of increasing importance. In the context of political tension with its main water provider (Malaysia), Singapore has been implementing a comprehensive water policy for some decades, which relies on water demand management and local water resource mobilisation in order to reach water self-sufficiency by 2060. The production of water from alternative resources through seawater desalination or water reclamation implies energy consumptive technologies such as reverse osmosis. In the context of increasing energy costs and high primary energy dependency, this water self-sufficiency objective is likely to be an important challenge for Singapore. The aim of this paper is to quantify the long-term impact of Singapore's water policy on the national electricity bill and to investigate the impact of Singapore's projects to reduce its water energy footprint. We estimate that 2.0% of the Singaporean electricity demand is already dedicated to water and wastewater treatment processes. If its water-energy footprint dramatically increases in the coming decades, ambitious research projects may buffer the energy cost of water self-sufficiency.
    Matched MeSH terms: Water Supply*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links