Displaying publications 1 - 20 of 35 in total

Abstract:
Sort:
  1. Khaw KY, Kumar P, Yusof SR, Ramanathan S, Murugaiyah V
    Arch Pharm (Weinheim), 2020 Nov;353(11):e2000156.
    PMID: 32716578 DOI: 10.1002/ardp.202000156
    α-Mangostin has been reported to possess a broad range of pharmacological effects including potent cholinesterase inhibition, but the development of α-mangostin as a potential lead compound is impeded by its toxicity. The present study investigated the impact of simple structural modification of α-mangostin on its cholinesterase inhibitory activities and toxicity toward neuroblastoma and liver cancer cells. The dialkylated derivatives retained good acetylcholinesterase (AChE) inhibitory activities with IC50 values between 4.15 and 6.73 µM, but not butyrylcholinesterase (BChE) inhibitory activities, compared with α-mangostin, a dual inhibitor (IC50 : AChE, 2.48 µM; BChE, 5.87 µM). Dialkylation of α-mangostin produced AChE selective inhibitors that formed hydrophobic interactions at the active site of AChE. Interestingly, all four dialkylated derivatives of α-mangostin showed much lower cytotoxicity, being 6.4- to 9.0-fold and 3.8- to 5.5-fold less toxic than their parent compound on neuroblastoma and liver cancer cells, respectively. Likewise, their selectivity index was higher by 1.9- to 4.4-fold; in particular, A2 and A4 showed improved selectivity index compared with α-mangostin. Taken together, modification of the hydroxyl groups of α-mangostin at positions C-3 and C-6 greatly influenced its BChE inhibitory and cytotoxic but not its AChE inhibitory activities. These dialkylated derivatives are viable candidates for further structural modification and refinement, worthy in the search of new AChE inhibitors with higher safety margins.
    Matched MeSH terms: Xanthones/pharmacology*
  2. Taher M, Susanti D, Rezali MF, Zohri FS, Ichwan SJ, Alkhamaiseh SI, et al.
    Asian Pac J Trop Med, 2012 Feb;5(2):136-41.
    PMID: 22221758 DOI: 10.1016/S1995-7645(12)60012-1
    OBJECTIVE: To study the chemical constituents of stembark of Garcinia malaccensis (G. malaccensis) together with apoptotic, antimicrobial and antioxidant activities.

    METHODS: Purification and structure elucidation were carried out by chromatographic and spectroscopic techniques, respectively. MTT and trypan blue exclusion methods were performed to study the cytotoxic activity. Antibacterial activity was conducted by disc diffusion and microdilution methods, whereas antioxidant activities were done by ferric thiocyanate method and DPPH radical scavenging.

    RESULTS: The phytochemical study led to the isolation of α,β-mangostin and cycloart-24-en-3β-ol. α-Mangostin exhibited cytotoxic activity against HSC-3 cells with an IC(50) of 0.33 μM. β- and α-mangostin showed activity against K562 cells with IC(50) of 0.40 μM and 0.48 μM, respectively. α-Mangostin was active against Gram-positive bacteria, Staphylococcus aureus (S. aureus) and Bacillus anthracis (B. anthracis) with inhibition zone and MIC value of (19 mm; 0.025 mg/mL) and (20 mm; 0.013 mg/mL), respectively. In antioxidant assay, α-mangostin exhibited activity as an inhibitor of lipid peroxidation.

    CONCLUSIONS: G. malaccensis presence α- and β-mangostin and cycloart-24-en-3β-ol. β-Mangostin was found very active against HSC-3 cells and K562. The results suggest that mangostins derivatives have the potential to inhibit the growth of cancer cells by inducing apoptosis. In addition, α-and β-mangostin was found inhibit the growth of Gram-positive pathogenic bacteria and also showed the activity as an inhibitor of lipid peroxidation.

    Matched MeSH terms: Xanthones/pharmacology*
  3. Omer FAA, Hashim NM, Ibrahim MY, Aldoubi AF, Hassandarvish P, Dehghan F, et al.
    BMC Complement Altern Med, 2017 Jul 17;17(1):366.
    PMID: 28716025 DOI: 10.1186/s12906-017-1867-0
    BACKGROUND: Beta-mangostin (BM) is a xanthone-type of natural compound isolated from Cratoxylum arborescens. This study aimed to examine the apoptosis mechanisms induced by BM in a murine monomyelocytic cell line (WEHI-3) in vitro and in vivo.

    METHODS: A WEHI-3 cell line was used to evaluate the cytotoxicity of BM by MTT. AO/PI and Hoechst 33342 dyes, Annexin V, multiparametric cytotoxicity 3 by high content screening (HCS); cell cycle tests were used to estimate the features of apoptosis and BM effects. Caspase 3 and 9 activities, ROS, western blot for Bcl2, and Bax were detected to study the mechanism of apoptosis. BALB/c mice injected with WEHI-3 cells were used to assess the apoptotic effect of BM in vivo.

    RESULTS: BM suppressed the growth of WEHI-3 cells at an IC50value of 14 ± 3 μg/mL in 24 h. The ROS production was increased inside the cells in the treated doses. Both caspases (9 and 3) were activated in treating WEHI-3 cells at 24, 48 and 72 h. Different signs of apoptosis were detected, such as cell membrane blebbing, DNA segmentation and changes in the asymmetry of the cell membrane. Another action by which BM could inhibit WEHI-3 cells is to restrain the cell cycle at the G1/G0 phase. In the in vivo study, BM reduced the destructive effects of leukaemia on the spleen and liver by inducing apoptosis in leukaemic cells.

    CONCLUSION: BM exerts anti-leukaemic properties in vitro and in vivo.

    Matched MeSH terms: Xanthones/pharmacology*
  4. Sani MH, Taher M, Susanti D, Kek TL, Salleh MZ, Zakaria ZA
    Biol Res Nurs, 2015 Jan;17(1):68-77.
    PMID: 25504952 DOI: 10.1177/1099800414529648
    Elucidate the antinociceptive mechanisms of α-mangostin isolated from Garcinia malaccensis Linn.
    Matched MeSH terms: Xanthones/pharmacology*
  5. Chen SP, Lin SR, Chen TH, Ng HS, Yim HS, Leong MK, et al.
    Biomed Pharmacother, 2021 Dec;144:112333.
    PMID: 34678724 DOI: 10.1016/j.biopha.2021.112333
    Diabetes mellitus (DM) is concomitant with significant morbidity and mortality and its prevalence is accumulative in worldwide. The conventional antidiabetic agents are known to mitigate the symptoms of diabetes; however, they may also cause side and adverse effects. There is an imperative necessity to conduct preclinical and clinical trials for the discovery of alternative therapeutic agents that can overcome the drawbacks of current synthetic antidiabetic drugs. This study aimed to investigate the efficacy of lowering blood glucose and underlined mechanism of γ-mangostin, mangosteen (Garcinia mangostana) xanthones. The results showed γ-Mangostin had a antihyperglycemic ability in short (2 h)- and long-term (28 days) administrations to diet-induced diabetic mice. The long-term administration of γ-mangostin attenuated fasting blood glucose of diabetic mice and exhibited no hepatotoxicity and nephrotoxicity. Moreover, AMPK, PPARγ, α-amylase, and α-glucosidase were found to be the potential targets for simulating binds with γ-mangostin after molecular docking. To validate the docking results, the inhibitory potency of γ-mangostin againstα-amylase/α-glucosidase was higher than Acarbose via enzymatic assay. Interestingly, an allosteric relationship between γ-mangostin and insulin was also found in the glucose uptake of VSMC, FL83B, C2C12, and 3T3-L1 cells. Taken together, the results showed that γ-mangostin exerts anti-hyperglycemic activity through promoting glucose uptake and reducing saccharide digestion by inhibition of α-amylase/α-glucosidase with insulin sensitization, suggesting that γ-mangostin could be a new clue for drug discovery and development to treat diabetes.
    Matched MeSH terms: Xanthones/pharmacology*
  6. Ibrahim MY, Mohd Hashim N, Mohan S, Abdulla MA, Abdelwahab SI, Kamalidehghan B, et al.
    Drug Des Devel Ther, 2014;8:2193-211.
    PMID: 25395836 DOI: 10.2147/DDDT.S66574
    BACKGROUND: Cratoxylum arborescens has been used traditionally in Malaysia for the treatment of various ailments.

    METHODS: α-Mangostin (AM) was isolated from C. arborescens and its cell death mechanism was investigated. AM-induced cytotoxicity was observed with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Acridine orange/propidium iodide staining and annexin V were used to detect cells in early phases of apoptosis. High-content screening was used to observe the nuclear condensation, cell permeability, mitochondrial membrane potential, and cytochrome c release. The role of caspases-3/7, -8, and -9, reactive oxygen species, Bcl-2 and Bax expression, and cell cycle arrest were also investigated. To determine the role of the central apoptosis-related proteins, a protein array followed by immunoblot analysis was conducted. Moreover, the involvement of nuclear factor-kappa B (NF-κB) was also analyzed.

    RESULTS: Apoptosis was confirmed by the apoptotic cells stained with annexin V and increase in chromatin condensation in nucleus. Treatment of cells with AM promoted cell death-transducing signals that reduced MMP by downregulation of Bcl-2 and upregulation of Bax, triggering cytochrome c release from the mitochondria to the cytosol. The released cytochrome c triggered the activation of caspase-9 followed by the executioner caspase-3/7 and then cleaved the PARP protein. Increase of caspase-8 showed the involvement of extrinsic pathway. AM treatment significantly arrested the cells at the S phase (P<0.05) concomitant with an increase in reactive oxygen species. The protein array and Western blotting demonstrated the expression of HSP70. Moreover, AM significantly blocked the induced translocation of NF-κB from cytoplasm to nucleus.

    CONCLUSION: Together, the results demonstrate that the AM isolated from C. arborescens inhibited the proliferation of MDA-MB-231 cells, leading to cell cycle arrest and programmed cell death, which was suggested to occur through both the extrinsic and intrinsic apoptosis pathways with involvement of the NF-κB and HSP70 signaling pathways.

    Matched MeSH terms: Xanthones/pharmacology*
  7. Ibrahim MY, Hashim NM, Mohan S, Abdulla MA, Kamalidehghan B, Ghaderian M, et al.
    Drug Des Devel Ther, 2014;8:1629-47.
    PMID: 25302018 DOI: 10.2147/DDDT.S66105
    Cratoxylum arborescens is an equatorial plant belonging to the family Guttiferae. In the current study, α-Mangostin (AM) was isolated and its cell death mechanism was studied. HCS was undertaken to detect the nuclear condensation, mitochondrial membrane potential, cell permeability, and the release of cytochrome c. An investigation for reactive oxygen species formation was conducted using fluorescent analysis. To determine the mechanism of cell death, human apoptosis proteome profiler assay was conducted. In addition, using immunofluorescence and immunoblotting, the levels of Bcl-2-associated X protein (Bax) and B-cell lymphoma (Bcl)-2 proteins were also tested. Caspaces such as 3/7, 8, and 9 were assessed during treatment. Using HCS and Western blot, the contribution of nuclear factor kappa-B (NF-κB) was investigated. AM had showed a selective cytotoxicity toward the cancer cells with no toxicity toward the normal cells even at 30 μg/mL, thereby indicating that AM has the attributes to induce cell death in tumor cells. The treatment of MCF-7 cells with AM prompted apoptosis with cell death-transducing signals. This regulated the mitochondrial membrane potential by down-regulation of Bcl-2 and up-regulation of Bax, thereby causing the release of cytochrome c from the mitochondria into the cytosol. The liberation of cytochrome c activated caspace-9, which, in turn, activated the downstream executioner caspace-3/7 with the cleaved poly (ADP-ribose) polymerase protein, thereby leading to apoptotic alterations. Increase of caspace 8 had showed the involvement of an extrinsic pathway. This type of apoptosis was suggested to occur through both extrinsic and intrinsic pathways and prevention of translocation of NF-κB from the cytoplasm to the nucleus. Our results revealed AM prompt apoptosis of MCF-7 cells through NF-κB, Bax/Bcl-2 and heat shock protein 70 modulation with the contribution of caspaces. Moreover, ingestion of AM at (30 and 60 mg/kg) significantly reduced tumor size in an animal model of breast cancer. Our results suggest that AM is a potentially useful agent for the treatment of breast cancer.
    Matched MeSH terms: Xanthones/pharmacology*
  8. Sidahmed HM, Hashim NM, Mohan S, Abdelwahab SI, Taha MM, Dehghan F, et al.
    Drug Des Devel Ther, 2016;10:297-313.
    PMID: 26834460 DOI: 10.2147/DDDT.S80625
    PURPOSE: β-Mangostin (BM) from Cratoxylum arborescens demonstrated various pharmacological activities such as anticancer and anti-inflammatory. In this study, we aimed to investigate its antiulcer activity against ethanol ulcer model in rats.

    MATERIALS AND METHODS: BM was isolated from C. arborescens. Gastric acid output, ulcer index, gross evaluation, mucus production, histological evaluation using hematoxylin and eosin and periodic acid-Schiff staining and immunohistochemical localization for heat shock protein 70 (HSP70) and Bax proteins were investigated. Possible involvement of reduced glutathione, lipid peroxidation, prostaglandin E2, antioxidant enzymes, superoxide dismutase and catalase enzymes, radical scavenging, nonprotein sulfhydryl compounds, and anti-Helicobacter pylori were investigated.

    RESULTS: BM showed antisecretory activity against the pylorus ligature model. The pretreatment with BM protect gastric mucosa from ethanol damaging effect as seen by the improved gross and histological appearance. BM significantly reduced the ulcer area formation, the submucosal edema, and the leukocytes infiltration compared to the ulcer control. The compound showed intense periodic acid-Schiff staining to the gastric mucus layer and marked amount of alcian blue binding to free gastric mucus. BM significantly increased the gastric homogenate content of prostaglandin E2 glutathione, superoxide dismutase, catalase, and nonprotein sulfhydryl compounds. The compound inhibited the lipid peroxidation revealed by the reduced gastric content of malondialdehyde. Moreover, BM upregulate HSP70 expression and downregulate Bax expression. Furthermore, the compound showed interesting anti-H. pylori activity.

    CONCLUSION: Thus, it could be concluded that BM possesses gastroprotective activity, which could be attributed to the antisecretory, mucus production, antioxidant, HSP70, antiapoptotic, and anti-H. pylori mechanisms.

    Matched MeSH terms: Xanthones/pharmacology*
  9. Zamakshshari NH, Ee GCL, Ismail IS, Ibrahim Z, Mah SH
    Food Chem Toxicol, 2019 Nov;133:110800.
    PMID: 31479710 DOI: 10.1016/j.fct.2019.110800
    The stem bark of Calophyllum depressinervosum and Calophyllum buxifolium were extracted and examined for their antioxidant activities, together with cytotoxicity towards human cancer cells. The methanol extract of C. depressinervosum exhibited good DPPH and NO scavenging effects. The strongest BCB inhibition and FIC effects were shown by dichloromethane and ethyl acetate extracts of both species. Overall, DPPH, FRAP and FIC assays showed strong correlation with TPC. For cytotoxicity, hexane extract of C. depressinervosum possessed the strongest anti-proliferative activities towards SNU-1 cells while the hexane extract of C. buxifolium showed the strongest activity towards LS-174T and K562 cells with the IC50 values ranging from 7 to 17 μg/mL. The purification of plant extracts afforded eight xanthones, ananixanthone (1), caloxanthone B (2), caloxanthone I (3), caloxanthone J (4) xanthochymone B (5), thwaitesixanthone (6), 1,3,5,6-tetrahydroxyxanthone (7) and dombakinaxanthone (8). All the xanthones, except 1 were reported for the first time from both Calophyllum species. The xanthones were examined for their cytotoxic effect against K562 leukemic cells. Compounds 1 and 2 showed strong cytotoxicity with the IC50 values of 2.96 and 1.23 μg/mL, respectively. The molecular binding interaction of 2 was further investigated by performing molecular docking study with promising protein receptor Src kinase.
    Matched MeSH terms: Xanthones/pharmacology*
  10. Pedraza-Chaverri J, Cárdenas-Rodríguez N, Orozco-Ibarra M, Pérez-Rojas JM
    Food Chem Toxicol, 2008 Oct;46(10):3227-39.
    PMID: 18725264 DOI: 10.1016/j.fct.2008.07.024
    Many tropical plants have interesting biological activities with potential therapeutic applications. Garcinia mangostana Linn. (GML) belongs to the family of Guttiferae and is named "the queen of fruits". It is cultivated in the tropical rainforest of some Southeast Asian nations like Indonesia, Malaysia, Sri Lanka, Philippines, and Thailand. People in these countries have used the pericarp (peel, rind, hull or ripe) of GML as a traditional medicine for the treatment of abdominal pain, diarrhea, dysentery, infected wound, suppuration, and chronic ulcer. Experimental studies have demonstrated that extracts of GML have antioxidant, antitumoral, antiallergic, anti-inflammatory, antibacterial, and antiviral activities. The pericarp of GML is a source of xanthones and other bioactive substances. Prenylated xanthones isolated from GML have been extensively studied; some members of these compounds possess antioxidant, antitumoral, antiallergic, anti-inflammatory, antibacterial, antifungal and antiviral properties. Xanthones have been isolated from pericarp, whole fruit, heartwood, and leaves. The most studied xanthones are alpha-, beta-, and gamma-mangostins, garcinone E, 8-deoxygartanin, and gartanin. The aim of this review is to summarize findings of beneficial properties of GML's extracts and xanthones isolated from this plant so far.
    Matched MeSH terms: Xanthones/pharmacology
  11. Chan KM, Hamzah R, Rahaman AA, Jong VY, Khong HY, Rajab NF, et al.
    Food Chem Toxicol, 2012 Aug;50(8):2916-22.
    PMID: 22613213 DOI: 10.1016/j.fct.2012.04.048
    Inophyllin A (INO-A), a pyranoxanthone isolated from the roots of Calophyllum inophyllum represents a new xanthone with potential chemotherapeutic activity. In this study, the molecular mechanism of INO-A-induced cell death was investigated in Jurkat T lymphoblastic leukemia cells. Assessment of phosphatidylserine exposure confirmed apoptosis as the primary mode of cell death in INO-A-treated Jurkat cells. INO-A treatment for only 30 min resulted in a significant increase of tail moment which suggests that DNA damage is an early apoptotic signal. Further flow cytometric assessment of the superoxide anion level confirmed that INO-A induced DNA damage was mediated with a concomitant generation of reactive oxygen species (ROS). Investigation on the thiols revealed an early decrease of free thiols in 30 min after 50 μM INO-A treatment. Using tetramethylrhodamine ethyl ester, a potentiometric dye, the loss of mitochondrial membrane potential (MPP) was observed in INO-A-treated cells as early as 30 min. The INO-A-induced apoptosis progressed with the simultaneous activation of caspases-2 and -9 which then led to the processing of caspase-3. Taken together, these data demonstrate that INO-A induced early oxidative stress, DNA damage and loss of MMP which subsequently led to the activation of an intrinsic pathway of apoptosis in Jurkat cells.
    Matched MeSH terms: Xanthones/pharmacology*
  12. Ee GC, Mah SH, Rahmani M, Taufiq-Yap YH, Teh SS, Lim YM
    J Asian Nat Prod Res, 2011 Oct;13(10):956-60.
    PMID: 21972812 DOI: 10.1080/10286020.2011.600248
    The stem bark extracts of Calophyllum inophyllum furnished one new furanoxanthone, inophinnin (1), in addition to inophyllin A (2), macluraxanthone (3), pyranojacareubin (4), 4-hydroxyxanthone, friedelin, stigmasterol, and betulinic acid. The structures of these compounds were determined by spectroscopic analysis of 1D and 2D NMR spectral data ((1)H, (13)C, DEPT, COSY, HMQC, and HMBC) while EI-MS gave the molecular mass. The new xanthone, inophinnin (1), exhibited some anti-inflammatory activity in nitric oxide assay.
    Matched MeSH terms: Xanthones/pharmacology
  13. Hashim N, Rahmani M, Sukari MA, Ali AM, Alitheen NB, Go R, et al.
    J Asian Nat Prod Res, 2010 Feb;12(2):106-12.
    PMID: 20390751 DOI: 10.1080/10286020903450411
    Two new xanthones, pyranocycloartobiloxanthone A (1) and dihydroartoindonesianin C (2), were isolated from the stem bark of Artocarpus obtusus Jarrett by chromatographic separation. Their structures were determined by using spectroscopic methods and comparison with known related compounds. Pyranocycloartobiloxanthone A (1) showed strong free radical scavenging activity by using DPPH assay as well as cytotoxicity towards K562, HL-60, and MCF7 cell lines.
    Matched MeSH terms: Xanthones/pharmacology
  14. Ee GC, Daud S, Izzaddin SA, Rahmani M
    J Asian Nat Prod Res, 2008 May-Jun;10(5-6):475-9.
    PMID: 18464091 DOI: 10.1080/10286020801948490
    Our current interest in searching for natural anti-cancer lead compounds from plants has led us to the discovery that the stem and roots of Garcinia mangostana can be a source of such compounds. The stem furnished 2,8-dihydroxy-6-methoxy-5-(3-methylbut-2-enyl)-xanthone (1), which is a new xanthone. Meanwhile, the root bark of the plant furnished six xanthones, namely alpha-mangostin (2), beta-mangostin (3), gamma-mangostin (4), garcinone D (5), mangostanol (6), and gartanin (7). The hexane and chloroform extracts of the root bark of G. mangostana as well as the hexane extract of the stem bark were found to be active against the CEM-SS cell line. gamma-Mangostin (4) showed good activity with a very low IC(50) value of 4.7 microg/ml, while alpha-mangostin (2), mangostanol (6), and garcinone D (5) showed significant activities with IC(50) values of 5.5, 9.6, and 3.2 microg/ml, respectively. This is the first report on the cytotoxicity of the extracts of the stem and root bark of G. mangostana and of alpha-mangostin, mangostanol, and garcinone D against the CEM-SS cell line.
    Matched MeSH terms: Xanthones/pharmacology
  15. Tan WN, Khairuddean M, Wong KC, Tong WY, Ibrahim D
    J Asian Nat Prod Res, 2016 Aug;18(8):804-11.
    PMID: 26999039 DOI: 10.1080/10286020.2016.1160071
    A new xanthone, namely garcinexanthone G (1), along with eight known compounds, stigmasta-5,22-dien-3β-ol (2), stigmasta-5,22-dien-3-O-β-glucopyranoside (3), 3β-acetoxy-11α,12α-epoxyoleanan-28,13β-olide (4), 2,6-dimethoxy-p-benzoquinone (5), 1,3,5-trihydroxy-2-methoxyxanthone (6), 1,3,7-trihydroxyxanthone (7), kaempferol (8) and quercetin (9), were isolated from the stem bark of Garcinia atroviridis. Their structures were elucidated based on spectroscopic methods including nuclear magnetic resonance (NMR-1D and 2D), UV, IR, and mass spectrometry. All the isolated compounds were evaluated for their antioxidant properties based on the DPPH radical scavenging activities. Results showed that 1,3,7-trihydroxyxanthone and quercetin showed significant antioxidant activities with EC50 values of 16.20 and 12.68 μg/ml, respectively, as compared to the control, ascorbic acid (7.4 μg/ml).
    Matched MeSH terms: Xanthones/pharmacology*
  16. Hashim NM, Rahmani M, Ee GC, Sukari MA, Yahayu M, Oktima W, et al.
    J Biomed Biotechnol, 2012;2012:130627.
    PMID: 21960741 DOI: 10.1155/2012/130627
    An investigation of the chemical constituents in Artocarpus obtusus species led to the isolation of three new xanthones, pyranocycloartobiloxanthone A (1), dihydroartoindonesianin C (2), and pyranocycloartobiloxanthone B (3). The compounds were subjected to antiproliferative assay against human promyelocytic leukemia (HL60), human chronic myeloid leukemia (K562), and human estrogen receptor (ER+) positive breast cancer (MCF7) cell lines. Pyranocycloartobiloxanthone A (1) consistently showed strong cytotoxic activity against the three cell lines compared to the other two with IC(50) values of 0.5, 2.0 and 5.0 μg/mL, respectively. Compound (1) was also observed to exert antiproliferative activity and apoptotic promoter towards HL60 and MCF7 cell lines at respective IC(50) values. The compound (1) was not toxic towards normal cell lines human nontumorigenic breast cell line (MCF10A) and human peripheral blood mononuclear cells (PBMCs) with IC(50) values of more than 30 μg/mL.
    Matched MeSH terms: Xanthones/pharmacology*
  17. Ikram NK, Durrant JD, Muchtaridi M, Zalaludin AS, Purwitasari N, Mohamed N, et al.
    J Chem Inf Model, 2015 Feb 23;55(2):308-16.
    PMID: 25555059 DOI: 10.1021/ci500405g
    Recent outbreaks of highly pathogenic and occasional drug-resistant influenza strains have highlighted the need to develop novel anti-influenza therapeutics. Here, we report computational and experimental efforts to identify influenza neuraminidase inhibitors from among the 3000 natural compounds in the Malaysian-Plants Natural-Product (NADI) database. These 3000 compounds were first docked into the neuraminidase active site. The five plants with the largest number of top predicted ligands were selected for experimental evaluation. Twelve specific compounds isolated from these five plants were shown to inhibit neuraminidase, including two compounds with IC50 values less than 92 μM. Furthermore, four of the 12 isolated compounds had also been identified in the top 100 compounds from the virtual screen. Together, these results suggest an effective new approach for identifying bioactive plant species that will further the identification of new pharmacologically active compounds from diverse natural-product resources.
    Matched MeSH terms: Xanthones/pharmacology
  18. Khaw KY, Chong CW, Murugaiyah V
    J Enzyme Inhib Med Chem, 2020 Dec;35(1):1433-1441.
    PMID: 32608273 DOI: 10.1080/14756366.2020.1786819
    Mangosteen is one of the best tasting tropical fruit widely cultivated in Southeast Asia. This study aimed to quantify xanthone content in different parts of Garcinia mangostana by LC-QTOF-MS and determine its influence on their cholinesterase inhibitory activities. The total xanthone content in G. mangostana was in the following order: pericarp > calyx > bark > stalk > stem > leaves > aril. The total xanthone content of pericarp was 100 times higher than the aril. Methanol extracts of the pericarp and calyx demonstrated the most potent inhibitory activities against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with IC50 values of 0.90 and 0.37 µg/mL, respectively. Statistical analysis showed a strong correlation between xanthone content and cholinesterase inhibition. Nonmetric multidimensional scaling analysis revealed α-mangostin and γ-mangostin of pericarp as the key metabolites contributing to cholinesterase inhibition. Due to the increasing demand of mangosteen products, repurposing of fruit waste (pericarp) has great potential for enhancement of the cognitive health of human beings.
    Matched MeSH terms: Xanthones/pharmacology*
  19. Loh ZH, Kwong HC, Lam KW, Teh SS, Ee GCL, Quah CK, et al.
    J Enzyme Inhib Med Chem, 2021 Dec;36(1):627-639.
    PMID: 33557647 DOI: 10.1080/14756366.2021.1882452
    A new series of 3-O-substituted xanthone derivatives were synthesised and evaluated for their anti-cholinergic activities against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). The results indicated that the xanthone derivatives possessed good AChE inhibitory activity with eleven of them (5, 8, 11, 17, 19, 21-23, 26-28) exhibited significant effects with the IC50 values ranged 0.88 to 1.28 µM. The AChE enzyme kinetic study of 3-(4-phenylbutoxy)-9H-xanthen-9-one (23) and ethyl 2-((9-oxo-9H-xanthen-3-yl)oxy)acetate (28) showed a mixed inhibition mechanism. Molecular docking study showed that 23 binds to the active site of AChE and interacts via extensive π-π stacking with the indole and phenol side chains of Trp86 and Tyr337, besides the hydrogen bonding with the hydration site and π-π interaction with the phenol side chain of Y72. This study revealed that 3-O-alkoxyl substituted xanthone derivatives are potential lead structures, especially 23 and 28 which can be further developed into potent AChE inhibitors.
    Matched MeSH terms: Xanthones/pharmacology*
  20. Syam S, Bustamam A, Abdullah R, Sukari MA, Hashim NM, Mohan S, et al.
    J Ethnopharmacol, 2014 Apr 28;153(2):435-45.
    PMID: 24607509 DOI: 10.1016/j.jep.2014.02.051
    The fruit hull of Garcinia mangostana Linn. has been used in traditional medicine for treatment of various inflammatory diseases. Hence, this study aims to investigate the in vitro and in vivo anti-inflammatory effect of β mangostin (βM), a major compound present in Garcinia mangostana.
    Matched MeSH terms: Xanthones/pharmacology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links