Displaying publications 1 - 20 of 114 in total

Abstract:
Sort:
  1. Alhajj MN, Halboub E, Yacob N, Al-Maweri SA, Ahmad SF, Celebić A, et al.
    BMC Oral Health, 2024 Mar 04;24(1):303.
    PMID: 38439020 DOI: 10.1186/s12903-024-04083-2
    BACKGROUND: The present systematic review and meta-analysis investigated the available evidence about the adherence of Candida Albicans to the digitally-fabricated acrylic resins (both milled and 3D-printed) compared to the conventional heat-polymerized acrylic resins.

    METHODS: This study followed the guidelines of the Preferred Reporting Items for Systematic Review and Meta-analyses (PRISMA). A comprehensive search of online databases/search tools (Web of Science, Scopus, PubMed, Ovid, and Google Scholar) was conducted for all relevant studies published up until May 29, 2023. Only in-vitro studies comparing the adherence of Candida albicans to the digital and conventional acrylic resins were included. The quantitative analyses were performed using RevMan v5.3 software.

    RESULTS: Fourteen studies were included, 11 of which were meta-analyzed based on Colony Forming Unit (CFU) and Optical Density (OD) outcome measures. The pooled data revealed significantly lower candida colonization on the milled digitally-fabricated compared to the heat-polymerized conventionally-fabricated acrylic resin materials (MD = - 0.36; 95%CI = - 0.69, - 0.03; P = 0.03 and MD = - 0.04; 95%CI = - 0.06, - 0.01; P = 0.0008; as measured by CFU and OD respectively). However, no differences were found in the adhesion of Candida albicans between the 3D-printed digitally-fabricated compared to the heat-polymerized conventionally-fabricated acrylic resin materials (CFU: P = 0.11, and OD: P = 0.20).

    CONCLUSION: The available evidence suggests that candida is less likely to adhere to the milled digitally-fabricated acrylic resins compared to the conventional ones.

    Matched MeSH terms: Acrylic Resins
  2. Kannaiyan K, Rakshit P, Bhat MPS, Sadasiva SKK, Babu SC, Ummer H
    J Contemp Dent Pract, 2023 Nov 01;24(11):891-894.
    PMID: 38238278 DOI: 10.5005/jp-journals-10024-3563
    AIM: The current study aimed to determine the impact of three different disinfectants on the surface roughness and color stability of heat-cure acrylic denture material.

    MATERIALS AND METHODS: Using a stainless-steel mold, disc-shaped wax patterns with dimensions of 10 mm in diameter and 2 mm thick (in accordance with ADA Specification No. 12) were created and prepared for a total of 75 acrylic samples. Dimensions of all 75 acrylic samples were checked with a digital Vernier caliper. About 25 samples of denture base material were immersed in three different chemical disinfectants: Group I: immersed in chlorhexidine gluconate solution, group II: immersed in sodium hypochlorite solution, and group III: immersed in glutaraldehyde solution. All samples were scrubbed daily for 1 minute with the appropriate disinfectant and submerged for 10 minutes in the same disinfectant. Between disinfection cycles, samples were kept in distilled water at 37°C. Color stability was measured using a reflection spectrophotometer. Surface roughness values were measured by a profilometer at baseline following 15 days and 30 days.

    RESULTS: After 15 days, the color stability was better in chlorhexidine gluconate solution group (4.88 ± 0.24) than sodium hypochlorite solution (4.74 ± 0.18) and glutaraldehyde solution group (4.46 ± 0.16). The mean surface roughness was less in glutaraldehyde solution group (2.10 ± 0.19), followed by chlorhexidine gluconate solution group (2.48 ± 0.09) and sodium hypochlorite solution group (2.64 ± 0.03). After 30 days, the color stability was significantly better in chlorhexidine gluconate solution group (4.40 ± 0.02), followed by sodium hypochlorite solution (4.06 ± 0.16) and glutaraldehyde solution group (3.87 ± 0.17). The mean surface roughness was significantly lesser in glutaraldehyde solution group (2.41 ± 0.14), followed by chlorhexidine gluconate solution group (2.94 ± 0.08) and sodium hypochlorite solution group (3.02 ± 0.13).

    CONCLUSION: In conclusion, the color stability was significantly better in chlorhexidine gluconate solution group than sodium hypochlorite solution and glutaraldehyde solution group. But the surface roughness was significantly lesser in the glutaraldehyde solution group, followed by the chlorhexidine gluconate and sodium hypochlorite solution group.

    CLINICAL SIGNIFICANCE: The maintenance of the prosthesis requires the use of a denture disinfectant; therefore, it is crucial to select one that is effective but would not have a negative impact on the denture base resin's inherent characteristics over time. How to cite this article: Kannaiyan K, Rakshit P, Bhat MPS, et al. Effect of Different Disinfecting Agents on Surface Roughness and Color Stability of Heat-cure Acrylic Denture Material: An In Vitro Study. J Contemp Dent Pract 2023;24(11):891-894.

    Matched MeSH terms: Acrylic Resins
  3. Zainuddin NAMN, Razak NAA, Karim MSA, Osman NAA
    Sci Rep, 2023 Feb 15;13(1):2664.
    PMID: 36792914 DOI: 10.1038/s41598-022-21990-y
    Acrylic and epoxy are common types of resin used in fabricating sockets. Different types of resin will affect the internal surface of a laminated socket. This paper is to determine the best combination of ratio for epoxy and acrylic resin for a laminated prosthesis socket and to evaluate the surface profile analysis of different combinations of laminated prosthetic sockets for surface roughness. Transfemoral sockets were created using various resin-to-hardener ratios of 2:1, 3:1, 3:2, 2:3, and 1:3 for epoxy resin and 100:1, 100:2, 100:3, 100:4, and 100:5 for acrylic resin. Eight layers of stockinette consisting of four elastic stockinette and four Perlon stockinette were used. A sample with a size of 4 cm × 6 cm was cut out from the socket on the lateral side below the Greater Trochanter area. The Mitutoyo Sj-210 Surface Tester stylus was run through the sample and gave the Average Surface Roughness value (Ra), Root Mean Square Roughness value (Rq), and Ten-Point Mean Roughness value (Rz). Epoxy resin shows a smoother surface compared to acrylic resin with Ra values of is 0.766 µm, 0.9716 µm, 0.9847 µm and 1.5461 µm with 3:2, 3:1, 2:1 and 2:3 ratio respectively. However, for epoxy resin with ratio 1:3, the resin does not cure with the hardener. As for acrylic resin the Ra values are 1.0086 µm, 2.362 µm, 3.372 µm, 4.762 µm and 6.074 µm with 100: 1, 100:2, 100:5, 100:4 and 100:3 ratios, respectively. Epoxy resin is a better choice in fabricating a laminated socket considering the surface produced is smoother.
    Matched MeSH terms: Acrylic Resins*
  4. Chang YK, Cheng HI, Ooi CW, Song CP, Liu BL
    Food Chem, 2021 Oct 01;358:129914.
    PMID: 34000689 DOI: 10.1016/j.foodchem.2021.129914
    A high-performance polyacid ion exchange (IEX) nanofiber membrane was used in membrane chromatography for the recovery of lysozyme from chicken egg white (CEW). The polyacid IEX nanofiber membrane (P-BrA) was prepared by the functionalization of polyacrylonitrile (PAN) nanofiber membrane with ethylene diamine (EDA) and bromoacetic acid (BrA). The adsorption performance of P-BrA was evaluated under various operating conditions using Pall filter holder. The results showed that optimal conditions of IEX membrane chromatography for lysozyme adsorption were 10% (w/v) of CEW, pH 9 and 0.1 mL/min. The purification factor and yield of lysozyme were 402 and 91%, respectively. The adsorption process was further scaled up to a larger loading volume, and the purification performance was found to be consistent. Furthermore, the regeneration of IEX nanofiber membrane was achieved under mild conditions. The adsorption process was repeated for five times and the adsorption capacity of adsorber was found to be unaffected.
    Matched MeSH terms: Acrylic Resins/chemistry
  5. Pandey M, Choudhury H, D/O Segar Singh SK, Chetty Annan N, Bhattamisra SK, Gorain B, et al.
    Molecules, 2021 May 05;26(9).
    PMID: 34062995 DOI: 10.3390/molecules26092704
    A single ulcerative colitis (UC) is a chronic inflammatory bowel disease (IBD) that causes inflammation of the colonic mucosa at the distal colon and rectum. The mainstay therapy involves anti-inflammatory immunosuppression based on the disease location and severity. The disadvantages of using systemic corticosteroids for UC treatment is the amplified risk of malignancies and infections. Therefore, topical treatments are safer as they have fewer systemic side effects due to less systemic exposure. In this context, pH sensitive and enzymatically triggered hydrogel of pectin (PC) and polyacrylamide (PAM) has been developed to facilitate colon-targeted delivery of budesonide (BUD) for the treatment of UC. The hydrogels were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), swelling ratio, and drug release. FT-IR spectroscopy confirmed the grafting as well loading of BUD in hydrogel. XRD showed the amorphous nature of hydrogel and increment in crystallinity after drug loading. On the other hand, SEM showed that the hydrogels exhibited a highly porous morphology, which is suitable for drug loading and also demonstrated a pH-responsive swelling behaviour, with decreased swelling in acidic media. The in-vitro release of BUD from the hydrogel exhibited a sustained release behaviour with non-ficken diffusion mechanism. The model that fitted best for BUD released was the Higuchi kinetic model. It was concluded that enzyme/pH dual-sensitive hydrogels are an effective colon-targeted delivery system for UC.
    Matched MeSH terms: Acrylic Resins/chemistry*
  6. May LW, John J, Seong LG, Abidin ZZ, Ibrahim N, Danaee M, et al.
    J Indian Prosthodont Soc, 2021 5 4;21(2):198-203.
    PMID: 33938871 DOI: 10.4103/jips.jips_41_21
    Aim: To investigate the effect of different cooling methods on denture base adaptation of rapid heat-cured acrylic resin using 3D superimposition technique.

    Setting and Design: In vitro - Comparative study.

    Materials and Methods: Denture base adaptation of two different rapid heat-cured polymethyl methacrylate acrylic resins using five different cooling methods were compared. Forty maxillary edentulous stone cast were prepared to produce the denture bases with standardized thickness. The specimens were divided into five groups (n = 8) according to type of materials and cooling methods. The master stone cast and all forty denture bases were scanned with 3Shape E1 laboratory scanner. The scanned images of each of the denture bases were superimposed over the scanned image of the master cast using Materialize 3-matic software. Three dimensional differences between the two surfaces were calculated and color surface maps were generated for visual qualitative assessment.

    Statistical Analysis Used: Generalized Linear Model Test, Bonferroni Post Hoc Analysis.

    Results: All bench-cooled specimens showed wide green-colored area in the overall palatal surface, while the rapid cooled specimens presented with increased red color areas especially at the palate and post dam area. Generalized Linear Model test followed by Bonferroni post hoc analysis showed significant difference in the root mean square values among the specimen groups.

    Conclusion: Samples that were bench cooled, demonstrated better overall accuracy compared to the rapid cooling groups. Regardless of need for shorter denture processing time, bench cooling of rapid heat-cured PMMA is essential for acceptable denture base adaptation.

    Matched MeSH terms: Acrylic Resins
  7. Lee SY, Liu BL, Wu JY, Chang YK
    Food Chem, 2021 Feb 15;338:128144.
    PMID: 33092004 DOI: 10.1016/j.foodchem.2020.128144
    A weak ion-exchange membrane (P-COOH) was synthesized by alkaline hydrolysis of a polyacrylonitrile nanofiber membrane prepared by electrospinning process. The P-COOH membrane was characterized for its physical properties and its application for purification of lysozyme from chicken egg white was investigated. The lysozyme adsorption efficiency of the P-COOH membrane operating in a stirred cell contactor (Millipore, Model 8010) was evaluated. The effects of key parameters such as the feed concentration, the rotating speed, the flow rate of feed and the operating pressure were studied. The results showed successful purification of lysozyme with a high recovery yield of 98% and a purification factor of 63 in a single step. The purification strategy was scaled-up to the higher feedstock loading volume of 32.7 and 70 mL using stirred cell contactors of Model 8050 and 8200, respectively. The scale-up processes achieved similar purification results, proving linear scalability of the purification technique adopted.
    Matched MeSH terms: Acrylic Resins/chemistry
  8. Zainal M, Mohamad Zain N, Mohd Amin I, Ahmad VN
    Saudi Dent J, 2021 Feb;33(2):105-111.
    PMID: 33551624 DOI: 10.1016/j.sdentj.2020.01.008
    The objective of this study is to determine the therapeutic efficacy of allicin against Candida albicans (C. albicans) and Staphylococcus aureus (S. aureus), the common etiological agents for denture stomatitis (DS). The minimum inhibitory concentration (MICs), minimum bactericidal concentrations (MBCs) and minimum fungicidal concentration (MFCs) of allicin were determined by the broth microdilution method followed by checkerboard microdilution method for a synergistic interaction between allicin + nystatin and allicin + CHX. The potential of allicin to eradicate C. albicans and S. aureus biofilms was assessed by treating biofilm formed on self- polymerized acrylic resin with allicin at a sub-MIC concentration for 5 min. The commercial denture cleanser (brand X) was used as a positive control. A Kruskal-Wallis test followed by the post-hoc Mann-Whitney U test was applied (SPSS 20.0), and the level of significance was set at P 
    Matched MeSH terms: Acrylic Resins
  9. Walle KZ, Musuvadhi Babulal L, Wu SH, Chien WC, Jose R, Lue SJ, et al.
    ACS Appl Mater Interfaces, 2021 Jan 20;13(2):2507-2520.
    PMID: 33406841 DOI: 10.1021/acsami.0c17422
    Although solid-state Li-metal batteries (LMBs) featuring polymer-based solid electrolytes might one day replace conventional Li-ion batteries, the poor Li-ion conductivity of solid polymer electrolytes at low temperatures has hindered their practical applications. Herein, we describe the first example of using a co-precipitation method in a Taylor flow reactor to produce the metal hydroxides of both the Ga/F dual-doped Li7La3Zr2O12 (Ga/F-LLZO) ceramic electrolyte precursors and the Li2MoO4-modified Ni0.8Co0.1Mn0.1O2 (LMO@T-LNCM 811) cathode materials for LMBs. The Li/Nafion (LiNf)-coated Ga/F-LLZO (LiNf@Ga/F-LLZO) ceramic filler was finely dispersed in the poly(vinylidene fluoride)/polyacrylonitrile/lithium bis(trifluoromethanesulfonimide)/succinonitrile matrix to give a trilayer composite polymer electrolyte (denoted "Tri-CPE") through a simple solution-casting. The bulk ionic conductivity of the Tri-CPE at room temperature was approximately 4.50 × 10-4 S cm-1 and exhibited a high Li+ ion transference number (0.84). It also exhibits a broader electrochemical window of 1-5.04 V versus Li/Li+. A full cell based on a CR2032 coin cell containing the LMO@T-LNCM811-based composite cathode, when cycled under 1 C/1 C at room temperature for 300 cycles, achieved an average Columbic efficiency of 99.4% and a capacity retention of 89.8%. This novel fabrication strategy for Tri-CPE structures has potential applications in the preparation of highly safe high-voltage cathodes for solid-state LMBs.
    Matched MeSH terms: Acrylic Resins
  10. Gadhave D, Rasal N, Sonawane R, Sekar M, Kokare C
    Int J Biol Macromol, 2021 Jan 15;167:906-920.
    PMID: 33186648 DOI: 10.1016/j.ijbiomac.2020.11.047
    The research work was intended to formulate teriflunomide (TFM) loaded nano lipid-based (TNLC) carbopol-gellan gum in situ gel (TNLCGHG) and to investigate its therapeutic efficacy against glioma, a brain and spine tumor. Nanoformulation was developed using gellan gum and carbopol 974P as gelling and mucoadhesive agents, respectively, Glyceryl di-behenate and Glyceryl mono-linoleate blend as lipids, and Gelucire 44/14: water blend as surfactant system. Globule size, PDI, zeta potential, encapsulation efficiency, mucoadhesive strength, and nasal permeation were found to be 117.80 nm, 0.56, -21.86 mV, 81.16%, 4.80 g, and 904 μg/cm2, respectively. Anticancer efficacy of TFM-loaded nano lipid-based carbopol-gellan gum in situ gel (TNLCGHG) was determined in human U-87MG glioma cell line. IC50 was found 7.0 μg/mL for TNLCGHG, 4.8 μg/mL for pure TFM, and 78.5 μg/mL for TNLC, which approve the superiority of surfactant along with gellan gum as permeation enhancer. Brain Cmax for technetium (99mTC) labeled intranasal (i.n.) 99mTC-TNLCGHG was found 2-folds higher than 99mTC-TNLC (i.n.) and 99mTC-TNLC intravenous (i.v.) because the TNLCGHG formulation contains surfactant with natural gelling polymers, which promisingly improved drug permeability. Finally, this research revealed encouraging outcomes and successfully developed intranasal TNLCGHG nanoformulation as a novel tool for safe delivery of TFM in glioma patients.
    Matched MeSH terms: Acrylic Resins/chemistry*
  11. Pakalapati H, Show PL, Chang JH, Liu BL, Chang YK
    Int J Biol Macromol, 2020 Dec 15;165(Pt B):2494-2507.
    PMID: 33736272 DOI: 10.1016/j.ijbiomac.2020.10.099
    In this research, a protein nanofiber membrane (P-COOH-CEW) was developed to treat the dye waste. Initially, polyacrylonitrile nanofiber membrane (PAN) was prepared by electrospinning, followed by heat treatment, alkaline treatment, and neutralization to obtain weak cation exchange nanofiber membrane (P-COOH). The P-COOH membrane was chemically coated with chicken egg white (CEW) proteins to obtain a 3D structure of complex protein nanofiber membrane (P-COOH-CEW). The composite prepared was characterized with Fourier Transform Infrared analysis (FTIR), Scanning Electron Microscopy (SEM), and thermogravimetric analysis (TGA). Further, the composite was evaluated by investigating the removal of Toluidine Blue O (TBO) from aqueous solutions in batch conditions. Different operating parameters - coupling of CEW, shaking rate, initial pH, contact time, temperature, and dye concentration were studied. From the results, maximum removal capacity and equilibrium association constant was determined to be 546.24 mg/g and 10.18 mg/mg, respectively at pH 10 and 298 K. The experimental data were well fitted to pseudo-second order model. Furthermore, desorption studies revealed that the adsorbed TBO can be completely eluted by using 50% ethanol or 50% glycerol in 1 M NaCl solution. Additionally, the reuse of P-COOH-CEW membrane reported to have 97.32% of removal efficiency after five consecutive adsorption/desorption cycles.
    Matched MeSH terms: Acrylic Resins
  12. Huong DTM, Liu BL, Chai WS, Show PL, Tsai SL, Chang YK
    Int J Biol Macromol, 2020 Dec 15;165(Pt A):1410-1421.
    PMID: 33045299 DOI: 10.1016/j.ijbiomac.2020.10.034
    Electrospinning technology was applied for the preparation of polyacrylonitrile (PAN) nanofiber membrane in this work. After hot pressing, alkaline hydrolysis and neutralization treatment, a weak acid cation exchange membrane (P-COOH) was prepared. By the covalent coupling reaction between the acidic membrane and aminomethane sulfonic acid (AMSA), a strong acidic nanofiber membrane (P-SO3H) was obtained. The surface morphology, chemical structure, and thermal stability of the prepared ion exchange membranes were analyzed via SEM, FTIR and TGA. Analytical results showed that the membranes were prepared successfully and thermally stable. The ion exchange membrane (IEX) was conducted with the newly designed membrane reactor, and different operating conditions affecting the adsorption efficiency of Toluidine Blue dye (TBO) were investigated by dynamic flow process. The results showed that dynamic binding capacity (DBC) of weak and strong IEX membranes for TBO dye was ~170 mg/g in a dynamic flow process. Simultaneously, the ion exchange membranes were also used for purifying lysozyme from chicken egg white (CEW). Results illustrated that the recovery yield and purification factor of lysozyme were 93.43% and 29.23 times (P-COOH); 90.72% and 36.22 times (P-SO3H), respectively. It was revealed that two type ion exchange membranes were very suitable as an adsorber for use in dye waste treatment and lysozyme purification process. P-SO3H strong ion-exchange membrane was more effective either removal of TBO dye or purification of lysozyme. The ion exchange membranes not only effectively purified lysozyme from CEW solution, but also effectively removed dye from wastewater.
    Matched MeSH terms: Acrylic Resins/chemistry
  13. Abdulkader YC, Kamaruddin AF, Mydin RBSMN
    Saudi Dent J, 2020 Sep;32(6):306-313.
    PMID: 32874071 DOI: 10.1016/j.sdentj.2019.09.010
    Objectives: This study compared the effects of normal salivary pH, and acidic pH found in patients with poor oral hygiene, on the durability of aesthetic archwire coated with epoxy resin and polytetrafluoroethylene (PTFE).

    Methods: The posterior parts of the archwires were sectioned into 20 mm segments (N = 102) and divided among six groups. Four groups were treated with different pH levels and two served as controls. The specimens were immersed in individual test tubes containing 10 ml of artificial saliva adjusted to a pH of 6.75 or 3.5. The tubes were sealed and stored in a 37 °C water bath for 28 days. After 28 days, the specimens were ligated to brackets embedded in an acrylic block and subjected to mechanical stress using an electronic toothbrush for 210 s. The specimens were photographed, and images were measured for coating loss using AutoCAD® software. Surface morphology was observed using a scanning electron microscope (SEM).

    Results: Significant coating loss (p 

    Matched MeSH terms: Acrylic Resins
  14. Kannaiyan K, Biradar Sharashchandra M, Kattimani S, Devi M, Vengal Rao B, Kumar Chinna S
    J Pharm Bioallied Sci, 2020 Aug;12(Suppl 1):S399-S403.
    PMID: 33149494 DOI: 10.4103/jpbs.JPBS_117_20
    Introduction: Polymethyl methacrylate (PMMA) has been widely accepted and used in dentistry owing to its working characteristics, aesthetics and stability in the oral environment, ease in manipulation, and inexpensive processing methods and equipment.

    Aim and Objectives: The aim of this study was to evaluate the flexural strength of a high-impact PMMA denture base resin material and flexural strength of a commonly available heat cure PMMA denture base material with Kevlar, glass, and nylon fibers.

    Materials and Methods: The test samples were studied under two groups. The Group I (control group) comprised pre-reinforced PMMA (Lucitone 199; Dentsply Sirona Prosthetics, York, Pennsylvania, USA) consisting of 12 samples and second group comprised regular PMMA (DPI, Mumbai, India) reinforced with different fibers. The second test group was further divided into three subgroups as Group 2, Group 3, and Group 4 comprising 12 samples each designated by the letters a-l. All the samples were marked on both ends. A total of 48 samples were tested. Results were analyzed and any P value ≤0.05 was considered as statistically significant (t test).

    Results: All the 48 specimens were subjected to a 3-point bending test on a universal testing machine (MultiTest 10-i, Sterling, VA, USA) at a cross-head rate of 2 mm/min. A load was applied on each specimen by a centrally located rod until fracture occurred; span length taken was 50 mm. Flexural strength was then calculated.

    Conclusion: Reinforcement of conventional denture base resin with nylon and glass fibers showed statistical significance in the flexural strength values when compared to unreinforced high impact of denture base resin.

    Matched MeSH terms: Acrylic Resins
  15. Rahaman Ali AAA, John J, Mani SA, El-Seedi HR
    J Prosthodont, 2020 Aug;29(7):611-616.
    PMID: 30637856 DOI: 10.1111/jopr.13018
    PURPOSE: To assess the impact of thermal cycling on flexural properties of denture base acrylic resin reinforced with microcrystalline cellulose (MCC) derived from oil palm empty fruit bunch (OPEFB).

    MATERIALS AND METHODS: The flexural strength and flexural modulus, following thermal cycling (5000 cycles of 5-55°C) of 3 MCC-reinforced poly methyl methacrylate (PMMA) specimens were compared with the conventional and commercially available high-impact PMMA. The 3 test groups were represented by addition of various weight combinations of MCC and acrylic powders.

    RESULTS: All 3 test groups with the addition of MCC demonstrated improved flexural strength and flexural modulus compared to the conventional resin, without and after thermal cycling. The highest mean flexural strength corresponded to the specimens reinforced with 5% MCC followed by 2% MCC.

    CONCLUSION: Addition of MCC derived from OPEFB to PMMA may be a viable alternative to the existing, commercially available synthetic reinforced PMMA resins. The potential application of natural fillers in the fabrication of a reinforced denture base resin needs further study.

    Matched MeSH terms: Acrylic Resins*
  16. Nordin NA, Abdul Rahman N, Abdullah AH
    Molecules, 2020 Jul 06;25(13).
    PMID: 32640766 DOI: 10.3390/molecules25133081
    Heavy metal pollution, such as lead, can cause contamination of water resources and harm human life. Many techniques have been explored and utilized to overcome this problem, with adsorption technology being the most common strategies for water treatment. In this study, carbon nanofibers, polyacrylonitrile (PAN)/sago lignin (SL) carbon nanofibers (PAN/SL CNF) and PAN/SL activated carbon nanofibers (PAN/SL ACNF), with a diameter approximately 300 nm, were produced by electrospinning blends of polyacrylonitrile and sago lignin followed by thermal and acid treatments and used as adsorbents for the removal of Pb(II) ions from aqueous solutions. The incorporation of biodegradable and renewable SL in PAN/SL blends fibers produces the CNF with a smaller diameter than PAN only but preserves the structure of CNF. The adsorption of Pb(II) ions on PAN/SL ACNF was three times higher than that of PAN/SL CNF. The enhanced removal was due to the nitric acid treatment that resulted in the formation of surface oxygenated functional groups that promoted the Pb(II) ions adsorption. The best-suited adsorption conditions that gave the highest percentage removal of 67%, with an adsorption capacity of 524 mg/g, were 40 mg of adsorbent dosage, 125 ppm of Pb(II) solution, pH 5, and a contact time of 240 min. The adsorption data fitted the Langmuir isotherm and the pseudo-second-order kinetic models, indicating that the adsorption is a monolayer, and is governed by the availability of the adsorption sites. With the adsorption capacity of 588 mg/g, determined via the Langmuir isotherm model, the study demonstrated the potential of PAN/SL ACNFs as the adsorbent for the removal of Pb(II) ions from aqueous solution.
    Matched MeSH terms: Acrylic Resins/chemistry*
  17. Ng IS, Ooi CW, Liu BL, Peng CT, Chiu CY, Chang YK
    Int J Biol Macromol, 2020 Jul 01;154:844-854.
    PMID: 32194127 DOI: 10.1016/j.ijbiomac.2020.03.127
    In this study, polyacrylonitrile (PAN) nanofiber membrane was prepared by an electrospinning technique. After alkaline hydrolysis, the ion-exchange nanofiber membrane (P-COOH) was grafted with chitosan molecules to form a chitosan-modified nanofiber membrane (P-COOH-CS). Poly(hexamethylene biguanide) (PHMB) was then covalently immobilized on P-COOH and P-COOH-CS to form P-COOH-PHMB and P-COOH-CS-PHMB, respectively. The nanofiber membranes were subjected to various surface analyses as well as to the evaluations of antibacterial activity against Escherichia coli. The optimal modification conditions for P-COOH-CS-PHMB were attained by water-soluble chitosan at 50 kDa of molecular weight, coupling pH at 7, and 0.05% (w/w) of PHMB. Within 10 min of treatment, the antibacterial rate was close to 100%. Under the similar conditions of antibacterial treatment, the P-COOH-CS-PHMB exhibited a better antibacterial efficacy than the P-COOH-PHMB. When the number of bacterial cells was increased by 2000 folds, both types of nanofiber membranes still maintained the antibacterial rate close to 100%. After five cycles of repeated antibacterial treatment, the antibacterial efficacy of P-COOH-PHMB was 96%, which was higher than that of P-COOH-CS-PHMB (83%). The experimental results revealed that the PHMB-modified nanofiber membranes can be suitably applied in water treatment such as water disinfection and biofouling control.
    Matched MeSH terms: Acrylic Resins
  18. Saran R, Upadhya NP, Ginjupalli K, Amalan A, Rao B, Kumar S
    Int J Dent, 2020;2020:8896225.
    PMID: 33061975 DOI: 10.1155/2020/8896225
    Introduction: Glass ionomer cements (GICs) are commonly used for cementation of indirect restorations. However, one of their main drawbacks is their inferior mechanical properties.

    Aim: Compositional modification of conventional glass ionomer luting cements by incorporating two types of all-ceramic powders in varying concentrations and evaluation of their film thickness, setting time, and strength. Material & Methods. Experimental GICs were prepared by adding different concentrations of two all-ceramic powders (5%, 10, and 15% by weight) to the powder of the glass ionomer luting cements, and their setting time, film thickness, and compressive strength were determined. The Differential Scanning Calorimetry analysis was done to evaluate the kinetics of the setting reaction of the samples. The average particle size of the all-ceramic and glass ionomer powders was determined with the help of a particle size analyzer.

    Results: A significant increase in strength was observed in experimental GICs containing 10% all-ceramic powders. The experimental GICs with 5% all-ceramic powders showed no improvement in strength, whereas those containing 15% all-ceramic powders exhibited a marked decrease in strength. Setting time of all experimental GICs progressively increased with increasing concentration of all-ceramic powders. Film thickness of all experimental GICs was much higher than the recommended value for clinical application.

    Conclusion: 10% concentration of the two all-ceramic powders can be regarded as the optimal concentration for enhancing the glass ionomer luting cements' strength. There was a significant increase in the setting time at this concentration, but it was within the limit specified by ISO 9917-1:2007 specifications for powder/liquid acid-base dental cements. Reducing the particle size of the all-ceramic powders may help in decreasing the film thickness, which is an essential parameter for the clinical performance of any luting cement.

    Matched MeSH terms: Acrylic Resins
  19. Khalil M, Aulia G, Budianto E, Mohamed Jan B, Habib SH, Amir Z, et al.
    ACS Omega, 2019 Dec 17;4(25):21477-21486.
    PMID: 31867543 DOI: 10.1021/acsomega.9b03174
    Superparamagnetic nanoparticles (SPNs) have been considered as one of the most studied nanomaterials for subsurface applications, including in enhanced oil recovery (EOR), due to their unique physicochemical properties. However, a comprehensive understanding of the effect of surface functionalization on the ability of the nanoparticles to improve secondary and tertiary oil recoveries remains unclear. Therefore, investigations on the application of bare and surface-functionalized SPNs in EOR using a sand pack were carried out in this study. Here, the as-prepared SPNs were functionalized using oleic acid (OA) and polyacrylamide (PAM) to obtain several types of nanostructure architectures such as OA-SPN, core-shell SPN@PAM, and SPN-PAM. Based on the result, it is found that both the viscosity and mobility of the nanofluids were significantly affected by not only the concentration of the nanoparticles but also the type and architecture of the surface modifier, which dictated particle hydrophilicity. According to the sand pack tests, the nanofluid containing SPN-PAM was able to recover as much as 19.28% of additional oil in a relatively low concentration (0.9% w/v). The high oil recovery enhancement was presumably due to the ability of suspended SPN-PAM to act as a mobility control and wettability alteration agent and facilitate the formation of a Pickering emulsion and disjoining pressure.
    Matched MeSH terms: Acrylic Resins
  20. Nandini Y, Venkatesh SB
    Contemp Clin Dent, 2019 11 28;9(4):674-677.
    PMID: 31772486 DOI: 10.4103/ccd.ccd_537_18
    Cranial defects lead to unesthetic appearance and are a constant source of apprehension to the patient. Meningioma with calvarial extension requires the excision of the involved bone for complete excision. Such total excision would leave behind a bony defect which would need reconstruction. Presurgical fabrication of acrylic flap helps in reconstruction of such cranial defect following complete excision in single stage, thereby decreasing the cost and morbidity of surgery. Further, it facilitates the reproduction of the contours, and the tissue bed is not exposed to the heat of polymerization or to the free monomer. The authors report a case of hyperostotic convexity meningioma in a middle-aged female where heat-cured acrylic resin alloplastic implant was prefabricated and used successfully.
    Matched MeSH terms: Acrylic Resins
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links