Displaying publications 1 - 20 of 114 in total

Abstract:
Sort:
  1. Akbari S, Mahmood SM, Ghaedi H, Al-Hajri S
    Polymers (Basel), 2019 Jun 14;11(6).
    PMID: 31207965 DOI: 10.3390/polym11061046
    Copolymers of acrylamide with the sodium salt of 2-acrylamido-2-methylpropane sulfonic acid-known as sulfonated polyacrylamide polymers-had been shown to produce very promising results in the enhancement of oil recovery, particularly in polymer flooding. The aim of this work is to develop an empirical model through the use of a design of experiments (DOE) approach for bulk viscosity of these copolymers as a function of polymer characteristics (i.e., sulfonation degree and molecular weight), oil reservoir conditions (i.e., temperature, formation brine salinity and hardness) and field operational variables (i.e., polymer concentration, shear rate and aging time). The data required for the non-linear regression analysis were generated from 120 planned experimental runs, which had used the Box-Behnken construct from the typical Response Surface Methodology (RSM) design. The data were collected during rheological experiments and the model that was constructed had been proven to be acceptable with the Adjusted R-Squared value of 0.9624. Apart from showing the polymer concentration as being the most important factor in the determination of polymer solution viscosity, the evaluation of the model terms as well as the Sobol sensitivity analysis had also shown a considerable interaction between the process parameters. As such, the proposed viscosity model can be suitably applied to the optimization of the polymer solution properties for the polymer flooding process and the prediction of the rheological data required for polymer flood simulators.
    Matched MeSH terms: Acrylic Resins
  2. Dabbagh A, Abdullah BJ, Abu Kasim NH, Abdullah H, Hamdi M
    Int J Hyperthermia, 2015 Jun;31(4):375-85.
    PMID: 25716769 DOI: 10.3109/02656736.2015.1006268
    The aim of this paper was to introduce a new mechanism of thermal sensitivity in nanocarriers that results in a relatively low drug release at physiological temperature and rapid release of the encapsulated drug at hyperthermia and thermal ablation temperature range (40-60 °C).
    Matched MeSH terms: Acrylic Resins/pharmacology
  3. Che Ab Aziz, Z.A.
    Ann Dent, 2008;15(2):67-70.
    MyJurnal
    Aim: To manufacture a clinical simulation apparatus for the undergraduates' endodontic radiography teaching Objectives: • To provide a model for teaching of parallax method using Kelly's forcep • To provide a model for undergraduates to practice radiographic localization employing parallax method. • To allow students to practice taking radiographs in a way that simulates the clinical situations with a good diagnostic quality Methods: Impressions of a dentate arch (maxillary and mandibullary) were used to form a stone cast. A section of the cast, in the area where the natural teeth were to be placed, is sectioned and removed. Three maxillary extracted teeth (canine, first and second premolar) were selected and mounted with acrylic resin at the sectioned area. The resin was cured in a light box. The arches were mounted in a phantom head with a placement of rubber cheek. The first premolar was isolated with rubber dam. The intraoral holder (Kelly's forcep) was attached to a robotic arm. The students were taught the correct angulations of the x-ray cone for the paralleling technique and parallax method using Kelly's forcep during root canal treatment. Results: All students managed to complete the exercise and were considered competent when they produced acceptable quality of radiographs. Conclusion: The model described was improvised from a model that has been used during the past 2 years for undergraduates' endodontic courses. It has been well accepted as it simulates the clinical situation more closely than was possible previously.
    Matched MeSH terms: Acrylic Resins
  4. Citartan M, Tan SC, Tang TH
    World J Microbiol Biotechnol, 2012 Jan;28(1):105-11.
    PMID: 22806785 DOI: 10.1007/s11274-011-0797-0
    Purification of RNA fragments from a complex mixture is a very common technique, and requires consideration of the time, cost, purity and yield of the purified RNA fragments. This study describes the fastest method of purifying small RNA with the lowest cost possible, without compromizing the yield and purity. The technique describes the purification of small RNA from polyacrylamide gel, resulting in a good yield of small RNA with minimum experimental steps in avoiding degradation of the RNA, obviating the use of ethidium bromide and phenol-chloroform extraction, as well as siliconized glass wools to remove the polyacrylamide gel particles. The purified small RNA is suitable for a wide variety of applications such as ligation, end labelling with radio isotope, RT-PCR (Reverse Transcriptase-PCR), Northern blotting, experimental RNomics study and also Systematic Evolution of Ligands by Exponential Enrichment (SELEX).
    Matched MeSH terms: Acrylic Resins
  5. Ling BC
    Quintessence Int, 2004 Apr;35(4):294-8.
    PMID: 15119715
    This article describes a technique of constructing a set of maxillary and mandibular complete dentures in three visits instead of the usual five clinical appointments. This system of complete-denture construction is made possible because of the combined use of visible light-cured material as an impression tray and record base material, as well as the use of new biometric wax occlusion rims. Unlike some earlier techniques that use light-cured resin composites as the denture base materials, this method retains the use of heat-cured polymethylmethacrylate as the denture base material.
    Matched MeSH terms: Acrylic Resins/chemistry*
  6. Sim LH, Gan SN, Chan CH, Yahya R
    Spectrochim Acta A Mol Biomol Spectrosc, 2010 Aug;76(3-4):287-92.
    PMID: 20444642 DOI: 10.1016/j.saa.2009.09.031
    The interaction behaviours between components of polyacrylate (PAc)/poly(ethylene oxide) (PEO) and lithium perchlorate (LiClO(4)) were investigated in detail by Attenuated Total Reflectance (ATR)-Fourier Transformed Infrared (FTIR) spectroscopy. Solution cast films of the PAc/PEO and PAc/PEO/LiClO(4) were examined. No obvious shifting of the characteristic ether and ester group stretching modes of PEO and PAc was observed, indicating incompatibility of the binary PAc/PEO blend. The spectroscopic studies on the PAc/PEO/LiClO(4) blends reveal that Li(+) ions coordinate individually to the polymer components at the ether oxygen of PEO and the C-O of the ester group of PAc. Frequency changes observed on the nu(C-O-C) and omega(CH(2)) of PEO confirm the coordination between PEO and Li(+) ions resulting in crystallinity suppression of PEO. The absence of experimental evidence on the formation of PEO-Li(+)-PAc complexes suggests that LiClO(4) does not enhance the compatibility of PAc/PEO blend.
    Matched MeSH terms: Acrylic Resins/chemistry*
  7. Dua K, Pabreja K, Ramana MV
    Acta Pharm, 2010 Dec;60(4):467-78.
    PMID: 21169138 DOI: 10.2478/v1007-010-0036-5
    Aceclofenac is a new generation non-steroidal anti-inflammatory drug showing effective anti-inflammatory and analgesic properties. It is available in the form of tablets of 100 mg. Importance of aceclofenac as a NSAID has inspired development of topical dosage forms. This mode of administration may help avoid typical side effects associated with oral administration of NSAIDs, which have led to its withdrawal. Furthermore, aceclofenac topical dosage forms can be used as a supplement to oral therapy for better treatment of conditions such as arthritis. Ointments, creams, and gels containing 1% (m/m) aceclofenac have been prepared. They were tested for physical appearance, pH, spreadability, extrudability, drug content uniformity, in vitro diffusion and in vitro permeation. Gels prepared using Carbopol 940 (AF2, AF3) and macrogol bases (AF7) were selected after the analysis of the results. They were evaluated for acute skin irritancy, anti-inflammatory and analgesic effects using the carrageenan-induced thermal hyperalgesia and paw edema method. AF2 was shown to be significantly (p < 0.05) more effective in inhibiting hyperalgesia associated with inflammation, compared to AF3 and AF7. Hence, AF2 may be suggested as an alternative to oral preparations.
    Matched MeSH terms: Acrylic Resins/chemistry
  8. Gafar, A.A., Khayat, M.E., Abdul Rahim, M.B.H., Shukor, M.Y.
    MyJurnal
    Acrylamide is a synthetic monomer that has been classified as toxic and carcinogenic apart
    from its diverse application in the industry. Its application is in the formation of
    polyacrylamide. Polyacrylamide usage is diverse and is found as herbicide formulation, as soil
    treatment agent and in water treatment plants. Deaths and sickness due to the accidental
    exposure to acrylamide have been reported while chronic toxicity is also a source of the
    problem. This review highlighted the toxic effect of acrylamide to various organisms like
    human, animal and plant. This review also discusses on the potential use of biological
    technologies to remediate acrylamide pollution in the environment and the degradation
    pathways these microorganisms utilize to assimilate acrylamide as a nitrogen, carbon or both as
    carbon and nitrogen sources.
    Matched MeSH terms: Acrylic Resins
  9. Mazlan NF, Tan LL, Karim NHA, Heng LY, Jamaluddin ND, Yusof NYM, et al.
    Talanta, 2019 Jun 01;198:358-370.
    PMID: 30876573 DOI: 10.1016/j.talanta.2019.02.036
    An optical genosensor based on Schiff base complex (Zn2+ salphen) DNA label and acrylic microspheres (AMs) as polymer support of the capturing DNA probe (cpDNA) was developed for dengue virus serotype 2 (DEN-2) detection via reflectance spectrophotometric method. The solid-state optical DNA biosensor showed high selectivity and specificity up to one-base mismatch in the target DNA sequence owing to the salphen chemical structure that is rich in localized electrons, and allowed π-π stacking interaction between stacked base pairs of double-stranded DNA (dsDNA). The reflectometric DNA microsensor demonstrated a broad linear detection range towards DEN-2 DNA from 1 × 10-15 M to 1 × 10-3 M with a low limit of detection (LOD) obtained at 1.21 × 10-16 M. The DNA biosensor gave reproducible optical response with a satisfactory relative standard deviation (RSD) at 3.1%, (n = 3), and the reflectance response was stable even after four regeneration cycles of the DNA biosensor. The optical genosensor was proven comparable with standard reverse transcription polymerase chain reaction (RT-PCR) in detecting DEN-2 genome acquired from clinical samples of serum, urine and saliva of dengue virus infected patients under informed consent. The developed reflectometric DNA biosensor is advantageous in offering an early DEN-2 diagnosis, when fever symptom started to manifest in patient.
    Matched MeSH terms: Acrylic Resins/chemistry*
  10. Alhajj MN, Halboub E, Yacob N, Al-Maweri SA, Ahmad SF, Celebić A, et al.
    BMC Oral Health, 2024 Mar 04;24(1):303.
    PMID: 38439020 DOI: 10.1186/s12903-024-04083-2
    BACKGROUND: The present systematic review and meta-analysis investigated the available evidence about the adherence of Candida Albicans to the digitally-fabricated acrylic resins (both milled and 3D-printed) compared to the conventional heat-polymerized acrylic resins.

    METHODS: This study followed the guidelines of the Preferred Reporting Items for Systematic Review and Meta-analyses (PRISMA). A comprehensive search of online databases/search tools (Web of Science, Scopus, PubMed, Ovid, and Google Scholar) was conducted for all relevant studies published up until May 29, 2023. Only in-vitro studies comparing the adherence of Candida albicans to the digital and conventional acrylic resins were included. The quantitative analyses were performed using RevMan v5.3 software.

    RESULTS: Fourteen studies were included, 11 of which were meta-analyzed based on Colony Forming Unit (CFU) and Optical Density (OD) outcome measures. The pooled data revealed significantly lower candida colonization on the milled digitally-fabricated compared to the heat-polymerized conventionally-fabricated acrylic resin materials (MD = - 0.36; 95%CI = - 0.69, - 0.03; P = 0.03 and MD = - 0.04; 95%CI = - 0.06, - 0.01; P = 0.0008; as measured by CFU and OD respectively). However, no differences were found in the adhesion of Candida albicans between the 3D-printed digitally-fabricated compared to the heat-polymerized conventionally-fabricated acrylic resin materials (CFU: P = 0.11, and OD: P = 0.20).

    CONCLUSION: The available evidence suggests that candida is less likely to adhere to the milled digitally-fabricated acrylic resins compared to the conventional ones.

    Matched MeSH terms: Acrylic Resins
  11. Chang YK, Cheng HI, Ooi CW, Song CP, Liu BL
    Food Chem, 2021 Oct 01;358:129914.
    PMID: 34000689 DOI: 10.1016/j.foodchem.2021.129914
    A high-performance polyacid ion exchange (IEX) nanofiber membrane was used in membrane chromatography for the recovery of lysozyme from chicken egg white (CEW). The polyacid IEX nanofiber membrane (P-BrA) was prepared by the functionalization of polyacrylonitrile (PAN) nanofiber membrane with ethylene diamine (EDA) and bromoacetic acid (BrA). The adsorption performance of P-BrA was evaluated under various operating conditions using Pall filter holder. The results showed that optimal conditions of IEX membrane chromatography for lysozyme adsorption were 10% (w/v) of CEW, pH 9 and 0.1 mL/min. The purification factor and yield of lysozyme were 402 and 91%, respectively. The adsorption process was further scaled up to a larger loading volume, and the purification performance was found to be consistent. Furthermore, the regeneration of IEX nanofiber membrane was achieved under mild conditions. The adsorption process was repeated for five times and the adsorption capacity of adsorber was found to be unaffected.
    Matched MeSH terms: Acrylic Resins/chemistry
  12. Abdulla AM, Sivadas G, Surej Kumar LK, Sheejith Hari Peeceeyen CS, Vedam V
    Case Rep Med, 2017;2017:9483738.
    PMID: 28883834 DOI: 10.1155/2017/9483738
    Ameloblastic fibroodontoma is a benign mixed odontogenic neoplasm considered in patients with asymptomatic swelling and unerupted teeth that exhibit histologic features between ameloblastic fibroma and complex odontoma. Radiographically, this lesion appears as radiolucency admixed with focal radio opaque masses of irregular shapes and sizes. This lesion is confirmed by the presence of proliferating odontogenic epithelium, ectomesenchyme, and dental hard tissue formation on pathological analysis supplementing clinical and radiographic findings. As this tumour is less commonly seen in routine clinical practice, ameloblastic fibroodontoma with detailed orofacial features and periodic approach to its diagnosis is discussed. This paper reports a case of ameloblastic fibroodontoma of the mandible in a 6-year-old male patient with an uncommon case presentation and review of the literature.
    Matched MeSH terms: Acrylic Resins
  13. Ng IS, Ooi CW, Liu BL, Peng CT, Chiu CY, Chang YK
    Int J Biol Macromol, 2020 Jul 01;154:844-854.
    PMID: 32194127 DOI: 10.1016/j.ijbiomac.2020.03.127
    In this study, polyacrylonitrile (PAN) nanofiber membrane was prepared by an electrospinning technique. After alkaline hydrolysis, the ion-exchange nanofiber membrane (P-COOH) was grafted with chitosan molecules to form a chitosan-modified nanofiber membrane (P-COOH-CS). Poly(hexamethylene biguanide) (PHMB) was then covalently immobilized on P-COOH and P-COOH-CS to form P-COOH-PHMB and P-COOH-CS-PHMB, respectively. The nanofiber membranes were subjected to various surface analyses as well as to the evaluations of antibacterial activity against Escherichia coli. The optimal modification conditions for P-COOH-CS-PHMB were attained by water-soluble chitosan at 50 kDa of molecular weight, coupling pH at 7, and 0.05% (w/w) of PHMB. Within 10 min of treatment, the antibacterial rate was close to 100%. Under the similar conditions of antibacterial treatment, the P-COOH-CS-PHMB exhibited a better antibacterial efficacy than the P-COOH-PHMB. When the number of bacterial cells was increased by 2000 folds, both types of nanofiber membranes still maintained the antibacterial rate close to 100%. After five cycles of repeated antibacterial treatment, the antibacterial efficacy of P-COOH-PHMB was 96%, which was higher than that of P-COOH-CS-PHMB (83%). The experimental results revealed that the PHMB-modified nanofiber membranes can be suitably applied in water treatment such as water disinfection and biofouling control.
    Matched MeSH terms: Acrylic Resins
  14. Liew KB, Odeniyi MA, Peh KK
    Pharm Dev Technol, 2016;21(3):346-53.
    PMID: 25597618 DOI: 10.3109/10837450.2014.1003657
    Freeze drying technology has not been maximized and reported in manufacturing orally disintegrating films. The aim of this study was to explore the freeze drying technology in the formulation of sildenafil orally disintegrating films and compare the physical properties with heat-dried orally disintegrating film. Central composite design was used to investigate the effects of three factors, namely concentration of carbopol, wheat starch and polyethylene glycol 400 on the tensile strength and disintegration time of the film. Heat-dried films had higher tensile strength than films prepared using freeze-dried method. For folding endurance, freeze-dried films showed improved endurance than heat-dried films. Moreover, films prepared using freeze-dried methods were thicker and had faster disintegration time. Formulations with higher amount of carbopol and starch showed higher tensile strength and thickness whereas formulations with higher PEG 400 content showed better flexibility. Scanning electron microscopy showed that the freeze-dried films had more porous structure compared to the heat-dried film as a result of the release of water molecule from the frozen structure when it was subjected to freeze drying process. The sildenafil film was palatable. The dissolution profiles of freeze-dried and heat-dried films were similar to Viagra® with f2 of 51.04 and 65.98, respectively.
    Matched MeSH terms: Acrylic Resins
  15. Akbari S, Mahmood SM, Tan IM, Ghaedi H, Ling OL
    Polymers (Basel), 2017 Nov 27;9(12).
    PMID: 30965947 DOI: 10.3390/polym9120647
    This research aims to test four new polymers for their stability under high salinity/high hardness conditions for their possible use in polymer flooding to improve oil recovery from hydrocarbon reservoirs. The four sulfonated based polyacrylamide co-polymers were FLOCOMB C7035; SUPERPUSHER SAV55; THERMOASSOCIATIF; and AN132 VHM which are basically sulfonated polyacrylamide copolymers of AM (acrylamide) with AMPS (2-Acrylamido-2-Methylpropane Sulfonate). AN132 VHM has a molecular weight of 9⁻11 million Daltons with 32 mol % degree of sulfonation. SUPERPUSHER SAV55 mainly has about 35 mol % sulfonation degree and a molecular weight of 9⁻11 million Daltons. FLOCOMB C7035, in addition, has undergone post-hydrolysis step to increase polydispersity and molecular weight above 18 million Daltons but it has a sulfonation degree much lower than 32 mol %. THERMOASSOCIATIF has a molecular weight lower than 12 million Daltons and a medium sulfonation degree of around 32 mol %, and also contains LCST (lower critical solution temperature) type block, which is responsible for its thermoassociative characteristics. This paper discusses the rheological behavior of these polymers in aqueous solutions (100⁻4500 ppm) with NaCl (0.1⁻10 wt %) measured at 25 °C. The effect of hardness was investigated by preparing a CaCl₂-NaCl solution of same ionic strength as the 5 wt % of NaCl. In summary, it can be concluded that the rheological behavior of the newly modified co-polymers was in general agreement to the existing polymers, except that THERMOASSOCIATIF polymers showed unique behavior, which could possibly make them a better candidate for enhanced oil recovery (EOR) application in high salinity conditions. The other three polymers, on the other hand, are better candidates for EOR applications in reservoirs containing high divalent ions. These results are expected to be helpful in selecting and screening the polymers for an EOR application.
    Matched MeSH terms: Acrylic Resins
  16. Saini R, Osman NB, Ismail M, Sobri FM, Tang TH, Santhanam J
    J Investig Clin Dent, 2011 Nov;2(4):241-7.
    PMID: 25426895 DOI: 10.1111/j.2041-1626.2011.00068.x
      To determine the prevalence of human papillomavirus in the oral cavity of denture wearers.
    Matched MeSH terms: Acrylic Resins/chemistry
  17. Ahmad N, Amin MC, Mahali SM, Ismail I, Chuang VT
    Mol Pharm, 2014 Nov 3;11(11):4130-42.
    PMID: 25252107 DOI: 10.1021/mp5003015
    Stimuli-responsive bacterial cellulose-g-poly(acrylic acid) hydrogels were investigated for their potential use as an oral delivery system for proteins. These hydrogels were synthesized using electron beam irradiation without any cross-linking agents, thereby eliminating any potential toxic effects associated with cross-linkers. Bovine serum albumin (BSA), a model protein drug, was loaded into the hydrogels, and the release profile in simulated gastrointestinal fluids was investigated. Cumulative release of less than 10% in simulated gastric fluid (SGF) demonstrated the potential of these hydrogels to protect BSA from the acidic environment of the stomach. Subsequent conformational stability analyses of released BSA by SDS-PAGE, circular dichroism, and an esterase activity assay indicated that the structural integrity and bioactivity of BSA was maintained and preserved by the hydrogels. Furthermore, an increase in BSA penetration across intestinal mucosa tissue was observed in an ex vivo penetration experiment. Our fabricated hydrogels exhibited excellent cytocompatibility and showed no sign of toxicity, indicating the safety of these hydrogels for in vivo applications.
    Matched MeSH terms: Acrylic Resins/chemistry*
  18. Hanifah SA, Heng LY, Ahmad M
    Anal Sci, 2009 Jun;25(6):779-84.
    PMID: 19531887
    Electrochemical biosensors for phenolic compound determination were developed by immobilization of tyrosinase enzyme in a series of methacrylic-acrylic based biosensor membranes deposited directly using a photocuring method. By modifying the hydrophilicity of the membranes using different proportions of 2-hydroxyethyl methacrylate (HEMA) and butyl acrylate (nBA), we developed biosensor membranes of different hydrophilic characters. The differences in hydrophilicity of these membranes led to changes in the sensitivity of the biosensors towards different phenolic compounds. In general biosensors constructed from the methacrylic-acrylic based membranes showed the poorest response to catechol relative to other phenolic compounds, which is in contrast to many other biosensors based on tyrosinase. The decrease in hydrophilicity of the membrane also allowed better selectivity towards chlorophenols. However, phenol biosensors constructed from the more hydrophilic membrane materials demonstrated better analytical performance towards phenol compared with those made from less hydrophilic ones. For the detection of phenols, these biosensors with different membranes gave detection limits of 0.13-0.25 microM and linear response range from 6.2-54.2 microM phenol. The phenol biosensors also showed good phenol recovery from landfill leachate samples (82-117%).
    Matched MeSH terms: Acrylic Resins/chemistry*
  19. Kristanti RA, Fikri Ahmad Zubir MM, Hadibarata T
    J Environ Manage, 2016 May 1;172:107-11.
    PMID: 26922501 DOI: 10.1016/j.jenvman.2015.11.017
    Cresol Red, a commercial dye that used widely to color nylon, wool, cotton, and polyacrylonitrile-modified nylon in the massive textile manufacture is toxic recalcitrant. Absidia spinosa M15, a novel fungal strain isolated from a tropical rain forest, was found to decolorize Cresol Red 65% within 30 d under agitation condition. UV-Vis spectroscopy, TLC analysis and mass spectra of samples after decolorization process in culture medium confirmed final decolorization of Cresol Red. Two metabolites were identified in the treated medium: benzeneacetic acid (tR 9.6 min and m/z 136) and benzoic acid (tR 5.7 min and m/z 122). Laccase showed the significant activity (133.8 U/L) in biomass obtained at the end of experiment demonstrates role of the enzyme in the decolorization process.
    Matched MeSH terms: Acrylic Resins
  20. Pandey M, Choudhury H, D/O Segar Singh SK, Chetty Annan N, Bhattamisra SK, Gorain B, et al.
    Molecules, 2021 May 05;26(9).
    PMID: 34062995 DOI: 10.3390/molecules26092704
    A single ulcerative colitis (UC) is a chronic inflammatory bowel disease (IBD) that causes inflammation of the colonic mucosa at the distal colon and rectum. The mainstay therapy involves anti-inflammatory immunosuppression based on the disease location and severity. The disadvantages of using systemic corticosteroids for UC treatment is the amplified risk of malignancies and infections. Therefore, topical treatments are safer as they have fewer systemic side effects due to less systemic exposure. In this context, pH sensitive and enzymatically triggered hydrogel of pectin (PC) and polyacrylamide (PAM) has been developed to facilitate colon-targeted delivery of budesonide (BUD) for the treatment of UC. The hydrogels were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), swelling ratio, and drug release. FT-IR spectroscopy confirmed the grafting as well loading of BUD in hydrogel. XRD showed the amorphous nature of hydrogel and increment in crystallinity after drug loading. On the other hand, SEM showed that the hydrogels exhibited a highly porous morphology, which is suitable for drug loading and also demonstrated a pH-responsive swelling behaviour, with decreased swelling in acidic media. The in-vitro release of BUD from the hydrogel exhibited a sustained release behaviour with non-ficken diffusion mechanism. The model that fitted best for BUD released was the Higuchi kinetic model. It was concluded that enzyme/pH dual-sensitive hydrogels are an effective colon-targeted delivery system for UC.
    Matched MeSH terms: Acrylic Resins/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links