Displaying publications 1 - 20 of 49 in total

Abstract:
Sort:
  1. Yuen CW, Murugaiyah V, Najimudin N, Azzam G
    J Ethnopharmacol, 2021 Feb 10;266:113418.
    PMID: 32991971 DOI: 10.1016/j.jep.2020.113418
    ETHNOPHARMACOLOGICAL RELEVANCE: Danshen, is a traditional Chinese medicine obtained from the dried root and rhizome of Salvia miltiorrhiza Bunge. It is known to be used for neurological disorder including for Alzheimer's disease (AD). This study uncovers the effect of Danshen water extract on the Alzheimer's disease model of C.elegans.

    MATERIAL AND METHODS: The composition of Danshen water extract was determined using (High Performance Liquid Chromatography (HPLC). Then Thioflavin T assay was used to determined if Danshen water extract could prevent the aggregation of amyloid-β peptide (Aβ). Alzheimer's disease C.elegans model was used to determine the effect of Danshen water extract. Finally, the reactive oxygen species (ROS) was determined using the 2,7-dichlorofuorescein diacetate method.

    RESULTS: In this study, we found that standardized Danshen water extract that contains danshensu (1.26%), salvianolic acid A (0.35%) and salvianolic acid B (2.21%) are able to bind directly to Aβ and prevents it from aggregating. The IC50 for the inhibition of Aβ aggregation by Danshen water extract was 0.5 mg/ml. In the AD model of C.elegans, Danshen water extract managed to alleviates the paralysis phenotype. Furthermore, the administration of Danshen water extract displayed antioxidant properties toward the Aβ-induced oxidative stress.

    CONCLUSIONS: AD is a widespread neurodegenerative disease attributed to the accumulation of extracellular plaques comprising Aβ. Danshen water extract could significantly reduce the progress of paralysis in the AD model of C. elegans, showing promising results with its antioxidant properties. It can be concluded that Danshen water extract could potentially serve as a therapeutic for AD.

    Matched MeSH terms: Amyloid beta-Peptides/metabolism
  2. Tan FHP, Ting ACJ, Leow BG, Najimudin N, Watanabe N, Azzam G
    J Ethnopharmacol, 2021 Oct 28;279:114389.
    PMID: 34217797 DOI: 10.1016/j.jep.2021.114389
    ETHNOPHARMACOLOGICAL RELEVANCE: Danshen water extract (DWE), obtained from the Salvia miltiorrhiza Bunge (Family Lamiaceae) root, is usually employed in Chinese traditional medicine as treatment to cardiovascular ailments and cerebrovascular diseases. Intriguingly, the extract was also found to contain vast beneficial properties in Alzheimer's disease (AD) treatment.

    AIM OF THE STUDY: Alzheimer's disease is the most significant type of neurodegenerative disorder plaguing societies globally. Its pathogenesis encompasses the hallmark aggregation of amyloid-beta (Aβ). Of all the Aβ oligomers formed in the brain, Aβ42 is the most toxic and aggressive. Despite this, the mechanism behind this disease remains elusive. In this study, DWE, and its major components, Salvianolic acid A (SalA) and Salvianolic acid B (SalB) were tested for their abilities to attenuate Aβ42's toxic effects.

    METHODS: The composition of DWE was determined via Ultra-Performance Liquid Chromatography (UPLC). DWE, SalA and SalB were first verified for their capability to diminish Aβ42 fibrillation using an in vitro activity assay. Since Aβ42 aggregation results in neuronal degeneration, the potential Aβ42 inhibitors were next evaluated on Aβ42-exposed PC12 neuronal cells. The Drosophila melanogaster AD model was then employed to determine the effects of DWE, SalA and SalB.

    RESULTS: DWE, SalA and SalB were shown to be able to reduce fibrillation of Aβ42. When tested on PC12 neuronal cells, DWE, SalA and SalB ameliorated cells from cell death associated with Aβ42 exposure. Next, DWE and its components were tested on the Drosophila melanogaster AD model and their rescue effects were further characterized. The UPLC analysis showed that SalA and SalB were present in the brains and bodies of Drosophila after DWE feeding. When human Aβ42 was expressed, the AD Drosophila exhibited degenerated eye structures known as the rough eye phenotype (REP), reduced lifespan and deteriorated locomotor ability. Administration of DWE, SalA and SalB partially reverted the REP, increased the age of AD Drosophila and improved most of the mobility of AD Drosophila.

    CONCLUSION: Collectively, DWE and its components may have therapeutic potential for AD patients and possibly other forms of brain diseases.

    Matched MeSH terms: Amyloid beta-Peptides/metabolism
  3. Bakrim S, Aboulaghras S, El Menyiy N, El Omari N, Assaggaf H, Lee LH, et al.
    Molecules, 2022 Dec 19;27(24).
    PMID: 36558176 DOI: 10.3390/molecules27249043
    Alzheimer's disease remains one of the most widespread neurodegenerative reasons for dementia worldwide and is associated with considerable mortality and morbidity. Therefore, it has been considered a priority for research. Indeed, several risk factors are involved in the complexity of the therapeutic ways of this pathology, including age, traumatic brain injury, genetics, exposure to aluminum, infections, diabetes, vascular diseases, hypertension, dyslipidemia, and obesity. The pathophysiology of Alzheimer's disease is mostly associated with hyperphosphorylated protein in the neuronal cytoplasm and extracellular plaques of the insoluble β-amyloid peptide. Therefore, the management of this pathology needs the screening of drugs targeting different pathological levels, such as acetylcholinesterase (AchE), amyloid β formation, and lipoxygenase inhibitors. Among the pharmacological strategies used for the management of Alzheimer's disease, natural drugs are considered a promising therapeutic strategy. Indeed, bioactive compounds isolated from different natural sources exhibit important anti-Alzheimer effects by their effectiveness in promoting neuroplasticity and protecting against neurodegeneration as well as neuroinflammation and oxidative stress in the brain. These effects involve different sub-cellular, cellular, and/or molecular mechanisms, such as the inhibition of acetylcholinesterase (AchE), the modulation of signaling pathways, and the inhibition of oxidative stress. Moreover, some nanoparticles were recently used as phytochemical delivery systems to improve the effects of phytochemical compounds against Alzheimer's disease. Therefore, the present work aims to provide a comprehensive overview of the key advances concerning nano-drug delivery applications of phytochemicals for Alzheimer's disease management.
    Matched MeSH terms: Amyloid beta-Peptides/metabolism
  4. Sahathevan R, Linden T, Villemagne VL, Churilov L, Ly JV, Rowe C, et al.
    Stroke, 2016 Jan;47(1):113-9.
    PMID: 26578658 DOI: 10.1161/STROKEAHA.115.010528
    Cardiovascular risk factors significantly increase the risk of developing Alzheimer disease. A possible mechanism may be via ischemic infarction-driving amyloid deposition. We conducted a study to determine the presence of β-amyloid in infarct, peri-infarct, and hemispheric areas after stroke. We hypothesized that an infarct would trigger β-amyloid deposition, with deposition over time.
    Matched MeSH terms: Amyloid beta-Peptides/metabolism*
  5. Zha GF, Zhang CP, Qin HL, Jantan I, Sher M, Amjad MW, et al.
    Bioorg Med Chem, 2016 05 15;24(10):2352-9.
    PMID: 27083471 DOI: 10.1016/j.bmc.2016.04.015
    A series of new α,β-unsaturated carbonyl-based cyclohexanone derivatives was synthesized by simple condensation method and all compounds were characterized by using various spectroscopic techniques. New compounds were evaluated for their effects on acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). These compounds were also screened for in vitro cytotoxicity and for inhibitory activity for self-induced Aβ1-42 aggregation. The effect of these compounds against amyloid β-induced cytotoxicity was also investigated. The findings of in vitro experiment revealed that most of these compounds exhibited potent inhibitory activity against AChE and self-induced Aβ1-42 aggregation. The compound 3o exhibited best AChE (IC50=0.037μM) inhibitory potential. Furthermore, compound 3o disassembled the Aβ fibrils produced by self-induced Aβ aggregation by 76.6%. Compounds containing N-methyl-4-piperidone linker, showed high acetylcholinesterase and self-induced Aβ aggregation inhibitory activities as compared to reference drug donepezil. The pre-treatment of cells with synthetic compounds protected them against Aβ-induced cell death by up to 92%. Collectively, these findings suggest that some compounds from this series have potential to be promising multifunctional agents for AD treatment and our study suggest the cyclohexanone derivatives as promising new inhibitors for AChE and BuChE, potentially useful to treat neurodegenerative diseases.
    Matched MeSH terms: Amyloid beta-Peptides/metabolism*
  6. Dutta S, Rahman S, Ahmad R, Kumar T, Dutta G, Banerjee S, et al.
    Expert Rev Neurother, 2021 12;21(12):1455-1472.
    PMID: 34756134 DOI: 10.1080/14737175.2021.2003705
    INTRODUCTION: Dementia is a progressive neurodegenerative disorder impairing memory and cognition. Alzheimer's Disease, followed by vascular dementia - the most typical form. Risk factors for vascular dementia include diabetes, cardiovascular disease, hyperlipidemia. Lipids' levels are significantly associated with vascular changes in the brain.

    AREAS COVERED: The present article reviews the cholesterol metabolism in the brain, which includes: the synthesis, transport, storage, and elimination process. Additionally, it reviews the role of cholesterol in the pathogenesis of dementia and statin as a therapeutic intervention in dementia. In addition to the above, it further reviews evidence in support of as well as against statin therapy in dementia, recent updates of statin pharmacology, and demerits of use of statin pharmacotherapy.

    EXPERT OPINION: Amyloid-β peptides and intraneuronal neurofibrillary tangles are markers of Alzheimer's disease. Evidence shows cholesterol modulates the functioning of enzymes associated with Amyloid-β peptide processing and synthesis. Lowering cholesterol using statin may help prevent or delay the progression of dementia. This paper reviews the role of statin in dementia and recommends extensive future studies, including genetic research, to obtain a precise medication approach for patients with dementia.

    Matched MeSH terms: Amyloid beta-Peptides/metabolism
  7. Pang KL, Chin KY
    Nutrients, 2018 May 06;10(5).
    PMID: 29734791 DOI: 10.3390/nu10050570
    Oleocanthal is a minor constituent of olive oil with strong anti-inflammatory activities. Since the pathogenesis of many chronic diseases involves inflammatory and oxidative components, oleocanthal is a promising agent to prevent these conditions. This review aimed to summarise the current beneficial health effects of oleocanthal and the molecular basis of its biological actions. The anti-inflammatory, antioxidative, antimicrobial, anticancer and neuroprotective activities of oleocanthal have been examined by previous studies. Of these, studies on the anticancer effects have been the most extensive. Oleocanthal was reported to suppress melanoma, breast, liver, and colon cancer cells. Neurological studies focused on the effects of oleocanthal against Alzheimer’s disease. Oleocanthal improved clearance of the amyloid beta protein from neurons and reduced the inflammation of astrocytes. Despite the positive results, validation of the biological effects of oleocanthal in animal disease models is limited and should be emphasized in the future. As a conclusion, oleocanthal may act together with other bioactive compounds in olive oil to achieve its therapeutic potential. The use of oleocanthal alone as a single therapeutic measure awaits validation from future studies.
    Matched MeSH terms: Amyloid beta-Peptides/metabolism
  8. Md S, Gan SY, Haw YH, Ho CL, Wong S, Choudhury H
    Int J Biol Macromol, 2018 Oct 15;118(Pt A):1211-1219.
    PMID: 30001606 DOI: 10.1016/j.ijbiomac.2018.06.190
    Alzheimer's disease (AD) is an increasingly prevalent neurological disorder of the central nervous system. There is growing evidence that amyloidogenesis is a pathological hallmark for AD; this leads to the formation of senile plaques. Naringenin is a bioflavonoid which has neuroprotective effects through its antioxidant and anti-inflammatory properties. However, its clinical usage is limited due to its inefficient transport across biological membranes. In the present study, a naringenin nanoemulsion was prepared and its neuroprotective effects were tested against β-amyloid induced neurotoxicity in a human neuroblastoma cell line (SH-SY5Y). The optimised, naringenin-loaded nanoemulsion formulation had a droplet size of 113.83 ± 3.35 nm and around 50 nm, as assessed respectively by photon correlation spectroscopy and transmission electron microscopy. The preparation showed a low polydispersity index (0.312 ± 0.003), a high zeta potential (12.4 ± 1.05) and a high percentage transmittance (97.01%). The neuroprotective activity of naringenin nanoemulsions was determined by assessing their ability to protect SH-SY5Y neuroblastoma cells against the neurotoxic effect of beta amyloid (Aβ). Aβ-induced production of reactive oxygen species (ROS), amyloid precursor protein (APP), β-secretase (BACE), total tau and phosphorylated tau (pT231) was also determined. The naringenin loaded nanoemulsion significantly alleviated the direct neurotoxic effects of Aβ on SH-SY5Y cells; this was associated with a down-regulation of APP and BACE expression, indicating reduced amyloidogenesis. Furthermore, it decreased the levels of phosphorylated tau in SH-SY5Y cells exposed to Aβ. These results suggest that a naringenin-loaded nanoemulsion could be a promising agent for the treatment of Alzheimer's disease.
    Matched MeSH terms: Amyloid beta-Peptides/metabolism*
  9. Wadhwa R, Paudel KR, Mehta M, Shukla SD, Sunkara K, Prasher P, et al.
    CNS Neurol Disord Drug Targets, 2020;19(9):698-708.
    PMID: 33109069 DOI: 10.2174/1871527319999200817112427
    Tobacco smoke is not only a leading cause for chronic obstructive pulmonary disease, cardiovascular disorders, and lung and oral cancers, but also causes neurological disorders such as Alzheimer 's disease. Tobacco smoke consists of more than 4500 toxic chemicals, which form free radicals and can cross blood-brain barrier resulting in oxidative stress, an extracellular amyloid plaque from the aggregation of amyloid β (Aβ) peptide deposition in the brain. Further, respiratory infections such as Chlamydia pneumoniae, respiratory syncytial virus have also been involved in the induction and development of the disease. The necessary information collated on this review has been gathered from various literature published from 1995 to 2019. The review article sheds light on the role of smoking and respiratory infections in causing oxidative stress and neuroinflammation, resulting in Alzheimer's disease (AD). This review will be of interest to scientists and researchers from biological and medical science disciplines, including microbiology, pharmaceutical sciences and the translational researchers, etc. The increasing understanding of the relationship between chronic lung disease and neurological disease is two-fold. First, this would help to identify the risk factors and possible therapeutic interventions to reduce the development and progression of both diseases. Second, this would help to reduce the probable risk of development of AD in the population prone to chronic lung diseases.
    Matched MeSH terms: Amyloid beta-Peptides/metabolism
  10. Chan EWL, Yeo ETY, Wong KWL, See ML, Wong KY, Gan SY
    Curr Alzheimer Res, 2019;16(3):251-260.
    PMID: 30819080 DOI: 10.2174/1567205016666190228124630
    BACKGROUND: Alzheimer's disease (AD) is a multifactorial neurodegenerative disorder that eventually leads to severe cognitive impairment. Although the exact etiologies of AD still remain elusive, increasing evidence suggests that neuroinflammation cascades mediated by microglial cells are associated with AD. Piper sarmentosum Roxb. (PS) is a medicinal plant reported to possess various biological properties, including anti-inflammatory, anti-psychotic and anti-oxidant activity. However, little is known about the anti-inflammatory activity of PS roots despite their traditional use to treat inflammatory- mediated ailments.

    OBJECTIVE: This study aimed to evaluate the anti-inflammatory and neuroprotective properties of extracts obtained from the roots of PS against beta-amyloid (Aβ)-induced microglial toxicity associated with the production of pro-inflammatory mediators.

    METHOD: BV2 microglial cells were treated with hexane (RHXN), dichloromethane (RDCM), ethyl acetate (REA) and methanol (RMEOH) extracts of the roots of PS prior to activation by Aβ. The production and mRNA expression of pro-inflammatory mediators were evaluated by Griess reagent, ELISA kits and RT-qPCR respectively. The phosphorylation status of p38α MAPK was determined via western blot assay. BV2 conditioned medium was used to treat SH-SY5Y neuroblastoma cells and the neuroprotective effect was assessed using MTT assay.

    RESULTS: PS root extracts, in particular RMEOH significantly attenuated the production and mRNA expression of IL-1β, IL-6 and TNF-α in Aβ-induced BV2 microglial cells. In addition, RHXN, REA and RMEOH extracts significantly reduced nitric oxide (NO) level and the inhibition of NO production was correlated with the total phenolic content of the extracts. Further mechanistic studies suggested that PS root extracts attenuated the production of cytokines by regulating the phosphorylation of p38α MAPK in microglia. Importantly, PS root extracts have protective effects against Aβ-induced indirect neurotoxicity either by inhibiting the production of NO, IL-1β, IL-6, and TNF-α in BV2 cells or by protecting SHSY5Y cells against these inflammatory mediators.

    CONCLUSIONS: These findings provided evidence that PS root extracts confer neuroprotection against Aβ- induced microglial toxicity associated with the production of pro-inflammatory mediators and may be a potential therapeutic agent for inflammation-related neurological conditions including Alzheimer's disease (AD).

    Matched MeSH terms: Amyloid beta-Peptides/metabolism*
  11. Alharbi KS, Javed Shaikh MA, Imam SS, Alshehri S, Ghoneim MM, Almalki WH, et al.
    Curr Med Chem, 2023;30(18):2061-2074.
    PMID: 36415096 DOI: 10.2174/0929867330666221122115212
    More than 10 million people worldwide have Alzheimer's disease (AD), a degenerative neurological illness and the most prevalent form of dementia. AD's progression in memory loss, cognitive deterioration, and behavioral changes are all symptoms. Amyloid-beta 42 (Aβ42), the hyperphosphorylated forms of microtubule-associated tau protein, and other cellular and systemic alterations are all factors that contribute to cognitive decline in AD. Rather than delivering a possible cure, present therapy strategies focus on reducing disease symptoms. It has long been suggested that various naturally occurring small molecules (plant extract products and microbiological isolates, for example) could be beneficial in preventing or treating disease. Small compounds, such as flavonoids, have attracted much interest recently due to their potential to alleviate cellular stress. Flavonoids have been proven helpful in various ways, including antioxidants, anti-inflammatory agents, and anti-apoptotic agents, but their mechanism remains unknown. The flavonoid therapy of Alzheimer's disease focuses on this review, which includes a comprehensive literature analysis.
    Matched MeSH terms: Amyloid beta-Peptides/metabolism
  12. Magalingam KB, Radhakrishnan A, Ping NS, Haleagrahara N
    Biomed Res Int, 2018;2018:3740461.
    PMID: 29707568 DOI: 10.1155/2018/3740461
    Neurodegenerative diseases are hereditary or sporadic conditions that result in the progressive loss of the structure and function of neurons as well as neuronal death. Although a range of diseases lie under this umbrella term, Alzheimer's disease (AD) and Parkinson's disease (PD) are the most common neurodegenerative diseases that affect a large population around the globe. Alzheimer's disease is characterized by the abnormal accumulation of extracellular amyloid-β plaques and intraneuronal neurofibrillary tangles in brain regions and manifests as a type of dementia in aged individuals that results in memory loss, multiple cognitive abnormalities, and intellectual disabilities that interfere with quality of life. Since the discovery of AD, a wealth of new information has emerged that delineates the causes, mechanisms of disease, and potential therapeutic agents, but an effective remedy to cure the diseases has not been identified yet. This could be because of the complexity of the disease process, as it involves various contributing factors that include environmental factors and genetic predispositions. This review summarizes the current understanding on neurodegenerative mechanisms that lead to the emergence of the pathology of AD.
    Matched MeSH terms: Amyloid beta-Peptides/metabolism*
  13. Laili IN, Nasir MHM, Jufri NF, Ibrahim FW, Hamid A
    Biomed Pharmacother, 2023 May;161:114501.
    PMID: 36931027 DOI: 10.1016/j.biopha.2023.114501
    Lysosome is a primary degradative organelle and is crucial in cellular homeostasis. A reduction in its function due to ageing has been associated with the development of Alzheimer's disease (AD), a common neurodegenerative disorder characterised by the deposition of neurotoxic amyloid plaque in the brain and cerebral vessel walls. The breakdown of the blood-brain barrier (BBB) plays a vital role in the pathogenesis of AD. However, the impact of lysosomal dysfunction on brain endothelial cells, the key component of the BBB, in the disease progression is yet to be fully understood. In this study, human brain endothelial cells (HBEC-5i) were exposed to a lysosomotropic compound, chloroquine (CQ) for 24 h. Cell viability was assessed with the 3-(4,5-dimethylthiazol-2-yl)- 2,5-diphenyltetrazolium bromide (MTT) assay to determine the inhibitory concentration (IC) at IC10 (17.5 µM), IC25 (70.5 µM), and IC50 (125 µM). The morphological changes observed include vacuoles arrested in the cytosols and cell shrinkage that were more prominent at IC25 and IC50. Lysosomal dysfunction was evaluated by measuring the lysosomal-associated membrane protein-1 (LAMP-1) and microtubule-associated protein light chain 3-II (LC3-II) using the capillary-based immunoassay. LC3-II was significantly increased at IC25 and IC50 (p 
    Matched MeSH terms: Amyloid beta-Peptides/metabolism
  14. Rajah Kumaran K, Yunusa S, Perimal E, Wahab H, Müller CP, Hassan Z
    J Alzheimers Dis, 2023;91(2):507-530.
    PMID: 36502321 DOI: 10.3233/JAD-220666
    The aging population increases steadily because of a healthy lifestyle and medical advancements in healthcare. However, Alzheimer's disease (AD) is becoming more common and problematic among older adults. AD-related cases show an increasing trend annually, and the younger age population may also be at risk of developing this disorder. AD constitutes a primary form of dementia, an irreversible and progressive brain disorder that steadily damages cognitive functions and the ability to perform daily tasks. Later in life, AD leads to death as a result of the degeneration of specific brain areas. Currently, the cause of AD is poorly understood, and there is no safe and effective therapeutic agent to cure or slow down its progression. The condition is entirely preventable, and no study has yet demonstrated encouraging findings in terms of treatment. Identifying this disease's pathophysiology can help researchers develop safe and efficient therapeutic strategies to treat this ailment. This review outlines and discusses the pathophysiology that resulted in the development of AD including amyloid-β plaques, tau neurofibrillary tangles, neuroinflammation, oxidative stress, cholinergic dysfunction, glutamate excitotoxicity, and changes in neurotrophins level may sound better based on the literature search from Scopus, PubMed, ScienceDirect, and Google Scholar. Potential therapeutic strategies are discussed to provide more insights into AD mechanisms by developing some possible pharmacological agents for its treatment.
    Matched MeSH terms: Amyloid beta-Peptides/metabolism
  15. Li Y, Tian Q, Li Z, Dang M, Lin Y, Hou X
    Drug Dev Res, 2019 09;80(6):837-845.
    PMID: 31301179 DOI: 10.1002/ddr.21567
    The objective of this study was to evaluate the neuroprotective effect of sitagliptin (Sita), quercetin (QCR) and its combination in β-amyloid (Aβ) induced Alzheimer's disease (AD). Male Sprague-Dawley rats, weighing between 220 and 280 g were used for experiment. Rats were divided into 5 groups (n = 10) and the groups were as follows: (a) Sham control; (b) Aβ injected; (c) Aβ injected + Sita 100; (d) Aβ injected + QCR 100; and (e) Aβ injected + Sita 100 + QCR 100. Cognitive performance was observed by the Morris water maze (MWM), biochemical markers, for example, MDA, SOD, CAT, GSH, Aβ1-42 level, Nrf2/HO-1 expression and histopathological study of rat brain were estimated. Pretreatment with Sita, QCR and their combination showed a significant increase in escape latency in particular MWM cognitive model. Further co-administration of sita and QCR significantly reduced Aβ1-42 level when compared with individual treatment. Biochemical markers, for example, increased SOD, CAT and GSH, decreased MDA were seen, and histopathological studies revealed the reversal of neuronal damage in the treatment group. Additionally, Nrf2/HO-1 pathway in rat's brain was significantly increased by Sita, QCR and their combination. Pretreatment with QCR potentiates the action of Sita in Aβ induced AD in rats. The improved cognitive memory could be because of the synergistic effect of the drugs by decreasing Aβ1-42 level, antioxidant activity and increased expression of Nrf2/HO-1 in rat brain.
    Matched MeSH terms: Amyloid beta-Peptides/metabolism
  16. Bukhari SN, Jantan I
    Mini Rev Med Chem, 2015;15(13):1110-21.
    PMID: 26420724
    There is a crucial need to develop new effective drugs for Alzheimer's disease (AD) as the currently available AD treatments provide only momentary and incomplete symptomatic relief. Amongst natural products, curcumin, a major constituent of turmeric, has been intensively investigated for its neuroprotective effect against β-amyloid (Aβ)-induced toxicity in cultured neuronal cells. The ability of curcumin to attach to Aβ peptide and prevent its accumulation is attributed to its three structural characteristics such as the presence of two aromatic end groups and their co-planarity, the length and rigidity of the linker region and the substitution conformation of these aromatics. However, curcumin failed to reach adequate brain levels after oral absorption in AD clinical trials due to its low water solubility and poor oral bioavailability. A number of new curcumin analogs that mimic the active site of the compound along with analogs that mimic the curcumin anti-amyloid effect combined with anticholinesterase effect have been developed to enhance the bioavailability, pharmacokinetics, water solubility, stability at physiological conditions and delivery of curcumin. In this article, we have summarized all reported synthetic analogs of curcumin showing effects on β-amyloid and discussed their potential as therapeutic and diagnostic agents for AD.
    Matched MeSH terms: Amyloid beta-Peptides/metabolism*
  17. Alawieyah Syed Mortadza S, Sim JA, Neubrand VE, Jiang LH
    Glia, 2018 03;66(3):562-575.
    PMID: 29143372 DOI: 10.1002/glia.23265
    Amyloid β (Aβ)-induced neuroinflammation plays an important part in Alzheimer's disease (AD). Emerging evidence supports a role for the transient receptor potential melastatin-related 2 (TRPM2) channel in Aβ-induced neuroinflammation, but how Aβ induces TRPM2 channel activation and this relates to neuroinflammation remained poorly understood. We investigated the mechanisms by which Aβ42 activates the TRPM2 channel in microglial cells and the relationships to microglial activation and generation of tumor necrosis factor-α (TNF-α), a key cytokine implicated in AD. Exposure to 10-300 nM Aβ42 induced concentration-dependent microglial activation and generation of TNF-α that were ablated by genetically deleting (TRPM2 knockout ;TRPM2-KO) or pharmacologically inhibiting the TRPM2 channel, revealing a critical role of this channel in Aβ42 -induced microglial activation and generation of TNF-α. Mechanistically, Aβ42 activated the TRPM2 channel via stimulating generation of reactive oxygen species (ROS) and activation of poly(ADPR) polymerase-1 (PARP-1). Aβ42 -induced generation of ROS and activation of PARP-1 and TRPM2 channel were suppressed by inhibiting protein kinase C (PKC) and NADPH oxidases (NOX). Aβ42 -induced activation of PARP-1 and TRPM2 channel was also reduced by inhibiting PYK2 and MEK/ERK. Aβ42 -induced activation of PARP-1 was attenuated by TRPM2-KO and moreover, the remaining PARP-1 activity was eliminated by inhibiting PKC and NOX, but not PYK2 and MEK/ERK. Collectively, our results suggest that PKC/NOX-mediated generation of ROS and subsequent activation of PARP-1 play a role in Aβ42 -induced TRPM2 channel activation and TRPM2-dependent activation of the PYK2/MEK/ERK signalling pathway acts as a positive feedback to further facilitate activation of PARP-1 and TRPM2 channel. These findings provide novel insights into the mechanisms underlying Aβ-induced AD-related neuroinflammation.
    Matched MeSH terms: Amyloid beta-Peptides/metabolism*
  18. Kim SE, Lee B, Jang H, Chin J, Khoo CS, Choe YS, et al.
    Alzheimers Res Ther, 2021 02 19;13(1):48.
    PMID: 33608041 DOI: 10.1186/s13195-021-00787-7
    BACKGROUND: The presence of ß-amyloid (Aß) in the brain can be identified using amyloid PET. In clinical practice, the amyloid PET is interpreted based on dichotomous visual rating, which renders focal Aß accumulation be read as positive for Aß. However, the prognosis of patients with focal Aß deposition is not well established. Thus, we investigated cognitive trajectories of patients with focal Aß deposition.

    METHODS: We followed up 240 participants (112 cognitively unimpaired [CU], 78 amnestic mild cognitive impairment [aMCI], and 50 Alzheimer's disease (AD) dementia [ADD]) for 2 years from 9 referral centers in South Korea. Participants were assessed with neuropsychological tests and 18F-flutemetamol (FMM) positron emission tomography (PET). Ten regions (frontal, precuneus/posterior cingulate (PPC), lateral temporal, parietal, and striatum of each hemisphere) were visually examined in the FMM scan, and participants were divided into three groups: No-FMM, Focal-FMM (FMM uptake in 1-9 regions), and Diffuse-FMM. We used mixed-effects model to investigate the speed of cognitive decline in the Focal-FMM group according to the cognitive level, extent, and location of Aß involvement, in comparison with the No- or Diffuse-FMM group.

    RESULTS: Forty-five of 240 (18.8%) individuals were categorized as Focal-FMM. The rate of cognitive decline in the Focal-FMM group was faster than the No-FMM group (especially in the CU and aMCI stage) and slower than the Diffuse-FMM group (in particular in the CU stage). Within the Focal-FMM group, participants with FMM uptake to a larger extent (7-9 regions) showed faster cognitive decline compared to those with uptake to a smaller extent (1-3 or 4-6 regions). The Focal-FMM group was found to have faster cognitive decline in comparison with the No-FMM when there was uptake in the PPC, striatum, and frontal cortex.

    CONCLUSIONS: When predicting cognitive decline of patients with focal Aß deposition, the patients' cognitive level, extent, and location of the focal involvement are important.

    Matched MeSH terms: Amyloid beta-Peptides/metabolism
  19. Leong YQ, Ng KY, Chye SM, Ling APK, Koh RY
    Metab Brain Dis, 2020 01;35(1):11-30.
    PMID: 31811496 DOI: 10.1007/s11011-019-00516-y
    Extracellular senile plaques and intracellular neurofibrillary tangles are the neuropathological findings of the Alzheimer's disease (AD). Based on the amyloid cascade hypothesis, the main component of senile plaques, the amyloid-beta (Aβ) peptide, and its derivative called amyloid precursor protein (APP) both have been found to place their central roles in AD development for years. However, the recent therapeutics have yet to reverse or halt this disease. Previous evidence demonstrates that the accumulation of Aβ peptides and APP can exert neurotoxicity and ultimately neuronal cell death. Hence, we discuss the mechanisms of excessive production of Aβ peptides and APP serving as pathophysiologic stimuli for the initiation of various cell signalling pathways including apoptosis, necrosis, necroptosis and autophagy which lead to neuronal cell death. Conversely, the activation of such pathways could also result in the abnormal generation of APP and Aβ peptides. An elucidation of actions of APP and its metabolite, Aβ, could be vital in suggesting novel therapeutic opportunities.
    Matched MeSH terms: Amyloid beta-Peptides/metabolism*
  20. Qiu Z, Shen Q, Jiang C, Yao L, Sun X, Li J, et al.
    Int J Nanomedicine, 2021;16:2311-2322.
    PMID: 33776435 DOI: 10.2147/IJN.S302396
    Background: Alzheimer's disease (AD) is a neurodegenerative chronic disorder that causes dementia and problems in thinking, cognitive impairment and behavioral changes. Amyloid-beta (Aβ) is a peptide involved in AD progression, and a high level of Aβ is highly correlated with severe AD. Identifying and quantifying Aβ levels helps in the early treatment of AD and reduces the factors associated with AD.

    Materials and Methods: This research introduced a dual probe detection system involving aptamers and antibodies to identify Aβ. Aptamers and antibodies were attached to the gold (Au) urchin and hybrid on the carbon nanohorn-modified surface. The nanohorn was immobilized on the sensor surface by using an amine linker, and then a Au urchin dual probe was immobilized.

    Results: This dual probe-modified surface enhanced the current flow during Aβ detection compared with the surface with antibody as the probe. This dual probe interacted with higher numbers of Aβ peptides and reached the detection limit at 10 fM with R2=0.992. Furthermore, control experiments with nonimmune antibodies, complementary aptamer sequences and control proteins did not display the current responses, indicating the specific detection of Aβ.

    Conclusion: Aβ-spiked artificial cerebrospinal fluid showed a similar response to current changes, confirming the selective identification of Aβ.

    Matched MeSH terms: Amyloid beta-Peptides/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links