Displaying publications 1 - 20 of 63 in total

Abstract:
Sort:
  1. Bakaruddin NH, Ab Majid AH
    Trop Life Sci Res, 2019 Jan;30(1):33-56.
    PMID: 30847032 MyJurnal DOI: 10.21315/tlsr2019.30.1.3
    This study examined the tunneling activity and the behaviour of two subterranean termites, Globitermes sulphurues and Coptotermes gestroi treated with four plant extracts, namely Pyllanthus niruri, Azadirachta indica, Leucaena leucocephala and Andrographis paniculata. All plants were extracted with three different solvents (methanol, hexane and water) and were diluted into three concentrations (500, 5,000 and 10,000 ppm). A group of 50 workers and 2 soldiers were tested and observed daily during the exposure in order to determine their survivorship and behaviour. Both sections were scored to determine their tunneling activities after seven days. There was a significant difference of tunneling activities of C. gestroi on sand treated with plant extracts (X2(2) = 31.790, p < 0.0001) with a mean rank of 8.50 for methanolic extracts and 32.50 for both hexane and water extracts. Meanwhile, no significant difference was observed on tunneling activity of G. sulphureus on treated sand (X2(2) = 2.200, p = 0.333) with a mean rank of 20.72 for methanolic extracts, 26.31 for water extracts and 26.47 for hexane extracts. Results showed that plants extracted with methanol demonstrated strong repellent properties with 0 tunneling activity on the treated sand and low survivorship of both termites. Moreover, both termites did not survive (0%) when they were treated with methanolic extracts at 10,000 ppm. They also displayed a different behaviour post-exposure such as avoidance, gradually losing the ability to walk and low feeding consumption. These results indicate that there is a strong termiticidal activity of plants extracted with methanol against C. gestroi and G. sulphureus.
    Matched MeSH terms: Andrographis
  2. Malahubban M, Alimon AR, Sazili AQ, Fakurazi S, Zakry FA
    Trop Biomed, 2013 Sep;30(3):467-80.
    PMID: 24189677 MyJurnal
    Leaves of Andrographis paniculata and Orthosiphon stamineus were extracted with water, ethanol, methanol and chloroform to assess their potential as antibacterial and antioxidant agents. High performance liquid chromatography analysis showed that the methanolic extracts of A. paniculata and O. stamineus leaves gave the highest amounts of andrographolide and rosmarinic acid, respectively. These leaf extracts exhibited antimicrobial and antioxidant activities and, at the highest concentration tested (200 mg/mL), showed greater inhibitory effects against the Gram positive bacteria Bacillus cereus and Staphylococcus aureus than 10% acetic acid. Andrographis paniculata and O. stamineus methanolic and ethanolic leaf extracts also showed the strongest antioxidant activity as compared with the other extracts tested. The bioactive compounds present in these leaf extracts have the potential to be developed into natural antibacterial and antioxidant agents that may have applications in animal and human health.
    Matched MeSH terms: Andrographis/chemistry*
  3. Hassan WRM, Basir R, Ali AH, Embi N, Sidek HM
    Trop Biomed, 2019 Sep 01;36(3):776-791.
    PMID: 33597499
    Malarial pathogenesis involves among others, uncontrolled or excessive cytokine production arising from dysregulated immune responses mounted by the host to eliminate the plasmodial parasite. The ubiquitous serine/threonine kinase, glycogen synthase kinase3β (GSK3β) is a crucial regulator of the balance between pro- and anti-inflammatory cytokine productions in the inflammatory response to pathogenic infections. Andrographolide, a bioactive compound in Andrographis paniculata, displays GSK3- inhibitory effects. A previous study elsewhere has shown that this compound has antimalarial activity but the molecular basis of its action is yet to be elucidated. Here we aimed to study the anti-malarial activity of andrographolide in a murine model of malarial infection to investigate whether its mechanism of action involves cytokine modulation and inhibition of GSK3β. Andrographolide showed strong and selective anti-plasmodial activity (IC50 = 13.70±0.71 µM; SI = 30.43) when tested against cultures of P. falciparum 3D7. Intraperitoneal administration of andrographolide (5 mg/kg body weight (bw)) into P. berghei NK65-infected ICR mice resulted in chemo-suppression of 60.17±2.12%, and significantly (P<0.05) improved median survival time of infected mice compared to nontreated control. In addition, andrographolide treatment significantly (P<0.05) decreased the level of serum pro-inflammatory cytokine, IFN-γ (1.4-fold) whilst the anti-inflammatory cytokines, IL-10 and IL-4 were increased 2.3- and 2.6-fold respectively. Western blot analyses revealed that andrographolide treatment of P. berghei NK65-infected mice resulted in an increased level of phosphorylated GSK3β (Ser9) in liver of infected mice. Andrographolide administration also decreased the levels of phosphorylated NF-κB p65 (Ser536) and phosphorylated Akt (Ser473) in liver of malaria- infected animals. Taken together, our findings demonstrate that the cytokine-modulating effect of andrographolide in experimental malarial infection involves at least in part inhibition of NF-κB activation as a consequence of GSK3β inhibition. Based on its cytokine-modulating effects, andrographolide is thus a plausible candidate for adjunctive therapy in malaria subject to clinical evaluations.
    Matched MeSH terms: Andrographis/chemistry
  4. Rahman MM, Ahmad SH, Mohamed MT, Ab Rahman MZ
    ScientificWorldJournal, 2014;2014:635240.
    PMID: 25250382 DOI: 10.1155/2014/635240
    The present research was conducted to discover antimicrobial compounds in methanolic leaf extracts of Jatropha curcas and Andrographis paniculata and ethanolic leaf extract of Psidium guajava and the effectiveness against microbes on flower preservative solution of cut Mokara Red orchid flowers was evaluated. The leaves were analyzed using gas chromatography-mass spectrometry. A total of nine, 66, and 29 compounds were identified in J. curcas, P. guajava, and A. paniculata leaf extracts, with five (88.18%), four (34.66%), and three (50.47%) having unique antimicrobial compounds, respectively. The experimental design on vase life was conducted using a completely randomized design with 10 replications. The flower vase life was about 6 days in the solution containing the P. guajava and A. paniculata leaf extracts at 15 mg/L. Moreover, solution with leaf extracts of A. paniculata had the lowest bacterial count compared to P. guajava and J. curcas. Thus, these leaf extracts revealed the presence of relevant antimicrobial compounds. The leaf extracts have the potential as a cut flower solution to minimize microbial populations and extend flower vase life. However, the activities of specific antimicrobial compounds and double or triple combination leaf extracts to enhance the effectiveness to extend the vase life need to be tested.
    Matched MeSH terms: Andrographis*
  5. Hossain MS, Urbi Z, Sule A, Hafizur Rahman KM
    ScientificWorldJournal, 2014;2014:274905.
    PMID: 25950015 DOI: 10.1155/2014/274905
    As aboriginal sources of medications, medicinal plants are used from the ancient times. Andrographis paniculata is one of the highly used potential medicinal plants in the world. This plant is traditionally used for the treatment of common cold, diarrhoea, fever due to several infective cause, jaundice, as a health tonic for the liver and cardiovascular health, and as an antioxidant. It is also used to improve sexual dysfunctions and serve as a contraceptive. All parts of this plant are used to extract the active phytochemicals, but the compositions of phytoconstituents widely differ from one part to another and with place, season, and time of harvest. Our extensive data mining of the phytoconstituents revealed more than 55 ent-labdane diterpenoids, 30 flavonoids, 8 quinic acids, 4 xanthones, and 5 rare noriridoids. In this review, we selected only those compounds that pharmacology has already reported. Finally we focused on around 46 compounds for further discussion. We also discussed ethnobotany of this plant briefly. Recommendations addressing extraction process, tissue culture, and adventitious rooting techniques and propagation under abiotic stress conditions for improvement of phytoconstituents are discussed concisely in this paper. Further study areas on pharmacology are also proposed where needed.
    Matched MeSH terms: Andrographis*
  6. Valdiani A, Abdul Kadir M, Said Saad M, Talei D, Omidvar V, Hua CS
    ScientificWorldJournal, 2012;2012:297545.
    PMID: 22701352 DOI: 10.1100/2012/297545
    The ambiguity of crossability in Andrographis paniculata (AP) was pointed out in the present research. Accordingly, the effects of different style length and crossing time on intraspecific crossability of seven AP accessions in 21 possible combinations were investigated. The best results came out between 08:00 to 11:00 h for manual out-crossing of AP, while the time from 12:00 to 18:00 h showed a decreasing trend. Moreover, 12 mm style length was found as the most proper phenological stage in terms of stigmatic receptivity to perform out-crossing in this plant. All in all, AP behaved unlikely in each combination, and a significant difference was observed in crossability of AP accessions (P < 0.01). The lowest and highest crossability rate was found in hybrids 21 (11261NS × 11344K) and 27 (11322PA × 11350T) with 0.25% and 13.33%, respectively. Furthermore, a significant negative relationship between style length and crossibility (r² = 0.762(∗∗)) was recorded in this research. As a final conclusion, crossing time and proper style length can improve the intraspecific crossability in the species, considerably. Despite all the mentioned contrivances, we still believe that a genetic incongruity should be involved as an additional obstacle in crossability of those combinations that failed or responded deficiently to outcrossing.
    Matched MeSH terms: Andrographis/classification*; Andrographis/physiology*
  7. Rajaratinam H, Nafi SNM
    Malays J Med Sci, 2019 Sep;26(5):6-20.
    PMID: 31728115 MyJurnal DOI: 10.21315/mjms2019.26.5.2
    Oestrogen receptor (ER)-positive breast cancer is one of the common forms of breast cancer affecting women worldwide. ER-positive breast cancer patients are subjected to anti-oestrogen therapy such as selective oestrogen receptor modulator (SERM) and aromatase inhibitors (AIs). Recently, the emergence of resistance to anti-oestrogen treatment is under intensive focus. The different mechanisms postulated to explain the occurrence of resistance in ER-positive breast cancer treatment include the loss of ER function and the crosstalk between signalling pathways in cancer cells. Recent literature highlighted that the cholesterol biosynthesis pathway acts as a novel mechanism underlying resistance to oestrogen deprivation. The present study aimed to highlight the role of cholesterol biosynthesis in anti-oestrogen treatment resistance, putatively suggesting an alternative plant-based treatment using andrographolide from Andrographis paniculata. The hypolipidaemic effect of andrographolide can be utilised to prevent the resistance in the treatment of ER-positive breast cancer contributed by cholesterol biosynthesis.
    Matched MeSH terms: Andrographis
  8. Manikam SD, Manikam ST, Stanslas J
    J Pharm Pharmacol, 2009 Jan;61(1):69-78.
    PMID: 19126299 DOI: 10.1211/jpp/61.01.0010
    The growth inhibiting potential of andrographolide was evaluated in three acute promyelocytic leukaemia cell line models (HL-60, NB4 and all-trans retinoic acid (ATRA)-resistant NB4-R2).
    Matched MeSH terms: Andrographis/chemistry
  9. Tajidin NE, Shaari K, Maulidiani M, Salleh NS, Ketaren BR, Mohamad M
    Sci Rep, 2019 11 14;9(1):16766.
    PMID: 31727911 DOI: 10.1038/s41598-019-52905-z
    Andrographis paniculata (Burm. F.) Nees. is considered as the herb of the future due to its precious chemical compounds, andrographolide (ANDRO), neoandrographolide (NAG) and 14-deoxyandrographolide (DAG). This study aims to profile the metabolites in young and mature leaf at six different harvest ages using 1HNMR-based metabolomics combined with multivariate data analysis. Principal component analysis (PCA) indicated noticeable and clear discrimination between young and mature leaves. A comparison of the leaves stage indicated that young leaves were separated from mature leaves due to its larger quantity of ANDRO, NAG, DAG, glucose and sucrose. These similar metabolites are also responsible for the PCA separation into five clusters representing the harvest age at 14, 16, 18, 20, 22 weeks of leaves extract. Loading plots revealed that most of the ANDRO and NAG signals were present when the plant reached at the pre-flowering stage or 18 weeks after sowing (WAS). As a conclusion, A. paniculata young leaves at pre-flowering harvest age were found to be richer in ANDRO, NAG and DAG compared to mature leaves while glucose and choline increased with harvest age. Therefore, young leaves of A. paniculata should be harvested at 18 WAS in order to produce superior quality plant extracts for further applications by the herbal, nutraceutical and pharmaceutical industries.
    Matched MeSH terms: Andrographis/anatomy & histology*; Andrographis/chemistry
  10. Abd Aziz NA, Hasham R, Sarmidi MR, Suhaimi SH, Idris MKH
    Saudi Pharm J, 2021 Feb;29(2):143-165.
    PMID: 33679177 DOI: 10.1016/j.jsps.2020.12.016
    Medicinal plants have gained much interest in the prevention and treatment of common human disease such as cold and fever, hypertension and postpartum. Bioactive compounds from medicinal plants were synthesised using effective extraction methods which have important roles in the pharmaceutical product development. Orthosiphon aristatus (OA), Eurycoma longifolia (EL) and Andrographis paniculata (AP) are among popular medicinal herbs in Southeast Asia. The major compounds for these medicinal plants are polar bioactive compounds (rosmarinic acid, eurycomanone and andrographolide) which have multiple benefits to human health. The bioactive compounds are used as a drug to function against a variety of diseases with the support of scientific evidence. This paper was intended to prepare a complete review about the extraction techniques (e.g. OA, EL and AP) of these medicinal plants based on existing studies and scientific works. Suitable solvents and techniques to obtain their major bioactive compounds and their therapeutic potentials were discussed.
    Matched MeSH terms: Andrographis
  11. Mahanem M, Dayang Nurul Fatihah
    Sains Malaysiana, 2015;44:1249-1255.
    The recent expanding rat population is causing severe economic losses and diseases in human. The main objective of this study was to evaluate the antifertility effects of Andrographis paniculata (AP) methanol extract on the weight of testis, sexual behaviour, fertility, sperm quality and serum testosterone level in treated male rats compared with control rats. A total of 21 adult male rats Sprague-Dawley aged 12 weeks were divided into three groups; control group (distilled water), low dose group (800 mg/kg) and high dose group (1600 mg/kg) of AP methanol extracts given orally for 24 days. Body and testis weight, sexual behaviour test, fertility test, sperm quality and serum testosterone level were measured. Oral administration of AP methanol extract showed a significant decrease in testis weight, number of mountings, number of fetuses, sperm count, sperm motility and serum testosterone levels for all treatment group as compared with the control group, whereas mortality showed a significant increase. Observation on testis histology of treatment group exhibited features of degeneration in Sertoli cells and germinal cells in the seminiferous tubules, followed by the shrinkage of Leydig cells as compared with the control group, which showed characteristics of normal spermatogenesis. In conclusion, AP methanol extract exhibited antifertility effects in male rats, suggesting that AP is a potential herb to be applied as rodenticide.
    Matched MeSH terms: Andrographis
  12. Merawin LT, Arifah AK, Sani RA, Somchit MN, Zuraini A, Ganabadi S, et al.
    Res Vet Sci, 2010 Feb;88(1):142-7.
    PMID: 19500810 DOI: 10.1016/j.rvsc.2009.05.017
    Canine dirofilariasis is a common tropical parasitic disease of companion animals, caused by infestation of Dirofilaria immitis filarids within the pulmonary arteries and extending into the right heart. Increased reports of adverse reactions elicited by current microfilaricidal agents against D. immitis such as neurological disorders, circulatory collapse and potential resistance against these agents, warrant the search for new agents in forms of plant extracts. The use of plant extracts in therapeutic medicine is commonly met with scepticism by the veterinary community, thus the lack of focus on its medical potential. This study evaluated the presence of microfilaricidal activities of the aqueous extracts of Zingiber officinale, Andrographis paniculata and Tinospora crispa Miers on D. immitisin vitro at different concentrations; 10mg/ml, 1mg/ml, 100 microg/ml, 10 microg/ml and 1 microg/ml within 24h, by evaluation of relative microfilarial motility as a measure of microfilaricidal activity. All extracts showed microfilaricidal activity with Z. officinale exhibiting the strongest activity overall, followed by A. paniculata and T. crispa Miers. It is speculated that the microfilaricidal mechanism exhibited by these extracts is via spastic paralysis based upon direct observation of the microfilarial motility.
    Matched MeSH terms: Andrographis
  13. Koh PH, Mokhtar RA, Iqbal M
    Redox Rep., 2011;16(3):134-43.
    PMID: 21801496 DOI: 10.1179/1351000211Y.0000000003
    Andrographis paniculata (hempedu bumi) is a plant that possesses many medicinal values in treating several diseases and for health care maintenance. However, its hepatoprotective activity and mechanism of action have not been fully investigated. Therefore, this study aimed to evaluate the hepatoprotective effects of A. paniculata and its mechanism of action in rats. Carbon tetrachloride (CCl(4)) challenge of rats at a dose of 1.2 ml/kg body weight-induced oxidative stress in the liver. This was evidenced by augmentation in lipid peroxidation, which was accompanied by a decrease in the activities of antioxidant enzymes and depletion in the level of reduced glutathione (P < 0.05). Parrallel to these changes, CCl(4) challenge too, enhanced hepatic damage as evidenced by sharp increase in serum transaminases (e.g. alanine aminotransferase, aspartate aminotransferase, and lactate dehydrogenase) (P < 0.05). Additionally, the impairment of liver function corresponded to histolopathological changes. However, most of these changes were reversed in a dose-dependent fashion by pre-treatment of animals with A. paniculata (P < 0.05). The ability of A. paniculata to scavenge the 2,2-Diphenyl-2-picrylhydrazyl radical was determined through its EC(50) value. The EC(50) value of A. paniculata was 583.60 ± 4.25 µg/ml. In addition, A. paniculata was found to contain 65.37 ± 1.20 mg/g total phenolics expressed as gallic acid equivalent. From these studies, it is concluded that A. paniculata could be used as a hepatoprotective agent and possesses the potential to treat or prevent degenerative diseases where oxidative stress is implicated.
    Matched MeSH terms: Andrographis/chemistry*
  14. Talei D, Valdiani A, Rafii MY, Maziah M
    PLoS One, 2014;9(11):e112907.
    PMID: 25423252 DOI: 10.1371/journal.pone.0112907
    Separation of proteins based on the physicochemical properties with different molecular weight and isoelectric points would be more accurate. In the current research, the 45-day-old seedlings were treated with 0 (control) and 12 dS m(-1) of sodium chloride in the hydroponic system. After 15 days of salt exposure, the total protein of the fresh leaves and roots was extracted and analyzed using two-dimensional electrophoresis system (2-DE). The analysis led to the detection of 32 induced proteins (19 proteins in leaf and 13 proteins in the root) as well as 12 upregulated proteins (four proteins in leaf and eight proteins in the root) in the salt-treated plants. Of the 44 detected proteins, 12 were sequenced, and three of them matched with superoxide dismutase, ascorbate peroxidase and ribulose-1, 5-bisphosphate oxygenase whereas the rest remained unknown. The three known proteins associate with plants response to environmental stresses and could represent the general stress proteins in the present study too. In addition, the proteomic feedback of different accessions of A. paniculata to salt stress can potentially be used to breed salt-tolerant varieties of the herb.
    Matched MeSH terms: Andrographis/metabolism*
  15. Al-Henhena N, Ying RP, Ismail S, Najm W, Najm W, Khalifa SA, et al.
    PLoS One, 2014;9(11):e111118.
    PMID: 25390042 DOI: 10.1371/journal.pone.0111118
    Andrographis paniculata is a grass-shaped medicinal herb, traditionally used in Southeast Asia. The aim of this study was to evaluate the chemoprotective effects of A. paniculata on colorectal cancer. A. paniculata ethanol extract was tested on azoxymethane (AOM)-induced aberrant crypt foci (ACF) in vivo and in vitro. A. paniculata treated groups showed a significant reduction in the number of ACF of the treated rats. Microscopically, ACF showed remarkably elongated and stratified cells, and depletion of the submucosal glands of AOM group compared to the treated groups. Histologically, staining showed slightly elevated masses above the surrounding mucosa with oval or slit-like orifices. Immunohistochemically, expression of proliferating cell nuclear antigen (PCNA) and β-catenin protein were down-regulated in the A. paniculata treated groups compared to the AOM group. When colon tissue was homogenized, malondialdehyde (MDA) and nitric oxide (NO) levels were significantly decreased, whereas superoxide dismutase (SOD) activity was increased in the treated groups compared to the AOM group. A. paniculata ethanol extract showed antioxidant and free radical scavenging activity, as elucidated by the measure of oxidative stress markers. Further, the active fractions were assessed against cell lines of CCD841 and HT29 colon cancer cells.
    Matched MeSH terms: Andrographis/chemistry*
  16. Abdulaziz Bardi D, Halabi MF, Hassandarvish P, Rouhollahi E, Paydar M, Moghadamtousi SZ, et al.
    PLoS One, 2014;9(10):e109424.
    PMID: 25280007 DOI: 10.1371/journal.pone.0109424
    This study investigated the hepatoprotective effects of ethanolic Andrographis paniculata leaf extract (ELAP) on thioacetamide-induced hepatotoxicity in rats. An acute toxicity study proved that ELAP is not toxic in rats. To examine the effects of ELAP in vivo, male Sprague Dawley rats were given intraperitoneal injections of vehicle 10% Tween-20, 5 mL/kg (normal control) or 200 mg/kg TAA thioacetamide (to induce liver cirrhosis) three times per week. Three additional groups were treated with thioacetamide plus daily oral silymarin (50 mg/kg) or ELAP (250 or 500 mg/kg). Liver injury was assessed using biochemical tests, macroscopic and microscopic tissue analysis, histopathology, and immunohistochemistry. In addition, HepG2 and WRL-68 cells were treated in vitro with ELAP fractions to test cytotoxicity. Rats treated with ELAP exhibited significantly lower liver/body weight ratios and smoother, more normal liver surfaces compared with the cirrhosis group. Histopathology using Hematoxylin and Eosin along with Masson's Trichrome stain showed minimal disruption of hepatic cellular structure, minor fibrotic septa, a low degree of lymphocyte infiltration, and minimal collagen deposition after ELAP treatment. Immunohistochemistry indicated that ELAP induced down regulation of proliferating cell nuclear antigen. Also, hepatic antioxidant enzymes and oxidative stress parameters in ELAP-treated rats were comparable to silymarin-treated rats. ELAP administration reduced levels of altered serum liver biomarkers. ELAP fractions were non-cytotoxic to WRL-68 cells, but possessed anti-proliferative activity on HepG2 cells, which was confirmed by a significant elevation of lactate dehydrogenase, reactive oxygen species, cell membrane permeability, cytochrome c, and caspase-8,-9, and, -3/7 activity in HepG2 cells. A reduction of mitochondrial membrane potential was also detected in ELAP-treated HepG2 cells. The hepatoprotective effect of 500 mg/kg of ELAP is proposed to result from the reduction of thioacetamide-induced toxicity, normalizing reactive oxygen species levels, inhibiting cellular proliferation, and inducing apoptosis in HepG2 cells.
    Matched MeSH terms: Andrographis/chemistry*
  17. Valdiani A, Talei D, Tan SG, Abdul Kadir M, Maziah M, Rafii MY, et al.
    PLoS One, 2014;9(2):e87034.
    PMID: 24586262 DOI: 10.1371/journal.pone.0087034
    Andrographolides, the diterpene lactones, are major bioactive phytochemicals which could be found in different parts of the medicinal herb Andrographis paniculata. A number of such compounds namely andrographolide (AG), neoandrographolide (NAG), and 14-deoxy-11,12-didehydroandrographolide (DDAG) have already attracted a great deal of attention due to their potential therapeutic effects in hard-to-treat diseases such as cancers and HIV. Recently, they have also been considered as substrates for the discovery of novel pharmaceutical compounds. Nevertheless, there is still a huge gap in knowledge on the genetic pattern of the biosynthesis of these bioactive compounds. Hence, the present study aimed to investigate the genetic mechanisms controlling the biosynthesis of these phytochemicals using a diallel analysis. The high performance liquid chromatography analysis of the three andrographolides in 210 F1 progenies confirmed that the biosynthesis of these andrographolides was considerably increased via intraspecific hybridization. The results revealed high, moderate and low heterosis for DDAG, AG and NAG, respectively. Furthermore, the preponderance of non-additive gene actions was affirmed in the enhancement of the three andrographolides contents. The consequence of this type of gene action was the occurrence of high broad-sense and low narrow-sense heritabilities for the above mentioned andrographolides. The prevalence of non-additive gene action suggests the suitability of heterosis breeding and hybrid seed production as a preferred option to produce new plant varieties with higher andrographolide contents using the wild accessions of A. paniculata. Moreover, from an evolutionary point of view, the occurrence of population bottlenecks in the Malaysian accessions of A. paniculata was unveiled by observing a low level of additive genetic variance (VA ) for all the andrographolides.
    Matched MeSH terms: Andrographis/genetics*; Andrographis/metabolism*
  18. Mohammed A, Chiruvella KK, Rao YK, Geethangili M, Raghavan SC, Ghanta RG
    PLoS One, 2015;10(10):e0141154.
    PMID: 26488879 DOI: 10.1371/journal.pone.0141154
    Andrographis lineata is an herbal medicinal plant used in traditional medicine as a substitute for Andrographis paniculata. Here, using mature leaf explants of A. lineata we demonstrate for the first time the callus induction established on MS medium containing 1.0 mg l-1 IAA. Dried callus was subjected to solvent extraction with acetone. Further the acetone residue was separated by silica gel column chromatography, crystallized and characterized on the basis of nuclear magnetic resonance (proton and c13) and liquid chromatographic mass spectroscopy. This analysis revealed the occurrence of two known flavones namely, 7-O-methylwogonin (MW) and Echioidinin (ED). Furthermore, these compounds were tested for their cytotoxicity against leukemic cell line, CEM. We identify that ED and MW induced cytotoxicity in a time- and concentration-dependent manner. Further increase in the LDH release upon treatment with ED and MW further confirmed our cytotoxicity results against leukemic cell line. Strikingly, MW was more potent than ED when compared by trypan blue and MTT assays. Our results recapitulate the utility of callus cultures for the production of plant specific bioactive secondary metabolites instead of using wild plants. Together, our in vitro studies provide new insights of A. lineata callus cultures serving as a source for cancer chemotherapeutic agents.
    Matched MeSH terms: Andrographis/chemistry*
  19. Chua LS
    Phytother Res, 2014 Nov;28(11):1589-98.
    PMID: 25043965 DOI: 10.1002/ptr.5193
    Till to date, the advancement of medical science and technology is still unable to provide inclusive treatment to liver inflammation caused by neither microbial invasion nor antibiotics nor environmental toxins. Therefore, this article provides the basic knowledge of liver inflammation up to the cellular level and its current medical treatment for inflammatory symptom suppression. Because of the adverse effects of drug treatment, people start looking for comprehensive alternative nowadays. Herbal medicine is believed to be the best of choice because it is being practiced until now for centuries. Although numerous herbal plants have been reported for their efficacies in liver protection, Andrographis paniculata is the most widely used herb for hepatoprotection, particularly in Ayurveda and traditional Chinese medicine. This review covers the significant observation on the biochemical responses due to the experimental induction of liver damage in vitro and in vivo using the marker compound of the herb, namely andrographolide and its derivatives. The standardized extract of A. paniculata with the right phytochemical composition of diterpenic labdanes is likely to have tremendous potential for the development of hepatoprotective medicine. This standardized herbal medicine may not provide immediate remedy, but it can be considered as a comprehensive therapy for liver inflammation.
    Matched MeSH terms: Andrographis/chemistry*
  20. Wiart C, Kumar K, Yusof MY, Hamimah H, Fauzi ZM, Sulaiman M
    Phytother Res, 2005 Dec;19(12):1069-70.
    PMID: 16372376
    Andrographolide, neoandrographolide and 14-deoxy-11,12-didehydroandrographolide, ent-labdene diterpenes isolated from Andrographis paniculata showed viricidal activity against herpes simplex virus 1 (HSV-1). None of these compounds exhibited significant cytotoxicity at viricidal concentrations.
    Matched MeSH terms: Andrographis*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links