Displaying publications 1 - 20 of 68 in total

Abstract:
Sort:
  1. Mohd Ridzuan MA, Sow A, Noor Rain A, Mohd Ilham A, Zakiah I
    Trop Biomed, 2007 Jun;24(1):111-8.
    PMID: 17568384 MyJurnal
    Eurycoma longifolia, locally known as 'Tongkat Ali' is a popular local medicinal plant that possess a lot of medicinal properties as claimed traditionally, especially in the treatment of malaria. The claims have been proven scientifically on isolated compounds from the plant. The present study is to investigate the anti malaria properties of Eurycoma longifolia standardized extract (root) (TA164) alone and in combination with artemisinin in vivo. Combination treatment of the standardized extract (TA164) with artemisinin suppressed P. yoelii infection in the experimental mice. The 4 day suppressive test showed that TA164 suppressed the parasitemia of P. yoelii-infected mice as dose dependent manner (10, 30 and 60 mg/kg BW) by oral and subcutaneous treatment. By oral administration, combination of TA164 at 10, 30 and 60 mg/kg BW each with artemisinin respectively showed a significant increase in the parasitemia suppression to 63, 67 and 80 percent as compared to artemisinin single treatment (31%). Using subcutaneous administration, at 10 mg/kg BW of TA164 in combination with 1.7 mg/kg BW of artemisinin gave a suppression of 80% of infection. This study showed that combination treatment of TA164 with artemisinin gives a promising potential anti malaria candidate using both oral and subcutaneous route, the later being the most potent.
    Matched MeSH terms: Artemisinins/administration & dosage*; Artemisinins/pharmacology*
  2. Wong JW, Yuen KH
    Int J Pharm, 2001 Oct 04;227(1-2):177-85.
    PMID: 11564552
    The bioavailability of beta- and gamma-cyclodextrin artemisinin complexes was evaluated in comparison with a normal commercially available preparation, Artemisinin 250. Twelve healthy male volunteers participated in the study conducted according to a three-way crossover design. The bioavailability was compared using the parameters, total area under the plasma level-time curve (AUC(0-infinity)), peak plasma concentration (C(max)), and time to reach peak plasma concentration (T(max)). A statistically significant difference was observed between the values of the complexes and Artemisinin 250 for the three parameters. However, no statistically significant difference was observed between the values of the beta- and gamma-cyclodextrin complexes. Moreover, the 90% confidence interval for the ratio of the AUC(0-infinity) values of the beta-cyclodextrin complex over those of Artemisinin 250 was estimated to be between 1.51-2.04, while that of C(max) was between 1.73-2.93. For the gamma-cyclodextrin complex, the respective intervals were 1.30-1.76 and 1.43-2.43. These findings indicated that the beta- and gamma-cyclodextrin complexes had a much higher rate and extent of bioavailability compared to Artemisinin 250. In addition, the absorption of artemisinin was observed to be poor and negligible when the preparations started to arrive in the colon. This could be attributed to poor dissolution of artemisinin in the semi-solid faecal matter in the lower part of the gastrointestinal tract.
    Matched MeSH terms: Artemisinins*
  3. Wong JW, Yuen KH
    Drug Dev Ind Pharm, 2003 Oct;29(9):1035-44.
    PMID: 14606667
    The present study was conducted to investigate the inclusion complexation of artemisinin (ART) with natural cyclodextrins (CyD), namely alpha-, beta-, and gamma-CyDs with the aim of improving its solubility and dissolution rate. Complex formation in aqueous solution and solid state was studied by solubility analysis, dissolution, and thermal analysis. Solubility diagrams indicated that the complexation of ART and the three CyDs occurred at a molar ratio of 1:1, and showed a remarkable increase in ART solubility. Moreover, the thermodynamic parameters calculated by using the van't Hoff equation revealed that the complexation process was associated with negative enthalpy of formation and occurred spontaneously. The complexation capability of CyDs with ART increased in the order of alpha- < gamma- < beta-CyDs and could be ascribed to the structural compatibility between the molecular size of ART and the diameter of the CyD cavities. Dissolution profiles of the three complexes demonstrated an increased rate and extent of dissolution compared with those of their respective physical mixtures and a commercial preparation. In solid-state analysis, using differential scanning calorimetry, the gamma-CyD was capable of complexing the highest percentage of ART, followed by beta- and alpha-CyDs. The respective estimated percentage of ART complexed by the CyDs were 85%, 40%, and 12%.
    Matched MeSH terms: Artemisinins/metabolism; Artemisinins/chemistry*
  4. Grigg MJ, William T, Menon J, Dhanaraj P, Barber BE, Wilkes CS, et al.
    Lancet Infect Dis, 2016 Feb;16(2):180-188.
    PMID: 26603174 DOI: 10.1016/S1473-3099(15)00415-6
    BACKGROUND: The zoonotic parasite Plasmodium knowlesi has become the most common cause of human malaria in Malaysia and is present throughout much of southeast Asia. No randomised controlled trials have been done to identify the optimum treatment for this emerging infection. We aimed to compare artesunate-mefloquine with chloroquine to define the optimum treatment for uncomplicated P knowlesi malaria in adults and children.

    METHODS: We did this open-label, randomised controlled trial at three district hospitals in Sabah, Malaysia. Patients aged 1 year or older with uncomplicated P knowlesi malaria were randomly assigned, via computer-generated block randomisation (block sizes of 20), to receive oral artesunate-mefloquine (target dose 12 mg/kg artesunate and 25 mg/kg mefloquine) or chloroquine (target dose 25 mg/kg). Research nursing staff were aware of group allocation, but allocation was concealed from the microscopists responsible for determination of the primary endpoint, and study participants were not aware of drug allocation. The primary endpoint was parasite clearance at 24 h. Analysis was by modified intention to treat. This study is registered with ClinicalTrials.gov, number NCT01708876.

    FINDINGS: Between Oct 16, 2012, and Dec 13, 2014, we randomly assigned 252 patients to receive either artesunate-mefloquine (n=127) or chloroquine (n=125); 226 (90%) patients comprised the modified intention-to-treat population. 24 h after treatment, we recorded parasite clearance in 97 (84% [95% CI 76-91]) of 115 patients in the artesunate-mefloquine group versus 61 (55% [45-64]) of 111 patients in the chloroquine group (difference in proportion 29% [95% CI 18·0-40·8]; p<0·0001). Parasite clearance was faster in patients given artesunate-mefloquine than in those given chloroquine (18·0 h [range 6·0-48·0] vs 24·0 h [6·0-60·0]; p<0·0001), with faster clearance of ring stages in the artesunate-mefloquine group (mean time to 50% clearance of baseline parasites 8·6 h [95% CI 7·9-9·4] vs 13·8 h [12·1-15·4]; p<0·0001). Risk of anaemia within 28 days was lower in patients in the artesunate-mefloquine group (71 [62%; 95% CI 52·2-70·6]) than in those in the chloroquine group (83 [75%; 65·6-82·5]; p=0·035). Gametocytaemia as detected by PCR for pks25 was present in 44 (86%) of 51 patients in the artesunate-mefloquine group and 41 (84%) of 49 patients in the chloroquine group at baseline, and in three (6%) of 49 patients and two (4%) of 48 patients, respectively, at day 7. Fever clearance was faster in the artesunate-mefloquine group (mean 11·5 h [95% CI 8·3-14·6]) than in the chloroquine group (14·8 h [11·7-17·8]; p=0·034). Bed occupancy was 2426 days per 1000 patients in the artesunate-mefloquine group versus 2828 days per 1000 patients in the chloroquine group (incidence rate ratio 0·858 [95% CI 0·812-0·906]; p<0·0001). One (<1%) patient in the artesunate-mefloquine group had a serious neuropsychiatric event regarded as probably related to study drug.

    INTERPRETATION: Artesunate-mefloquine is highly efficacious for treatment of uncomplicated P knowlesi malaria. The rapid therapeutic response of the drug offers significant advantages compared with chloroquine monotherapy and supports a unified treatment policy for artemisinin-based combination therapy for all Plasmodium species in co-endemic areas.

    FUNDING: Malaysian Ministry of Health, Australian National Health and Medical Research Council, and Asia Pacific Malaria Elimination Network.

    Matched MeSH terms: Artemisinins/therapeutic use*
  5. Grigg MJ, William T, Dhanaraj P, Menon J, Barber BE, von Seidlein L, et al.
    BMJ Open, 2014 Aug 19;4(8):e006005.
    PMID: 25138814 DOI: 10.1136/bmjopen-2014-006005
    INTRODUCTION: Malaria due to Plasmodium knowlesi is reported throughout South-East Asia, and is the commonest cause of it in Malaysia. P. knowlesi replicates every 24 h and can cause severe disease and death. Current 2010 WHO Malaria Treatment Guidelines have no recommendations for the optimal treatment of non-severe knowlesi malaria. Artemisinin-combination therapies (ACT) and chloroquine have each been successfully used to treat knowlesi malaria; however, the rapidity of parasite clearance has not been prospectively compared. Malaysia's national policy for malaria pre-elimination involves mandatory hospital admission for confirmed malaria cases with discharge only after two negative blood films; use of a more rapidly acting antimalarial agent would have health cost benefits. P. knowlesi is commonly microscopically misreported as P. malariae, P. falciparum or P. vivax, with a high proportion of the latter two species being chloroquine-resistant in Malaysia. A unified ACT-treatment protocol would provide effective blood stage malaria treatment for all Plasmodium species.

    METHODS AND ANALYSIS: ACT KNOW, the first randomised controlled trial ever performed in knowlesi malaria, is a two-arm open-label trial with enrolments over a 2-year period at three district sites in Sabah, powered to show a difference in proportion of patients negative for malaria by microscopy at 24 h between treatment arms (clinicaltrials.gov #NCT01708876). Enrolments started in December 2012, with completion expected by September 2014. A total sample size of 228 is required to give 90% power (α 0.05) to determine the primary end point using intention-to-treat analysis. Secondary end points include parasite clearance time, rates of recurrent infection/treatment failure to day 42, gametocyte carriage throughout follow-up and rates of anaemia at day 28, as determined by survival analysis.

    ETHICS AND DISSEMINATION: This study has been approved by relevant institutional ethics committees in Malaysia and Australia. Results will be disseminated to inform knowlesi malaria treatment policy in this region through peer-reviewed publications and academic presentations.

    TRIAL REGISTRATION NUMBER: NCT01708876.

    Matched MeSH terms: Artemisinins/therapeutic use*
  6. Barber BE, William T, Grigg MJ, Menon J, Auburn S, Marfurt J, et al.
    Clin Infect Dis, 2013 Feb;56(3):383-97.
    PMID: 23087389 DOI: 10.1093/cid/cis902
    Plasmodium knowlesi commonly causes severe malaria in Malaysian Borneo, with high case-fatality rates reported. We compared risk, spectrum, and outcome of severe disease from P. knowlesi, Plasmodium falciparum, and Plasmodium vivax and outcomes following introduction of protocols for early referral and intravenous artesunate for all severe malaria.
    Matched MeSH terms: Artemisinins/therapeutic use*
  7. Rajahram GS, Barber BE, William T, Menon J, Anstey NM, Yeo TW
    Malar J, 2012;11:284.
    PMID: 22905799 DOI: 10.1186/1475-2875-11-284
    The simian parasite Plasmodium knowlesi is recognized as a common cause of severe and fatal human malaria in Sabah, Malaysia, but is morphologically indistinguishable from and still commonly reported as Plasmodium malariae, despite the paucity of this species in Sabah. Since December 2008 Sabah Department of Health has recommended intravenous artesunate and referral to a general hospital for all severe malaria cases of any species. This paper reviews all malaria deaths in Sabah subsequent to the introduction of these measures. Reporting of malaria deaths in Malaysia is mandatory.
    Matched MeSH terms: Artemisinins/administration & dosage*
  8. William T, Menon J, Rajahram G, Chan L, Ma G, Donaldson S, et al.
    Emerg Infect Dis, 2011 Jul;17(7):1248-55.
    PMID: 21762579 DOI: 10.3201/eid1707.101017
    The simian parasite Plasmodium knowlesi causes severe human malaria; the optimal treatment remains unknown. We describe the clinical features, disease spectrum, and response to antimalarial chemotherapy, including artemether-lumefantrine and artesunate, in patients with P. knowlesi malaria diagnosed by PCR during December 2007-November 2009 at a tertiary care hospital in Sabah, Malaysia. Fifty-six patients had PCR-confirmed P. knowlesi monoinfection and clinical records available for review. Twenty-two (39%) had severe malaria; of these, 6 (27%) died. Thirteen (59%) had respiratory distress; 12 (55%), acute renal failure; and 12, shock. None experienced coma. Patients with uncomplicated disease received chloroquine, quinine, or artemether-lumefantrine, and those with severe disease received intravenous quinine or artesunate. Parasite clearance times were 1-2 days shorter with either artemether-lumefantrine or artesunate treatment. P. knowlesi is a major cause of severe and fatal malaria in Sabah. Artemisinin derivatives rapidly clear parasitemia and are efficacious in treating uncomplicated and severe knowlesi malaria.
    Matched MeSH terms: Artemisinins/administration & dosage*; Artemisinins/therapeutic use
  9. Kam MYY, Yap WSP
    Biotechnol Genet Eng Rev, 2020 Apr;36(1):1-31.
    PMID: 32308142 DOI: 10.1080/02648725.2020.1749818
    Artemisinin (ART) is an antimalarial compound that possesses a variety of novel biological activities. Due to the low abundance of ART in natural sources, agricultural supply has been erratic, and prices are highly volatile. While heterologous biosynthesis and semi-synthesis are advantageous in certain aspects, these approaches remained disadvantageous in terms of productivity and cost-effectiveness. Therefore, further improvement in ART production calls for approaches that should supplement the agricultural production gap, while reducing production costs and stabilising supply. The present review offers a discussion on the elicitation of plants and/or in vitro cultures as an economically feasible yield enhancement strategy to address the global problem of access to affordable ART. Deemed critical for the manipulation of biosynthetic potential, the mechanism of ART biosynthesis is reviewed. It includes a discussion on the current biotechnological solutions to ART production, focusing on semi-synthesis and elicitation. A brief commentary on the possible aspects that influence elicitation efficiency and how oxidative stress modulates ART synthesis is also presented. Based on the critical analysis of current literature, a hypothesis is put forward to explain the possible involvement of enzymes in assisting the final non-enzymatic transformation step leading to ART formation. This review highlights the critical factors limiting the success of elicitor-induced modulation of ART metabolism, that will help inform strategies for future improvement of ART production. Additionally, new avenues for future research based on the proposed hypothesis will lead to exciting perspectives in this research area and continue to enhance our understanding of this intricate metabolic process.
    Matched MeSH terms: Artemisinins/chemical synthesis; Artemisinins/metabolism*; Artemisinins/therapeutic use
  10. Naing C, Mak JW, Aung K, Wong JY
    Trans R Soc Trop Med Hyg, 2013 Feb;107(2):65-73.
    PMID: 23222952 DOI: 10.1093/trstmh/trs019
    The present review aimed to synthesise available evidence on the efficacy of dihydroartemisinin-piperaquine (DP) in treating uncomplicated Plasmodium falciparum malaria in people living in malaria-endemic countries by performing a meta-analysis of relevant studies. We searched relevant studies in electronic data bases up to December 2011. Published results from randomised controlled trials (RCTs) comparing efficacy of DP with other artemisinin-based combination therapies (ACTs), or non-ACTs, or placebo were selected. The primary endpoint was 28-day and 42-day treatment failure. We identified 26 RCTs. Many of the studies included in the present review were of high quality. Overall, DP, artesunate-mefloquine (MAS3) and artemether-lumefentrine (AL) were equally effective for reducing the risk of recurrent parasitaemia. The PCR confirmed efficacy of DP (99.5%) and MAS3 (97.7%) at day 28 exceeded 90%; both are efficacious. Comparable efficacy was also found for DP (95.6%) and AL (94.3%). The present review has documented that DP is comparable to other currently used ACTs such as MAS3 and AL in treating uncomplicated falciparum malaria. The better safety profile of DP and once-daily dosage improves adherence and its fixed co-formulation ensures that both drugs are taken together. Our conclusion is that DP has the potential to become a first-line antimalarial drug.
    Matched MeSH terms: Artemisinins/adverse effects; Artemisinins/therapeutic use*
  11. Mordi MN, Mansor SM, Navaratnam V, Wernsdorfer WH
    Br J Clin Pharmacol, 1997 Apr;43(4):363-5.
    PMID: 9146847
    AIMS: To determine the pharmacokinetics of artemether (ARM) and its principal active metabolite, dihydroartemisinin (DHA) in healthy volunteers.

    METHODS: Six healthy male Malaysian subjects were given a single oral dose of 200 mg artemether. Blood samples were collected to 72 h. Plasma concentrations of the two compounds were measured simultaneously by reversed-phase h.p.l.c. with electro-chemical detection in the reductive mode.

    RESULTS: Mean (+/- s.d.) maximum concentrations of ARM, 310 +/- 153 micrograms l-1, were reached 1.88 +/- 0.21 h after drug intake. The mean elimination half-life was 2.00 +/- 0.59 h, and the mean AUC 671 +/- 271 micrograms l-1 h. The mean Cmax of DHA, 273 +/- 64 micrograms l-1 was observed at 1.92 +/- 0.13 h. The mean AUC of DHA was 753 +/- 233 micrograms h l-1'. ARM and DHA were stable at < or = -20 degrees C for at least 4 months in plasma samples.

    CONCLUSIONS: The relatively short half-life of ARM may be one of the factors responsible for the poor radical cure rate of falciparum malaria with regimens employing daily dosing. In view of the rapid loss of DHA in plasma samples held at room temperature (26 degrees C) it is recommended to store them at a temperature of < or = -20 degrees C as early as possible after sample collection.

    Matched MeSH terms: Artemisinins*
  12. Mungthin M, Watanatanasup E, Sitthichot N, Suwandittakul N, Khositnithikul R, Ward SA
    Am J Trop Med Hyg, 2017 03;96(3):624-629.
    PMID: 28044042 DOI: 10.4269/ajtmh.16-0668
    Piperaquine combined with dihydroartemisinin is one of the artemisinin derivative combination therapies, which can replace artesunate-mefloquine in treating uncomplicated falciparum malaria in Thailand. The aim of this study was to determine the in vitro sensitivity of Thai Plasmodium falciparum isolates against piperaquine and the influence of the pfmdr1 gene on in vitro response. One hundred and thirty-seven standard laboratory and adapted Thai isolates of P. falciparum were assessed for in vitro piperaquine sensitivity. Polymorphisms of the pfmdr1 gene were determined by polymerase chain reaction methods. The mean and standard deviation of the piperaquine IC50 in Thai isolates of P. falciparum were 16.7 ± 6.3 nM. The parasites exhibiting chloroquine IC50 of ≥ 100 nM were significantly less sensitive to piperaquine compared with the parasite with chloroquine IC50 of < 100 nM. No significant association between the pfmdr1 copy number and piperaquine IC50 values was found. In contrast, the parasites containing the pfmdr1 86Y allele exhibited significantly reduced piperaquine sensitivity. Before nationwide implementation of dihydroartemisinin-piperaquine as the first-line treatment in Thailand, in vitro and in vivo evaluations of this combination should be performed especially in areas where parasites containing the pfmdr1 86Y allele are predominant such as the Thai-Malaysian border.
    Matched MeSH terms: Artemisinins/pharmacology
  13. Wong JW, Yuen KH, Nagappan S, Shahul WS, Ho SS, Gan EK, et al.
    J Pharm Pharmacol, 2003 Feb;55(2):193-8.
    PMID: 12631411
    We have evaluated the therapeutic equivalence of a beta-cyclodextrin-artemisinin complex at an artemisinin dose of 150 mg, with a commercial reference preparation, Artemisinin 250 at a recommended dose of 250 mg. One hundred uncomplicated falciparum malarial patients were randomly assigned to orally receive either beta-cyclodextrin-artemisinin complex (containing 150 mg artemisinin) twice daily for five days or the active comparator (containing 250 mg artemisinin) twice daily for five days. The patients were hospitalized for seven days and were required to attend follow up assessments on days 14, 21, 28 and 35. All patients in both treatment groups were cured of the infection and achieved therapeutic success. At day seven of treatment, all patient blood was clear of the parasites and the sublingual temperature of all patients was less than 37.5 degrees C. Moreover, the parasite clearance time in both treatment groups was similar, being approximately three days after initiation of treatment. Comparable plasma artemisinin concentrations were observed between patients in both treatment groups at 1.5 and 3.0 h, although slightly higher levels were obtained with patients in the beta-cyclodextrin-artemisinin complex-treated group. The beta-cyclodextrin-artemisinin complex at a dose of 150 mg artemisinin was therapeutically equivalent to 250 mg Artemisinin 250. Additionally, patients receiving beta-cyclodextrin-artemisinin complex showed less variability in their plasma artemisinin concentrations at 1.5 h post-dosing, which suggested a more consistent rate of drug absorption.
    Matched MeSH terms: Artemisinins/blood; Artemisinins/pharmacokinetics; Artemisinins/therapeutic use*
  14. Chan KL, Yuen KH, Jinadasa S, Peh KK, Toh WT
    Planta Med, 1997 Feb;63(1):66-9.
    PMID: 9063097
    A high-performance liquid chromatography assay equipped with a glassy carbon electrode for electrochemical detection (HPLC-ECD) was developed at reductive mode for the analysis of artemisinin, the antimalarial drug from Artemisia annua (Asteraceae) in human plasma. This method was selective, sensitive, and produced satisfactory recovery, precision, and accuracy. Analysis of plasma samples from 8 male volunteers given 10 mg kg-1 of artemisinin orally as an aqueous suspension showed a mean peak plasma concentration (Cmax) of 580.89 ng ml-1 +/- 88.64 SD at 2.5 h +/- 0.5 SD after dosing, and the mean area under the plasma concentration-time curve (AUC0-infinity) was 2227.57 ng h ml-1 +/- 677.22 SD. In addition, the elimination rate constant (Ke), elimination half-life (t1/2), and apparent volume of distribution (Vd) were calculated to be 0.2971 h-1 +/- 0.0644 SD, 2.42 h +/- 0.46 SD, and 16.26 l kg-1 +/- 3.44 SD, respectively.
    Matched MeSH terms: Artemisinins*
  15. Khammanee T, Sawangjaroen N, Buncherd H, Tun AW, Thanapongpichat S
    Korean J Parasitol, 2019 Aug;57(4):369-377.
    PMID: 31533403 DOI: 10.3347/kjp.2019.57.4.369
    Artemisinin-based combination therapy (ACT) resistance is widespread throughout the Greater Mekong Subregion. This raises concern over the antimalarial treatment in Thailand since it shares borders with Cambodia, Laos, and Myanmar where high ACT failure rates were reported. It is crucial to have information about the spread of ACT resistance for efficient planning and treatment. This study was to identify the molecular markers for antimalarial drug resistance: Pfkelch13 and Pfmdr1 mutations from 5 provinces of southern Thailand, from 2012 to 2017, of which 2 provinces on the Thai- Myanmar border (Chumphon and Ranong), one on Thai-Malaysia border (Yala) and 2 from non-border provinces (Phang Nga and Surat Thani). The results showed that C580Y mutation of Pfkelch13 was found mainly in the province on the Thai-Myanmar border. No mutations in the PfKelch13 gene were found in Surat Thani and Yala. The Pfmdr1 gene isolated from the Thai-Malaysia border was a different pattern from those found in other areas (100% N86Y) whereas wild type strain was present in Phang Nga. Our study indicated that the molecular markers of artemisinin resistance were spread in the provinces bordering along the Thai-Myanmar, and the pattern of Pfmdr1 mutations from the areas along the international border of Thailand differed from those of the non-border provinces. The information of the molecular markers from this study highlighted the recent spread of artemisinin resistant parasites from the endemic area, and the data will be useful for optimizing antimalarial treatment based on regional differences.
    Matched MeSH terms: Artemisinins/administration & dosage; Artemisinins/pharmacology*; Artemisinins/therapeutic use
  16. Naing C, Whittaker MA, Tanner M
    J Infect Dis, 2020 10 29;222(Suppl 8):S717-S725.
    PMID: 33119095 DOI: 10.1093/infdis/jiaa335
    BACKGROUND: Myanmar is a premalaria elimination country with artemisinin-resistant malaria. A strategy for transmission control is focused on vulnerable groups such as mobile and migrant populations (MMPs), and includes improving access to insecticide-treated bed nets in the Myanmar artemisinin resistance containment (MARC) zones using multisectoral approaches (MSA).

    METHODS: This narrative systematic review addressed MSAs targeted to MMPs in Myanmar for malaria prevention. We searched relevant studies in electronic databases and present the narrative findings in 4 domains: stakeholder groups, net coverage and utilization, social determinates, and facilitators/barriers.

    RESULTS: Nine studies were included. The review identified stakeholders involved in intersectoral collaboration. Net ownership was higher than utilization rates in the MARC zones and rates remained below the WHO recommended target of 100%. There was inadequate description of roles and responsibilities for implementation and on channels of communication within the partnerships and with the Government.

    CONCLUSIONS: Findings show that interventions to distribute treated bed nets were supported by the multiple stakeholders. Due to the design of the primary studies, analysis of the added value of intersectoral collaboration was limited. More attention must be paid to designing studies to document and evaluate the contributions and outcomes of intersectoral collaboration.

    Matched MeSH terms: Artemisinins/pharmacology
  17. van Schalkwyk DA, Blasco B, Davina Nuñez R, Liew JWK, Amir A, Lau YL, et al.
    PMID: 30831468 DOI: 10.1016/j.ijpddr.2019.02.004
    New antimalarial agents are identified and developed after extensive testing on Plasmodium falciparum parasites that can be grown in vitro. These susceptibility studies are important to inform lead optimisation and support further drug development. Until recently, little was known about the susceptibility of non-falciparum species as these had not been adapted to in vitro culture. The recent culture adaptation of P. knowlesi has therefore offered an opportunity to routinely define the drug susceptibility of this species, which is phylogenetically closer to all other human malarias than is P. falciparum. We compared the in vitro susceptibility of P. knowlesi and P. falciparum to a range of established and novel antimalarial agents under identical assay conditions. We demonstrated that P. knowlesi is significantly less susceptible than P. falciparum to six of the compounds tested; and notably these include three ATP4 inhibitors currently under development as novel antimalarial agents, and one investigational antimalarial, AN13762, which is 67 fold less effective against P. knowlesi. For the other compounds there was a less than two-fold difference in susceptibility between species. We then compared the susceptibility of a recent P. knowlesi isolate, UM01, to that of the well-established, older A1-H.1 clone. This recent isolate showed similar in vitro drug susceptibility to the A1-H.1 clone, supporting the ongoing use of the better characterised clone to further study drug susceptibility. Lastly, we used isobologram analysis to explore the interaction of a selection of drug combinations and showed similar drug interactions across species. The species differences in drug susceptibility reported by us here and previously, support adding in vitro drug screens against P. knowlesi to those using P. falciparum strains to inform new drug discovery and lead optimisation.
    Matched MeSH terms: Artemisinins/pharmacology
  18. Atroosh WM, Al-Mekhlafi HM, Snounou G, Al-Jasari A, Sady H, Nasr NA, et al.
    Malar J, 2016 05 27;15(1):295.
    PMID: 27234587 DOI: 10.1186/s12936-016-1344-0
    BACKGROUND: In Yemen, artesunate plus sulfadoxine-pyrimethamine (AS + SP) has been used as first-line treatment for uncomplicated falciparum malaria, which accounts for about 99 % of malaria cases. There is evidence that resistance to SP is increasing, with potential negative impact on efficacy, and in particular on curbing transmission. This study aims: (a) to evaluate the therapeutic efficacy of AS + SP treatment for uncomplicated falciparum malaria in Yemen; (b) to investigate the frequency of mutations in Plasmodium falciparum genes associated with resistance to AS (Kelch 13 propeller domain, pfK13) and SP (dihydrofolate reductase, pfdhfr, and dihydropteroate synthase, pfdhps); and (c) to assess the adequacy of this ACT to clear gametocytes.

    METHODS: A 28-day in vivo evaluation of the clinical and parasitological response to three-day course of AS + SP was carried out in two areas of high endemicity (Hodeidah and Al-Mahwit provinces, Tehama region) in Yemen according to standard WHO protocol 2009. Clinical and parasitological indices were monitored over a 28-day follow-up, and the outcome was PCR-corrected. The frequencies of mutations in the pfdhfr, pfdhps, and pfK13 genes were obtained by sequencing following amplification.

    RESULTS: Eighty-six patients completed the study, with a cure rate of 96.5 % (94.2 % PCR-uncorrected). Whereas four (4.7 %) patients still showed parasitaemia on day 2 post-treatment, all were found negative for asexual malaria stages on days 3 and 7. The efficacy of gametocyte clearance was poor (14.5, 42.5 and 86.0 % on days 7, 14 and 28, respectively), with gametocytes persisting throughout the study in some patients. All the isolates sequenced had the pfk13 propeller domain wild-type allele, and mutations associated with SP failure were observed only for pfdhfr with the double mutation (S108N + N51I) found in 65.4 % of the isolates sequenced.

    CONCLUSION: In Yemen, AS + SP therapy remains effective for the treatment of uncomplicated falciparum malaria. Mutations were not detected in pfk13 or pfdhps, though double mutations were observed for pfdhfr. The observed persistent gametocytaemia re-enforces calls to add a single dose primaquine to this ACT in order to minimizes the potential for transmission and enhance regional efforts to eliminate malaria.

    Matched MeSH terms: Artemisinins
  19. Atroosh WM, Al-Mekhlafi HM, Al-Jasari A, Sady H, Dawaki SS, Elyana FN, et al.
    PeerJ, 2016;4:e2191.
    PMID: 27478699 DOI: 10.7717/peerj.2191
    Introduction. Despite the efforts of the malaria control programme, malaria morbidity is still a common health problem in Yemen, with 60% of the population at risk. Plasmodium falciparum is responsible for 99% of malaria cases. The emergence in Yemen of parasite resistance to chloroquine (CQ) prompted the adoption of artemisinin combination therapy (ACT) in 2009, which involves the use of artesunate plus sulphadoxine-pyrimethamine (AS + SP). However, CQ was retained as the drug of choice for vivax malaria. To assess the impact of the change in the malaria treatment policy five years after its introduction, the present study investigated the mutations in the CQ resistance transporter (pfcrt) and multidrug resistance 1 (pfmdr1) genes. Method. A molecular investigation of 10 codons of pfcrt (72-76, 220, 271, 326, 356, and 371) and five codons of pfmdr1 (86, 184, 1034, 1042, and 1246) was conducted on P. falciparum isolates from districts with the highest malaria endemicity in the Hodeidah and Al-Mahwit governorates in Tehama region, Yemen. A total of 86 positive cases of falciparum monoinfection were investigated for the presence of mutations related to CQ and other antimalarials using a PCR-RFLP assay. Results. There was a wide prevalence of pfcrt gene mutations with the pfcrt 76T CQ resistance marker being predominant (97.7%). The prevalence of other pfcrt mutations varied from high (75E: 88%) to moderate (74I: 79.1%, 220S: 69.8%, 271E and 371I: 53.5%) or low (326S: 36%, 72S: 10.5%). Mutated pfcrt 72-76 amino acids haplotypes were highly prevalent (98.8%). Among these, the CVIET classic, old-world African/Southeast Asian haplotype was the most predominant, and was mostly found in the isolates from the Khamis Bani Saad district of Al-Mahwit (93.1%) and the AdDahi district of Hodeidah (88.9%). However, it was only found in 26.3% of the isolates from the Bajil district of Hodeidah. Surprisingly, the SVMNT new-world South American haplotype was exclusively detected in 9.3% of the isolates from the Bajil district of Hodeidah. Mutations at Y184F of pfmdr1 were found in all isolates (100%) from all districts. The mutation for codons 1034C and 86Y were found only in the isolates from the AdDahi and Khamis Bani Saad districts. Overall, the AdDahi and Khamis Bani Saad districts were similar in terms of carrying most of the mutations in the pfcrt and pfmdr1 genes, while there was a lower prevalence of mutation in the isolates from the Bajil district. Conclusion. The high prevalence of mutations in pfcrt 5 years after the official cessation of CQ use against P. falciparum suggests that there is sustained CQ pressure on P. falciparum isolates in the study area. Moreover, the low prevalence of mutations in the pfmdr1 gene could be a good indicator of the high susceptibility of P. falciparum isolates to antimalarials other than CQ. A new strategy to ensure the complete nationwide withdrawal of CQ from the private drug market is recommended.
    Matched MeSH terms: Artemisinins
  20. Ikram NKK, Kashkooli AB, Peramuna A, Krol ARV, Bouwmeester H, Simonsen HT
    Molecules, 2019 Oct 23;24(21).
    PMID: 31652784 DOI: 10.3390/molecules24213822
    : Metabolic engineering is an integrated bioengineering approach, which has made considerable progress in producing terpenoids in plants and fermentable hosts. Here, the full biosynthetic pathway of artemisinin, originating from Artemisia annua, was integrated into the moss Physcomitrella patens. Different combinations of the five artemisinin biosynthesis genes were ectopically expressed in P. patens to study biosynthesis pathway activity, but also to ensure survival of successful transformants. Transformation of the first pathway gene, ADS, into P. patens resulted in the accumulation of the expected metabolite, amorpha-4,11-diene, and also accumulation of a second product, arteannuin B. This demonstrates the presence of endogenous promiscuous enzyme activity, possibly cytochrome P450s, in P. patens. Introduction of three pathway genes, ADS-CYP71AV1-ADH1 or ADS-DBR2-ALDH1 both led to the accumulation of artemisinin, hinting at the presence of one or more endogenous enzymes in P. patens that can complement the partial pathways to full pathway activity. Transgenic P. patens lines containing the different gene combinations produce artemisinin in varying amounts. The pathway gene expression in the transgenic moss lines correlates well with the chemical profile of pathway products. Moreover, expression of the pathway genes resulted in lipid body formation in all transgenic moss lines, suggesting that these may have a function in sequestration of heterologous metabolites. This work thus provides novel insights into the metabolic response of P. patens and its complementation potential for A. annua artemisinin pathway genes. Identification of the related endogenous P. patens genes could contribute to a further successful metabolic engineering of artemisinin biosynthesis, as well as bioengineering of other high-value terpenoids in P. patens.
    Matched MeSH terms: Artemisinins/metabolism*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links