Displaying publications 1 - 20 of 74 in total

Abstract:
Sort:
  1. Zhang Y, Xu W, Guo H, Zhang Y, He Y, Lee SH, et al.
    Cancer Res, 2017 Apr 17.
    PMID: 28416482 DOI: 10.1158/0008-5472.CAN-16-1633
    Cancer stem-like cells (CSC) are thought to drive tumor initiation, metastasis, relapse and therapeutic resistance, but their specific pathogenic characters in many cancers including non-small cell lung cancer (NSCLC) have yet to be well defined. Here we develop findings that the growth factor HGF promotes CSC sphere formation in NSCLC cell populations. In patient-derived sphere-forming assays (PD-SFA) with HGF, CD49f and CD104 were defined as novel markers of lung CSC (LCSC). In particular, we isolated a subpopulation of CD166(+)CD49f(hi)CD104(-)Lin(-) LCSC present in all human specimens of NSCLC examined, regardless of their histological subtypes or genetic driver mutations. This specific cell population was tumorigenic and capable of self-renewal, giving rise to tumor spheres in vitro and orthotopic lung tumors in immune-compromised mice. Mechanistic investigations established that NOTCH1 was preferentially expressed in this cell subpopulation and required for self-renewal via the transcription factor HES1. Through a distinct HES1-independent pathway, NOTCH1 also protected LCSCs from cisplatin-induced cell death. Notably, treatment with a γ-secretase inhibitor that blunts NOTCH1 function ablated self-renewing LCSC activity and restored platinum sensitivity in vitro and in vivo Overall, our results define the pathogenic characters of a cancer stem-like subpopulation in lung cancer, the targeting of which may relieve platinum resistance in this disease.
    Matched MeSH terms: Carcinoma, Non-Small-Cell Lung
  2. Zhang XC, Wang J, Shao GG, Wang Q, Qu X, Wang B, et al.
    Nat Commun, 2019 04 16;10(1):1772.
    PMID: 30992440 DOI: 10.1038/s41467-019-09762-1
    Deep understanding of the genomic and immunological differences between Chinese and Western lung cancer patients is of great importance for target therapy selection and development for Chinese patients. Here we report an extensive molecular and immune profiling study of 245 Chinese patients with non-small cell lung cancer. Tumor-infiltrating lymphocyte estimated using immune cell signatures is found to be significantly higher in adenocarcinoma (ADC, 72.5%) compared with squamous cell carcinoma (SQCC, 54.4%). The correlation of genomic alterations with immune signatures reveals that low immune infiltration was associated with EGFR mutations in ADC samples, PI3K and/or WNT pathway activation in SQCC. While KRAS mutations are found to be significantly associated with T cell infiltration in ADC samples. The SQCC patients with high antigen presentation machinery and cytotoxic T cell signature scores are found to have a prolonged overall survival time.
    Matched MeSH terms: Carcinoma, Non-Small-Cell Lung/genetics*; Carcinoma, Non-Small-Cell Lung/immunology; Carcinoma, Non-Small-Cell Lung/mortality
  3. Zakaria N, Yusoff NM, Zakaria Z, Lim MN, Baharuddin PJ, Fakiruddin KS, et al.
    BMC Cancer, 2015;15:84.
    PMID: 25881239 DOI: 10.1186/s12885-015-1086-3
    Despite significant advances in staging and therapies, lung cancer remains a major cause of cancer-related lethality due to its high incidence and recurrence. Clearly, a novel approach is required to develop new therapies to treat this devastating disease. Recent evidence indicates that tumours contain a small population of cells known as cancer stem cells (CSCs) that are responsible for tumour maintenance, spreading and resistant to chemotherapy. The genetic composition of CSCs so far is not fully understood, but manipulation of the specific genes that maintain their integrity would be beneficial for developing strategies to combat cancer. Therefore, the goal of this study isto identify the transcriptomic composition and biological functions of CSCs from non-small cell lung cancer (NSCLC).
    Matched MeSH terms: Carcinoma, Non-Small-Cell Lung/genetics*; Carcinoma, Non-Small-Cell Lung/metabolism; Carcinoma, Non-Small-Cell Lung/pathology
  4. Zakaria N, Satar NA, Abu Halim NH, Ngalim SH, Yusoff NM, Lin J, et al.
    Front Oncol, 2017;7:80.
    PMID: 28529925 DOI: 10.3389/fonc.2017.00080
    Lung cancer is the most common cancer worldwide, accounting for 1.8 million new cases and 1.6 million deaths in 2012. Non-small cell lung cancer (NSCLC), which is one of two types of lung cancer, accounts for 85-90% of all lung cancers. Despite advances in therapy, lung cancer still remains a leading cause of death. Cancer relapse and dissemination after treatment indicates the existence of a niche of cancer cells that are not fully eradicated by current therapies. These chemoresistant populations of cancer cells are called cancer stem cells (CSCs) because they possess the self-renewal and differentiation capabilities similar to those of normal stem cells. Targeting the niche of CSCs in combination with chemotherapy might provide a promising strategy to eradicate these cells. Thus, understanding the characteristics of CSCs has become a focus of studies of NSCLC therapies.
    Matched MeSH terms: Carcinoma, Non-Small-Cell Lung
  5. Zakaria MA, Rajab NF, Chua EW, Selvarajah GT, Masre SF
    Sci Rep, 2021 Nov 18;11(1):22500.
    PMID: 34795360 DOI: 10.1038/s41598-021-01988-8
    Mice have served as an excellent model to understand the etiology of lung cancer for years. However, data regarding dual-stage carcinogenesis of lung squamous cell carcinoma (SCC) remain elusive. Therefore, we aim to develop pre-malignant (PM) and malignant (M) lung SCC in vivo using N-nitroso-tris-chloroethylurea (NTCU). BALB/C mice were allotted into two main groups; PM and M groups which received treatment for 15 and 30 weeks, respectively. Then, the mice in each main group were allotted into three groups; control, vehicle, and cancer (n = 6), which received normal saline, 70% acetone, and 0.04 M NTCU by skin painting, respectively. Histopathologically, we discovered a mix of hyperplasia, metaplasia, and dysplasia lesions in the PM group and intracellular bridge; an SCC feature in the M group. The M group was positive for cytokeratin 5/6 protein which confirmed the lung SCC subtype. We also found significantly higher (P lung SCC in mice model at appropriate weeks and the vehicle group was suggested to be adequate as control group for future research.
    Matched MeSH terms: Carcinoma, Non-Small-Cell Lung/chemically induced; Carcinoma, Non-Small-Cell Lung/physiopathology*
  6. Yatabe Y, Kerr KM, Utomo A, Rajadurai P, Tran VK, Du X, et al.
    J Thorac Oncol, 2015 Mar;10(3):438-45.
    PMID: 25376513 DOI: 10.1097/JTO.0000000000000422
    The efficacy of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors in EGFR mutation-positive non-small-cell lung cancer (NSCLC) patients necessitates accurate, timely testing. Although EGFR mutation testing has been adopted by many laboratories in Asia, data are lacking on the proportion of NSCLC patients tested in each country, and the most commonly used testing methods.
    Matched MeSH terms: Carcinoma, Non-Small-Cell Lung/diagnosis; Carcinoma, Non-Small-Cell Lung/genetics*; Carcinoma, Non-Small-Cell Lung/epidemiology
  7. Wu YL, Kim JH, Park K, Zaatar A, Klingelschmitt G, Ng C
    Lung Cancer, 2012 Aug;77(2):339-45.
    PMID: 22494567 DOI: 10.1016/j.lungcan.2012.03.012
    Maintenance therapy, commenced immediately after the completion of first-line chemotherapy, is a promising strategy for improving treatment outcomes in patients with non-small-cell lung cancer (NSCLC). The global phase III SequentiAl Tarceva in UnResectable NSCLC (SATURN) study evaluated the efficacy and safety of the epidermal growth factor receptor (EGFR) tyrosine-kinase inhibitor erlotinib as maintenance treatment in NSCLC patients without progression after first-line chemotherapy. We report a retrospective subanalysis of Asian patients enrolled in SATURN. Patients with advanced NSCLC with no evidence of progression after four cycles of chemotherapy were randomized to receive erlotinib 150 mg/day or placebo, until progressive disease or limiting toxicity. The co-primary endpoints of SATURN were progression-free survival (PFS) in all patients and in those with positive EGFR immunohistochemistry (IHC) status. Secondary endpoints included overall survival (OS), disease control rate, safety, quality of life (QoL) and biomarker analyses. In total, 126 patients from East and South-East Asian centers were randomized (14% of the intent-to-treat population): 88 from Korea, 28 from China and 10 from Malaysia; one patient was excluded from this analysis due to Indian ethnicity. PFS was significantly prolonged in the erlotinib treatment arm, both overall (hazard ratio [HR]: 0.57; p=0.0067) and in patients with EGFR IHC-positive disease (HR=0.50; p=0.0057). There was a trend towards an increase in OS, which reached statistical significance in the EGFR IHC-positive subgroup (p=0.0233). The overall response rate was significantly higher with erlotinib compared with placebo (24% versus 5%; p=0.0025). Erlotinib was generally well tolerated and had no negative impact on QoL in this subpopulation. The most common treatment-related adverse events were rash, diarrhea and pruritus. Erlotinib was effective and well tolerated in Asian patients, producing benefits consistent with those observed in the overall SATURN population. Maintenance treatment with erlotinib appears to be a useful option for the management of Asian patients with advanced NSCLC without progression after first-line chemotherapy.
    Matched MeSH terms: Carcinoma, Non-Small-Cell Lung/drug therapy*; Carcinoma, Non-Small-Cell Lung/mortality; Carcinoma, Non-Small-Cell Lung/pathology*
  8. Wu YL, Zhou C, Liam CK, Wu G, Liu X, Zhong Z, et al.
    Ann Oncol, 2015 Sep;26(9):1883-1889.
    PMID: 26105600 DOI: 10.1093/annonc/mdv270
    BACKGROUND: The phase III, randomized, open-label ENSURE study (NCT01342965) evaluated first-line erlotinib versus gemcitabine/cisplatin (GP) in patients from China, Malaysia and the Philippines with epidermal growth factor receptor (EGFR) mutation-positive non-small-cell lung cancer (NSCLC).

    PATIENTS AND METHODS: Patients ≥18 years old with histologically/cytologically confirmed stage IIIB/IV EGFR mutation-positive NSCLC and Eastern Cooperative Oncology Group performance status 0-2 were randomized 1:1 to receive erlotinib (oral; 150 mg once daily until progression/unacceptable toxicity) or GP [G 1250 mg/m(2) i.v. days 1 and 8 (3-weekly cycle); P 75 mg/m(2) i.v. day 1, (3-weekly cycle) for up to four cycles]. Primary end point: investigator-assessed progression-free survival (PFS). Other end points include objective response rate (ORR), overall survival (OS), and safety.

    RESULTS: A total of 217 patients were randomized: 110 to erlotinib and 107 to GP. Investigator-assessed median PFS was 11.0 months versus 5.5 months, erlotinib versus GP, respectively [hazard ratio (HR), 0.34, 95% confidence interval (CI) 0.22-0.51; log-rank P < 0.0001]. Independent Review Committee-assessed median PFS was consistent (HR, 0.42). Median OS was 26.3 versus 25.5 months, erlotinib versus GP, respectively (HR, 0.91, 95% CI 0.63-1.31; log-rank P = .607). ORR was 62.7% for erlotinib and 33.6% for GP. Treatment-related serious adverse events (AEs) occurred in 2.7% versus 10.6% of erlotinib and GP patients, respectively. The most common grade ≥3 AEs were rash (6.4%) with erlotinib, and neutropenia (25.0%), leukopenia (14.4%), and anemia (12.5%) with GP.

    CONCLUSION: These analyses demonstrate that first-line erlotinib provides a statistically significant improvement in PFS versus GP in Asian patients with EGFR mutation-positive NSCLC (NCT01342965).

    Matched MeSH terms: Carcinoma, Non-Small-Cell Lung/drug therapy*; Carcinoma, Non-Small-Cell Lung/genetics; Carcinoma, Non-Small-Cell Lung/mortality
  9. Wu YL, Lee V, Liam CK, Lu S, Park K, Srimuninnimit V, et al.
    Lung Cancer, 2018 12;126:1-8.
    PMID: 30527172 DOI: 10.1016/j.lungcan.2018.10.004
    OBJECTIVE: Patients with advanced non-small-cell lung cancer (NSCLC) with an adenocarcinoma component are recommended to undergo epidermal growth factor receptor (EGFR) mutation testing when being considered for EGFR targeted therapy. We conducted an exploratory analysis to inform the clinical utility of EGFR mutation testing in blood cell-free DNA using the cobas®EGFR Mutation Test v2.

    MATERIALS AND METHODS: Two EGFR mutation tests, a tissue-based assay (cobas® v1) and a tissue- and blood-based assay (cobas® v2) were used to analyze matched biopsy and blood samples (897 paired samples) from three Asian studies of first-line erlotinib with similar intent-to-treat populations. ENSURE was a phase III comparison of erlotinib and gemcitabine/platinum, FASTACT-2 was a phase III study of gemcitabine/platinum plus erlotinib or placebo, and ASPIRATION was a single-arm phase II study of erlotinib. Agreement statistics were evaluated, based on sensitivity and specificity between the two assays in subgroups of patients with increasing tumor burden.

    RESULTS: Patients with discordant EGFR (tissue+/plasma-) mutation status achieved longer progression-free and overall survival than those with concordant (tissue+/plasma+) mutation status. Tumor burden was significantly greater in patients with concordant versus discordant mutations. Pooled analyses of data from the three studies showed a sensitivity of 72.1% (95% confidence interval [CI] 67.8-76.1) and a specificity of 97.9% (95% CI 96.0-99.0) for blood-based testing; sensitivity was greatest in patients with larger baseline tumors.

    CONCLUSIONS: Blood-based EGFR mutation testing demonstrated high specificity and good sensitivity, and offers a convenient and easily accessible diagnostic method to complement tissue-based tests. Patients with a discordant mutation status in plasma and tissue, had improved survival outcomes compared with those with a concordant mutation status, which may be due to their lower tumor burden. These data help to inform the clinical utility of this blood-based assay for the detection of EGFR mutations.

    Matched MeSH terms: Carcinoma, Non-Small-Cell Lung/drug therapy*; Carcinoma, Non-Small-Cell Lung/genetics; Carcinoma, Non-Small-Cell Lung/pathology
  10. Wu YL, Lu S, Lu Y, Zhou J, Shi YK, Sriuranpong V, et al.
    J Thorac Oncol, 2018 10;13(10):1539-1548.
    PMID: 29966800 DOI: 10.1016/j.jtho.2018.06.012
    INTRODUCTION: The phase III randomized PROFILE 1014 study demonstrated superiority of crizotinib to first-line chemotherapy in prolonging progression-free survival (PFS) in previously untreated patients with ALK receptor tyrosine kinase gene (ALK)-positive advanced nonsquamous NSCLC. This result was consistent with that in the smaller subset of East Asian patients in PROFILE 1014. The subsequent study reported here prospectively evaluated crizotinib in a larger East Asian patient population.

    METHODS: In this open-label phase III study (PROFILE 1029), patients were randomized 1:1 to receive orally administered crizotinib 250 mg twice daily continuously (3-week cycles) or intravenously administered chemotherapy (pemetrexed 500 mg/m2, plus cisplatin 75 mg/m2, or carboplatin [at a dose to produce area under the concentration-time curve of 5-6 mg·min/mL]) every 3 weeks for a maximum of six cycles. PFS confirmed by independent radiology review was the primary end point.

    RESULTS: Crizotinib significantly prolonged PFS (hazard ratio, 0.402; 95% confidence interval [CI]: 0.286-0.565; p < 0.001). The median PFS was 11.1 months with crizotinib and 6.8 months with chemotherapy. The objective response rate was 87.5% (95% CI: 79.6-93.2%) with crizotinib versus 45.6% (95% CI: 35.8-55.7%) with chemotherapy (p < 0.001). The most common adverse events were increased transaminase levels, diarrhea, and vision disorders with crizotinib and leukopenia, neutropenia, and anemia with chemotherapy. Significantly greater improvements from baseline in patient-reported outcomes were seen in crizotinib-treated versus chemotherapy-treated patients.

    CONCLUSIONS: First-line crizotinib significantly improved PFS, objective response rate, and patient-reported outcomes compared with standard platinum-based chemotherapy in East Asian patients with ALK-positive advanced NSCLC, which is similar to the results from PROFILE 1014. The safety profiles of crizotinib and chemotherapy were consistent with those previously published.

    Matched MeSH terms: Carcinoma, Non-Small-Cell Lung/drug therapy*; Carcinoma, Non-Small-Cell Lung/pathology
  11. Wong YP, Tan GC, Aziz S, Pongprakyun S, Ismail F
    Malays J Med Sci, 2015 Jul-Aug;22(4):76-80.
    PMID: 26715912 MyJurnal
    Overexpression of beta-human chorionic gonadotropin (β-hCG) is frequently associated with germ cell tumours, especially choriocarcinoma. Ectopic secretion of β-hCG by non-small cell lung cancer is exceptional. We present an exceedingly rare case of pulmonary adenocarcinoma that secretes β-hCG. Our patient is a 62-year-old postmenopausal woman, a nonsmoker, who presented with a six-month history of progressive dyspnoea, associated with decreased appetite and significant weight loss. Her serum β-hCG was very high (11211.9 mIU/ml), which prompted investigations to exclude germ cell tumour. Radiological imaging revealed a 10-cm right lung mass with adrenal metastasis. No other focal lesions were detected. Microscopy of the lung biopsy specimen showed replacement of normal lung tissue by sheets of malignant cells, forming vague glands in some areas. Immunohistochemically, the malignant cells showed focal immunopositivity for thyroid transcription factor 1 (TTF-1), napsin A, cytokeratin 7 (CK7) and β-hCG. A diagnosis of β-hCG-secreting pulmonary poorly differentiated adenocarcinoma was rendered. Serum β-hCG level decreased significantly to 168.6 mIU/ml after the first cycle of chemotherapy. In conclusion, β-hCG expression in lung cancer should be recognised to facilitate prompt diagnosis and initiation of appropriate intervention.
    Matched MeSH terms: Carcinoma, Non-Small-Cell Lung
  12. Wan Mohd Tajuddin WNB, Abas F, Othman I, Naidu R
    Int J Mol Sci, 2021 Jul 10;22(14).
    PMID: 34299042 DOI: 10.3390/ijms22147424
    Diarylpentanoid (DAP), an analog that was structurally modified from a naturally occurring curcumin, has shown to enhance anticancer efficacy compared to its parent compound in various cancers. This study aims to determine the cytotoxicity, antiproliferative, and apoptotic activity of diarylpentanoid MS13 on two subtypes of non-small cell lung cancer (NSCLC) cells: squamous cell carcinoma (NCI-H520) and adenocarcinoma (NCI-H23). Gene expression analysis was performed using Nanostring PanCancer Pathways Panel to determine significant signaling pathways and targeted genes in these treated cells. Cytotoxicity screening revealed that MS13 exhibited greater inhibitory effect in NCI-H520 and NCI-H23 cells compared to curcumin. MS13 induced anti-proliferative activity in both cells in a dose- and time-dependent manner. Morphological analysis revealed that a significant number of MS13-treated cells exhibited apoptosis. A significant increase in caspase-3 activity and decrease in Bcl-2 protein concentration was noted in both MS13-treated cells in a time- and dose-dependent manner. A total of 77 and 47 differential expressed genes (DEGs) were regulated in MS13 treated-NCI-H520 and NCI-H23 cells, respectively. Among the DEGs, 22 were mutually expressed in both NCI-H520 and NCI-H23 cells in response to MS13 treatment. The top DEGs modulated by MS13 in NCI-H520-DUSP4, CDKN1A, GADD45G, NGFR, and EPHA2-and NCI-H23 cells-HGF, MET, COL5A2, MCM7, and GNG4-were highly associated with PI3K, cell cycle-apoptosis, and MAPK signaling pathways. In conclusion, MS13 may induce antiproliferation and apoptosis activity in squamous cell carcinoma and adenocarcinoma of NSCLC cells by modulating DEGs associated with PI3K-AKT, cell cycle-apoptosis, and MAPK pathways. Therefore, our present findings could provide an insight into the anticancer activity of MS13 and merits further investigation as a potential anticancer agent for NSCLC cancer therapy.
    Matched MeSH terms: Carcinoma, Non-Small-Cell Lung/metabolism; Carcinoma, Non-Small-Cell Lung/pathology*
  13. Verusingam ND, Chen YC, Lin HF, Liu CY, Lee MC, Lu KH, et al.
    J Chin Med Assoc, 2021 03 01;84(3):248-254.
    PMID: 33009209 DOI: 10.1097/JCMA.0000000000000438
    BACKGROUND: Lung cancer contributes to high cancer mortality worldwide with 80% of total cases diagnosed as non-small cell lung cancer (NSCLC). Epidermal growth factor receptor (EGFR) tyrosine kinase (TK) domain serves as a druggable target in NSCLC patients with exon 19 deletion and L858R mutation. However, patients eventually succumbed to resistance to first- and second-generation EGFR-TK inhibitors through activation of T790M mutation. Third-generation EGFR-TKI, Osimertinib exhibits high efficacy in patients with exon 19 deletion/L858R/T790M mutation but they experienced acquired resistance thereafter. Available treatment options in NSCLC patients remains a challenge due to unknown molecular heterogeneity responsible for acquired resistance to EGFR-TKI. In this study, we aim to generate Osimertinib-resistant (OR) cells from H1975 carrying L858R/T790M double mutation which can be used as a model to elucidate mechanism of resistance.

    METHODS: OR cells were established via stepwise-dose escalation and limiting single-cell dilution method. We then evaluated Osimertinib resistance potential via cell viability assay. Proteins expression related to EGFR-signalling, epithelial to mesenchymal transition (EMT), and autophagy were analyzed via western blot.

    RESULTS: OR cell lines exhibited increased drug resistance potential compared to H1975. Distinguishable mesenchymal-like features were observed in OR cells. Protein expression analysis revealed EGFR-independent signaling involved in the derived OR cells as well as EMT and autophagy activity.

    CONCLUSION: We generated OR cell lines in-vitro as evidenced by increased drug resistance potential, increased mesenchymal features, and enhanced autophagy activity. Development of Osimertinib resistance cells may serve as in-vitro model facilitating discovery of molecular aberration present during acquired mechanism of resistance.

    Matched MeSH terms: Carcinoma, Non-Small-Cell Lung/drug therapy*
  14. Tian Y, Li P, Xiao Z, Zhou J, Xue X, Jiang N, et al.
    Transl Lung Cancer Res, 2021 Feb;10(2):1007-1019.
    PMID: 33718039 DOI: 10.21037/tlcr-21-145
    Background: Chemotherapy is one of the primary treatments for both small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC), however, chemoresistance develops over time and is a bottleneck to effective chemotherapy worldwide. Therefore, the development of new potent therapeutic agents to overcome chemoresistance is of utmost importance. Triptolide is a natural component extracted from Tripterygium Wilfordii, a Chinese plant; our study aimed to evaluate its anti-tumor effects in taxol-resistant human lung adenocarcinoma and investigate its molecular mechanisms of chemoresistance.

    Methods: Triptolide's inhibition of cell viability was detected by sulforhodamine B (SRB) assay. Cell cycle was measured by flow cytometry and cell apoptosis was assessed by flow cytometry and western blot. Expression of β-catenin was analyzed by western blot and immunofluorescence (IF). The anti-tumor effects of triptolide were determined using a subcutaneous in-vivo model. Cell proliferation and apoptosis were evaluated by immunohistochemistry (IHC) and terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay, respectively. The expression level of p-p70S6K and p-GSK-3α/β was evaluated by western blot and IHC.

    Results: Triptolide inhibited cell proliferation, induced S-phase cell cycle arrest and apoptosis in taxol-resistant A549 (A549/TaxR) cells. Moreover, intraperitoneal injection of triptolide resulted in a significant delay of tumor growth without obvious systemic toxicity in mice. Additionally, triptolide reversed epithelial-mesenchymal transition (EMT) through repression of the p70S6K/GSK3/β-catenin signaling pathway.

    Conclusions: Our study provides evidence that triptolide can reverse EMT in taxol-resistant lung adenocarcinoma cells and impairs tumor growth by inhibiting the p70S6K/GSK3/β-catenin pathway, indicating that triptolide has potential to be used as a new therapeutic agent for taxol-resistant lung adenocarcinoma.

    Matched MeSH terms: Carcinoma, Non-Small-Cell Lung
  15. Tang WH, Alip A, Saad M, Phua VC, Chandran H, Tan YH, et al.
    Asian Pac J Cancer Prev, 2015;16(5):1901-6.
    PMID: 25773842
    BACKGROUND: Brain metastases occur in about 20-40% of patients with non-small-cell lung carcinoma (NSCLC), and are usually associated with a poor outcome. Whole brain radiotherapy (WBRT) is widely used but increasingly, more aggressive local treatments such as surgery or stereotactic radiosurgery (SRS) or stereotactic radiotherapy (SRT) are being employed. In our study we aimed to describe the various factors affecting outcomes in NSCLC patients receiving local therapy for brain metastases.

    MATERIALS AND METHODS: The case records of 125 patients with NSCLC and brain metastases consecutively treated with radiotherapy at two tertiary centres from January 2006 to June 2012 were analysed for patient, tumour and treatment-related prognostic factors. Patients receiving SRS/SRT were treated using Cyberknife. Variables were examined in univariate and multivariate testing.

    RESULTS: Overall median survival was 3.4 months (95%CI: 1.7-5.1). Median survival for patients with multiple metastases receiving WBRT was 1.5 months, 1-3 metastases receiving WBRT was 3.6 months and 1-3 metastases receiving surgery or SRS/SRT was 8.9 months. ECOG score (≤2 vs >2, p=0.001), presence of seizure (yes versus no, p=0.031), treatment modality according to number of brain metastases (1-3 metastases+surgery or SRS/SRT±WBRT vs 1-3 metastases+WBRT only vs multiple metastases+WBRT only, p=0.007) and the use of post-therapy systemic treatment (yes versus no, p=0.001) emerged as significant on univariate analysis. All four factors remained statistically significant on multivariate analysis.

    CONCLUSIONS: ECOG ≤2, presence of seizures, oligometastatic disease treated with aggressive local therapy (surgery or SRS/SRT) and the use of post-therapy systemic treatment are favourable prognostic factors in NSCLC patients with brain metastases.

    Matched MeSH terms: Carcinoma, Non-Small-Cell Lung/mortality; Carcinoma, Non-Small-Cell Lung/pathology*; Carcinoma, Non-Small-Cell Lung/therapy
  16. Subramaniyan V, Fuloria S, Gupta G, Kumar DH, Sekar M, Sathasivam KV, et al.
    Chem Biol Interact, 2022 Jan 05;351:109735.
    PMID: 34742684 DOI: 10.1016/j.cbi.2021.109735
    Epithelial growth factor receptor (EGFR) is a cell surface transmembrane receptor that mediates the tyrosine signaling pathway to carry the extracellular messages inside the cell and thereby alter the function of nucleus. This leads to the generation of various protein products to up or downregulate the cellular function. It is encoded by cell erythroblastosis virus oncogene B1, so called C-erb B1/ERBB2/HER-2 gene that acts as a proto-oncogene. It belongs to the HER-2 receptor-family in breast cancer and responds best with anti-Herceptin therapy (anti-tyrosine kinase monoclonal antibody). HER-2 positive breast cancer patient exhibits worse prognosis without Herceptin therapy. Similar incidence and prognosis are reported in other epithelial neoplasms like EGFR + lung non-small cell carcinoma and glioblastoma (grade IV brain glial tumor). Present study highlights the role and connectivity of EGF with various cancers via signaling pathways, cell surface receptors mechanism, macromolecules, mitochondrial genes and neoplasm. Present study describes the EGFR associated gene expression profiling (in breast cancer and NSCLC), relation between mitrochondrial genes and carcinoma, and several in vitro and in vivo models to screen the synergistic effect of various combination treatments. According to this study, although clinical studies including targeted treatments, immunotherapies, radiotherapy, TKi-EGFR combined targeted therapy have been carried out to investigate the synergism of combination therapy; however still there is a gap to apply the scenarios of experimental and clinical studies for further developments. This review will give an idea about the transition from experimental to most advanced clinical studies with different combination drug strategies to treat cancer.
    Matched MeSH terms: Carcinoma, Non-Small-Cell Lung/drug therapy; Carcinoma, Non-Small-Cell Lung/genetics; Carcinoma, Non-Small-Cell Lung/physiopathology*
  17. Subapriya Suppiah, Fathinul Fikri Ahmad Saad, Nur Hafizah Mohad Azmi, Abdul Jalil Nordin
    MyJurnal
    Introduction: Specific mutations in the epidermal growth factor receptor (EGFR) characterize a subgroup of nonsmall
    cell lung cancer (NSCLC) patients that may be highly responsive to receptor inhibitor therapy. 18F-FDG PET/CT
    scans can map the glucose metabolism and treatment response of NSCLC. Therefore, we aimed to assess the pattern
    of metabolic response and outcome of inoperable NSCLC treated with epidermal growth factor receptor (EGFR)
    inhibitors, using 18F-FDG PET/CT scan. Methods: A retrospective study of inoperable NSCLC patients on EGFR
    inhibitor treatment that were referred for wholebody18F-FDG PET/CT scans was conducted based on cases scanned
    from January 2011 to June 2014. Comparison was made among serial attenuation-corrected fused PET/CT images for
    all study patients throughout the course of their treatment. Comparison based on PERCIST criteria was categorized
    into 4 levels ie. complete response (CMR), partial response (PMR), stable disease (SMD), progressive metabolic
    disease (PMD). Results: Overall, there were 5 patients identified, mean age: 57.4 years old +/- 2.9 years; The median
    survival time from initiation of EGFR inhibitor treatment to death was 17 months. Two patients showed initial partial
    metabolic response (PMR), two had progressive metabolic disease (PMD) and one had complete metabolic response
    (CMR) after the initiation of treatment. The patient with initial CMR had relapse and PMD 5 months later. Majority of
    patients eventually succumbed to their illness. Conclusions: Wholebody18F-FDG PET/CT is able to assess metabolic
    treatment response of NSCLC towards EGFR inhibitor treatment.
    Matched MeSH terms: Carcinoma, Non-Small-Cell Lung
  18. Soria JC, Ohe Y, Vansteenkiste J, Reungwetwattana T, Chewaskulyong B, Lee KH, et al.
    N Engl J Med, 2018 01 11;378(2):113-125.
    PMID: 29151359 DOI: 10.1056/NEJMoa1713137
    BACKGROUND: Osimertinib is an oral, third-generation, irreversible epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) that selectively inhibits both EGFR-TKI-sensitizing and EGFR T790M resistance mutations. We compared osimertinib with standard EGFR-TKIs in patients with previously untreated, EGFR mutation-positive advanced non-small-cell lung cancer (NSCLC).

    METHODS: In this double-blind, phase 3 trial, we randomly assigned 556 patients with previously untreated, EGFR mutation-positive (exon 19 deletion or L858R) advanced NSCLC in a 1:1 ratio to receive either osimertinib (at a dose of 80 mg once daily) or a standard EGFR-TKI (gefitinib at a dose of 250 mg once daily or erlotinib at a dose of 150 mg once daily). The primary end point was investigator-assessed progression-free survival.

    RESULTS: The median progression-free survival was significantly longer with osimertinib than with standard EGFR-TKIs (18.9 months vs. 10.2 months; hazard ratio for disease progression or death, 0.46; 95% confidence interval [CI], 0.37 to 0.57; P<0.001). The objective response rate was similar in the two groups: 80% with osimertinib and 76% with standard EGFR-TKIs (odds ratio, 1.27; 95% CI, 0.85 to 1.90; P=0.24). The median duration of response was 17.2 months (95% CI, 13.8 to 22.0) with osimertinib versus 8.5 months (95% CI, 7.3 to 9.8) with standard EGFR-TKIs. Data on overall survival were immature at the interim analysis (25% maturity). The survival rate at 18 months was 83% (95% CI, 78 to 87) with osimertinib and 71% (95% CI, 65 to 76) with standard EGFR-TKIs (hazard ratio for death, 0.63; 95% CI, 0.45 to 0.88; P=0.007 [nonsignificant in the interim analysis]). Adverse events of grade 3 or higher were less frequent with osimertinib than with standard EGFR-TKIs (34% vs. 45%).

    CONCLUSIONS: Osimertinib showed efficacy superior to that of standard EGFR-TKIs in the first-line treatment of EGFR mutation-positive advanced NSCLC, with a similar safety profile and lower rates of serious adverse events. (Funded by AstraZeneca; FLAURA ClinicalTrials.gov number, NCT02296125 .).

    Matched MeSH terms: Carcinoma, Non-Small-Cell Lung/drug therapy*; Carcinoma, Non-Small-Cell Lung/genetics; Carcinoma, Non-Small-Cell Lung/mortality
  19. Sok SP, Arshad NM, Azmi MN, Awang K, Ozpolat B, Hasima Nagoor N
    PLoS One, 2017;12(2):e0171329.
    PMID: 28158287 DOI: 10.1371/journal.pone.0171329
    Autophagy plays a role in deciding the fate of cells by inducing either survival or death. 1'S-1-acetoxychavicol acetate (ACA) is a phenylpropanoid isolated from rhizomes of Alpinia conchigera and has been reported previously on its apoptotic effects on various cancers. However, the effect of ACA on autophagy remains ambiguous. The aims of this study were to investigate the autophagy-inducing ability of ACA in human non-small cell lung cancer (NSCLC), and to determine its role as pro-survival or pro-death mechanism. Cell viability assay was conducted using MTT. The effect of autophagy was assessed by acridine orange staining, GFP-LC3 punctate formation assay, and protein level were analysed using western blot. Annexin V-FITC/PI staining was performed to detect percentage of cells undergoing apoptosis by using flow cytometry. ACA inhibits the cell viability and induced formation of cytoplasmic vacuoles in NSCLC cells. Acidic vesicular organelles and GFP-LC3 punctate formation were increased in response to ACA exposure in A549 and SK-LU-1 cell lines; implying occurrence of autophagy. In western blot, accumulation of LC3-II accompanied by degradation of p62 was observed, which further confirmed the full flux of autophagy induction by ACA. The reduction of Beclin-1 upon ACA treatment indicated the Beclin-1-independent autophagy pathway. An early autophagy inhibitor, 3-methyaldenine (3-MA), failed to suppress the autophagy triggered by ACA; validating the existence of Beclin-1-independent autophagy. Silencing of LC3-II using short interfering RNA (siRNA) abolished the autophagy effects, enhancing the cytotoxicity of ACA through apoptosis. This proposed ACA triggered a pro-survival autophagy in NSCLC cells. Consistently, co-treatment with lysosomal inhibitor, chloroquine (CQ), exerted a synergistic effect resulting in apoptosis. Our findings suggested ACA induced pro-survival autophagy through Beclin-1-independent pathway in NSCLC. Hence, targeting autophagy pathway using autophagy inhibitor such as CQ represented a novel promising approach to potentiate the cytotoxicity of ACA through apoptosis in NSCLC.
    Matched MeSH terms: Carcinoma, Non-Small-Cell Lung
  20. Shi Yeen TN, Pathmanathan R, Shiran MS, Ahmad Zaid FA, Cheah YK
    J Biomed Sci, 2013 Apr 16;20:22.
    PMID: 23590575 DOI: 10.1186/1423-0127-20-22
    BACKGROUND: Somatic mutations of the epidermal growth factor receptor (EGFR) are reportedly associated with various responses in non-small cell lung cancer (NSCLC) patients receiving the anti-EGFR agents. Detection of the mutation therefore plays an important role in therapeutic decision making. The aim of this study was to detect EGFR mutations in formalin fixed paraffin embedded (FFPE) samples using both Scorpion ARMS and high resolution melt (HRM) assay, and to compare the sensitivity of these methods.

    RESULTS: All of the mutations were found in adenocarcinoma, except one that was in squamous cell carcinoma. The mutation rate was 45.7% (221/484). Complex mutations were also observed, wherein 8 tumours carried 2 mutations and 1 tumour carried 3 mutations.

    CONCLUSIONS: Both methods detected EGFR mutations in FFPE samples. HRM assays gave more EGFR positive results compared to Scorpion ARMS.

    Matched MeSH terms: Carcinoma, Non-Small-Cell Lung/genetics*; Carcinoma, Non-Small-Cell Lung/pathology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links