Displaying publications 1 - 20 of 385 in total

Abstract:
Sort:
  1. Abd Aziz MA, Md Isa K, Ab Rashid R
    Waste Manag Res, 2017 Jun;35(6):647-655.
    PMID: 28431479 DOI: 10.1177/0734242X17697815
    This article aims to provide insights into the factors that contribute to the separation efficiency of solid particles. In this study, a pneumatic jigging technique was used to assess the separation of solid waste materials that consisted of copper, glass and rubber insulator. Several initial experiments were carried out to evaluate the strengths and limitations of the technique. It is found that despite some limitations of the technique, all the samples prepared for the experiments were successfully separated. The follow-up experiments were then carried out to further assess the separation of copper wire and rubber insulator. The effects of air flow and pulse rates on the separation process were examined. The data for these follow-up experiments were analysed using a sink float analysis technique. The analysis shows that the air flow rate was very important in determining the separation efficiency. However, the separation efficiency may be influenced by the type of materials used.
    Matched MeSH terms: Copper
  2. Shuhaimi-Othman M, Yakub N, Ramle NA, Abas A
    Toxicol Ind Health, 2015 Sep;31(9):773-82.
    PMID: 23302712 DOI: 10.1177/0748233712472519
    Two freshwater fish, Rasbora sumatrana (Cyprinidae) and Poecilia reticulata (guppy; Poeciliidae), were exposed to a range of eight heavy metals (copper (Cu), cadmium (Cd), zinc (Zn), lead (Pb), nickel (Ni), iron (Fe), aluminium (Al), and manganese (Mn)) at varied concentrations for 96 h in the laboratory. Mortality was assessed and median lethal concentrations (LC50) were calculated. It was observed that the LC50 values increased with a decrease in mean exposure times, for all metals and for both fish types. The 96-h LC50 values for Cu, Cd, Zn, Pb, Ni, Fe, Al, and Mn were 0.006, 0.10, 0.46, 0.63, 0.83, 1.71, 1.53, and 5.71 mg/L for R. sumatrana and 0.038, 0.17, 1.06, 1.99, 15.62, 1.46, 6.76, and 23.91 mg/L for P. reticulata, respectively. The metal toxicity trend for R. sumatrana and P. reticulata from most to least toxic was Cu > Cd > Zn > Pb > Ni > Al > Fe > Mn and Cu > Cd > Zn > Fe > Pb > Al > Ni > Mn, respectively. Results indicated that Cu was the most toxic metal on both fish, and R. sumatrana was more sensitive than P. reticulata to all the eight metals.
    Matched MeSH terms: Copper/analysis; Copper/toxicity
  3. Aziz R, Hashim I, Abbasbandy S
    Sains Malaysiana, 2018;47:1599-1605.
    This study analyzes the heat transfer of a thin film flow on an unsteady stretching sheet in nanofluids. Three different types of nanoparticles are considered; copper Cu, alumina Al2O3 and titania TiO2 with water as the base fluid. The governing equations are simplified using similarity transformations. The resulting coupled nonlinear differential equations are solved by the Homotopy Analysis Method (HAM). The analytical series solutions are presented and the numerical results obtained are tabulated. In particular, it shows that the heat transfer rate decreases when nanoparticles volume fraction increases.
    Matched MeSH terms: Copper
  4. Mohajerani A, Burnett L, Smith JV, Kurmus H, Milas J, Arulrajah A, et al.
    Materials (Basel), 2019 Sep 20;12(19).
    PMID: 31547011 DOI: 10.3390/ma12193052
    Nanoparticles are defined as ultrafine particles sized between 1 and 100 nanometres in diameter. In recent decades, there has been wide scientific research on the various uses of nanoparticles in construction, electronics, manufacturing, cosmetics, and medicine. The advantages of using nanoparticles in construction are immense, promising extraordinary physical and chemical properties for modified construction materials. Among the many different types of nanoparticles, titanium dioxide, carbon nanotubes, silica, copper, clay, and aluminium oxide are the most widely used nanoparticles in the construction sector. The promise of nanoparticles as observed in construction is reflected in other adoptive industries, driving the growth in demand and production quantity at an exorbitant rate. The objective of this study was to analyse the use of nanoparticles within the construction industry to exemplify the benefits of nanoparticle applications and to address the short-term and long-term effects of nanoparticles on the environment and human health within the microcosm of industry so that the findings may be generalised. The benefits of nanoparticle utilisation are demonstrated through specific applications in common materials, particularly in normal concrete, asphalt concrete, bricks, timber, and steel. In addition, the paper addresses the potential benefits and safety barriers for using nanomaterials, with consideration given to key areas of knowledge associated with exposure to nanoparticles that may have implications for health and environmental safety. The field of nanotechnology is considered rather young compared to established industries, thus limiting the time for research and risk analysis. Nevertheless, it is pertinent that research and regulation precede the widespread adoption of potentially harmful particles to mitigate undue risk.
    Matched MeSH terms: Copper
  5. Begum SZ, Nizam NSM, Muhamad A, Saiman MI, Crouse KA, Abdul Rahman MB
    PLoS One, 2020;15(11):e0238147.
    PMID: 33147237 DOI: 10.1371/journal.pone.0238147
    Laccases, oxidative copper-enzymes found in fungi and bacteria were used as the basis in the design of nona- and tetrapeptides. Laccases are known to be excellent catalysts for the degradation of phenolic xenobiotic waste. However, since solvent extraction of laccases is environmentally-unfriendly and yields obtained are low, they are less preferred compared to synthetic catalysts. The histidine rich peptides were designed based on the active site of laccase extracted from Trametes versicolor through RCSB Protein Data Bank, LOMETS and PyMol software. The peptides were synthesized using Fmoc-solid phase peptide synthesis (SPPS) with 30-40% yield. These peptides were purified and characterized using LC-MS (purities >75%), FTIR and NMR spectroscopy. Synthesized copper(II)-peptides were crystallized and then analyzed spectroscopically. Their structures were elucidated using 1D and 2D NMR. Standards (o,m,p-cresol, 2,4-dichlorophenol) catalysed using laccase from Trametes versicolor (0.66 U/mg) were screened under different temperatures and stirring rate conditions. After optimizing the degradation of the standards with the best reaction conditions reported herein, medications with phenolic and aromatic structures such as ibuprofen, paracetamol (acetaminophen), salbutamol, erythromycin and insulin were screened using laccase (positive control), apo-peptides and copper-peptides. Their activities evaluated using GC-MS, were compared with those of peptide and copper-peptide catalysts. The tetrapeptide was found to have the higher degradation activity towards salbutamol (96.8%) compared with laccase at 42.8%. Ibuprofen (35.1%), salbutamol (52.9%) and erythromycin (49.7%) were reported to have the highest degradation activities using Cu-tetrapeptide as catalyst when compared with the other medications. Consequently, o-cresol (84%) was oxidized by Tp-Cu while the apo-peptides failed to oxidize the cresols. Copper(II)-peptides were observed to have higher catalytic activity compared to their parent peptides and the enzyme laccase for xenobiotic degradation.
    Matched MeSH terms: Copper/chemistry*
  6. Rahimah Mahat, Noraihan Afiqah Rawi, Sharidan Shafie, Abdul Rahman Mohd Kasim
    Sains Malaysiana, 2018;47:1617-1623.
    The purpose of this study was to examine the effect of viscous dissipation on mixed convection flow of viscoelastic
    nanofluid past a horizontal circular cylinder. Carboxymethyl cellulose solution (CMC) is chosen as the base fluid and
    copper as a nanoparticle with the Prandtl number Pr = 6.2. The transformed boundary layer equations for momentum
    and temperature subject to the appropriate boundary conditions are solved numerically by using Keller-box method. The
    influenced of the dimensionless parameters such as Eckert number, mixed convection parameter, nanoparticles volume
    fraction and viscoelastic parameter on the flow and heat transfer characteristics is analyzed in detail and presented
    graphically. The results come out with the velocity profiles are increased while the temperature profiles are decreased
    by increasing the values of nanoparticles volume fraction and viscoelastic parameter, respectively. The graph shows
    that, increasing Eckert number the skin friction is also increases. The values of skin friction are increased by increasing
    mixed convection parameter, but the values of Nusselt number produce an opposite behavior. The present study has many
    applications especially in heat exchangers technology and oceanography. Therefore, in future, it is hoping to study the
    viscoelastic nanofluid flow past a different geometric such as sphere and cylindrical cone.
    Matched MeSH terms: Copper
  7. Mohammad Haniff MA, Muhammad Hafiz S, Wahid KA, Endut Z, Wah Lee H, Bien DC, et al.
    Sci Rep, 2015;5:14751.
    PMID: 26423893 DOI: 10.1038/srep14751
    In this work, the piezoresistive effects of defective graphene used on a flexible pressure sensor are demonstrated. The graphene used was deposited at substrate temperatures of 750, 850 and 1000 °C using the hot-filament thermal chemical vapor deposition method in which the resultant graphene had different defect densities. Incorporation of the graphene as the sensing materials in sensor device showed that a linear variation in the resistance change with the applied gas pressure was obtained in the range of 0 to 50 kPa. The deposition temperature of the graphene deposited on copper foil using this technique was shown to be capable of tuning the sensitivity of the flexible graphene-based pressure sensor. We found that the sensor performance is strongly dominated by the defect density in the graphene, where graphene with the highest defect density deposited at 750 °C exhibited an almost four-fold sensitivity as compared to that deposited at 1000 °C. This effect is believed to have been contributed by the scattering of charge carriers in the graphene networks through various forms such as from the defects in the graphene lattice itself, tunneling between graphene islands, and tunneling between defect-like structures.
    Matched MeSH terms: Copper
  8. Hajrezaie M, Hassandarvish P, Moghadamtousi SZ, Gwaram NS, Golbabapour S, Najihussien A, et al.
    PLoS One, 2014;9(3):e91246.
    PMID: 24618844 DOI: 10.1371/journal.pone.0091246
    Based on the potential of Schiff base compounds to act as sources for the development of cancer chemotherapeutic agents, this in vivo study was performed to investigate the inhibitory properties of the synthetic Schiff base compound Cu(BrHAP)2 on colonic aberrant crypt foci (ACF).
    Matched MeSH terms: Copper/chemistry*
  9. Hajrezaie M, Paydar M, Moghadamtousi SZ, Hassandarvish P, Gwaram NS, Zahedifard M, et al.
    ScientificWorldJournal, 2014;2014:540463.
    PMID: 24737979 DOI: 10.1155/2014/540463
    Metal-based drugs with extensive clinical applications hold great promise for the development of cancer chemotherapeutic agents. In the last few decades, Schiff bases and their complexes have become well known for their extensive biological potential. In the present study, we examined the antiproliferative effect of a copper (II) complex on HT-29 colon cancer cells. The Cu(BrHAP)2 Schiff base compound demonstrated a potent antiproliferative effect in HT-29 cells, with an IC50 value of 2.87  μg/ml after 72 h of treatment. HT-29 cells treated with Cu (II) complexes underwent apoptosis death, as exhibited by a progressive elevation in the proportion of the G1 cell population. At a concentration of 6.25  μg/ml, the Cu(BrHAP)2 compound caused significant elevation in ROS production following perturbation of mitochondrial membrane potential and cytochrome c release, as assessed by the measurement of fluorescence intensity in stained cells. Furthermore, the activation of caspases 3/7 and 9 was part of the Cu (II) complex-induced apoptosis, which confirmed the involvement of mitochondrial-mediated apoptosis. Meanwhile, there was no significant activation of caspase-8. Taken together, these results imply that the Cu(BrHAP)2 compound is a potential candidate for further in vivo and clinical colon cancer studies to develop novel chemotherapeutic agents derived from metal-based agents.
    Matched MeSH terms: Copper/chemistry*
  10. Hajrezaie M, Golbabapour S, Hassandarvish P, Gwaram NS, A Hadi AH, Mohd Ali H, et al.
    PLoS One, 2012;7(12):e51537.
    PMID: 23251568 DOI: 10.1371/journal.pone.0051537
    BACKGROUND: Copper is an essential element in various metabolisms. The investigation was carried out to evaluate acute gastroprotective effects of the Copper (II) complex against ethanol-induced superficial hemorrhagic mucosal lesions in rats.

    METHODOLOGY/PRINCIPAL FINDINGS: Rats were divided into 7 groups. Groups 1 and 2 were orally administered with Tween 20 (10% v/v). Group 3 was orally administered with 20 mg/kg omeprazole (10% Tween 20). Groups 4-7 received 10, 20, 40, and 80 mg/kg of the complex (10% Tween 20), respectively. Tween 20 (10% v/v) was given orally to group 1 and absolute ethanol was given orally to groups 2-7, respectively. Rats were sacrificed after 1 h. Group 2 exhibited severe superficial hemorrhagic mucosal lesions. Gastric wall mucus was significantly preserved by the pre-treatment complex. The results showed a significant increase in glutathione (GSH), superoxide dismutase (SOD), nitric oxide (NO), and Prostaglandin E2 (PGE(2)) activities and a decrease in malondialdehyde (MDA) level. Histology showed marked reduction of hemorrhagic mucosal lesions in groups 4-7. Immunohistochemical staining showed up-regulation of Hsp70 and down-regulation of Bax proteins. PAS staining of groups 4-7 showed intense stain uptake of gastric mucosa. The acute toxicity revealed the non-toxic nature of the compound.

    CONCLUSIONS/SIGNIFICANCE: The gastroprotective effect of the Copper (II) complex may possibly be due to preservation of gastric wall mucus; increase in PGE(2) synthesis; GSH, SOD, and NO up-regulation of Hsp70 protein; decrease in MDA level; and down-regulation of Bax protein.

    Matched MeSH terms: Copper/pharmacology; Copper/therapeutic use*; Copper/chemistry
  11. Chang YS, Au PI, Mubarak NM, Khalid M, Jagadish P, Walvekar R, et al.
    Environ Sci Pollut Res Int, 2020 Sep;27(26):33270-33296.
    PMID: 32529626 DOI: 10.1007/s11356-020-09423-7
    Two superior adsorbents, namely bentonite and graphene oxide (GO), were hybridised to study the removal of copper and nickel ions from synthetic and industrial wastewater. The as-synthesised GO, bentonite/GO and bentonite were characterised by Fourier transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy and N2 adsorption-desorption analysis. The factors influencing the adsorption behaviours including contact time, initial solution pH, ionic strength, initial concentration of metal ions, temperature and adsorbent dosage were systematically investigated by batch equilibrium method. The adsorption equilibrium for copper and nickel onto bentonite was attained in 90 min while equilibrium was reached in 60 min on bentonite/GO. The adsorption of copper and nickel was pH-dependent in the range from pH 2 to pH 7 and from pH 2 to pH 8. Pseudo-first-order kinetic model excellently described the adsorption of copper and nickel onto bentonite and bentonite/GO. The equilibrium adsorption data was well described by the Langmuir isotherm model and the maximum adsorption capacity was 248.9 mg/g, 558.4 mg/g, 215.8 mg/g and 402.5 mg/g for bentonite-copper, bentonite/GO-copper, bentonite-nickel and bentonite/GO-nickel adsorption systems, respectively. The bentonite/GO composite exhibited a higher adsorption capacity of both cations from synthetic wastewater than pure bentonite owning to the synergistic effect between bentonite and GO. In all adsorption studies, copper was more efficiently removed than nickel due to its higher tendency to form bond with adsorbent surfaces. The adsorption of copper and nickel on bentonite/GO was mainly due to cation exchange, intermolecular and electrostatic interactions and physisorption dominated the adsorption processes. The practical application of bentonite/GO on adsorption of copper was investigated using real wastewater and its removal efficiency was beyond 98%. The excellent adsorption performances of composites for the copper and nickel removal from wastewater demonstrated its significant potential for pollution mitigations.
    Matched MeSH terms: Copper
  12. Pudza MY, Abidin ZZ, Abdul-Rashid S, Yasin FM, Noor ASM, Abdullah J
    Environ Sci Pollut Res Int, 2020 Apr;27(12):13315-13324.
    PMID: 32020456 DOI: 10.1007/s11356-020-07695-7
    The need for the sensing of environmental pollutants cannot be overemphasized in the twenty-first century. Herein, a sensor has been developed for the sensitive and selective detection of copper (Cu2+), lead (Pb2+) and cadmium (Cd2+) as major heavy metals polluting water environment. A screen-printed carbon electrode (SPCE) modified by fluorescent carbon dots (CDs) and gold nanoparticles (AuNPs) was successfully fabricated for sensing Cu2+, Pb2+ and Cd2+. Differential pulse voltammetry (DPV) and cyclic voltammetry (CV) were deployed for the analysis of ternary analytes. CV was set at a potential range of - 0.8 to + 0.2 V at a scan rate of 100 mV/s, and DPV at a potential range of - 0.8 to + 0.1 V, scan rate of 50 mV/s, pulse rate of 0.2 V and pulse width of 50 ms. DPV technique was applied through the modified electrode for sensitive and selective determination of Cu2+, Pb2+ and Cd2+ at a concentration range of 0.01 to 0.27 ppm for Cu2+, Pb2+ and Cd2+. Tolerance for the highest possible concentration of foreign substances such as Mg2+, K+, Na+, NO3-, and SO42- was observed with a relative error less than ± 3%. The sensitivity of the modified electrode was at 0.17, 0.42 and 0.18 ppm for Cd2+, Pb2+ and Cu2+, respectively, while the limits of detection (LOD) achieved for cadmium, lead and copper were 0.0028, 0.0042 and 0.014 ppm, respectively. The quality of the modified electrode for sensing Cu2+, Pb2+ and Cd2+ at trace levels is in accordance with the World Health Organization (WHO) and Environmental Protection Agency (EPA) water regulation standard. The modified SPCE provides a cost-effective, dependable and stable means of detecting heavy metal ions (Cu2+, Pb2+ and Cd2+) in an aqueous solution. Graphical abstract .
    Matched MeSH terms: Copper
  13. Rahman ML, Wong ZJ, Sarjadi MS, Joseph CG, Arshad SE, Musta B, et al.
    Polymers (Basel), 2021 May 06;13(9).
    PMID: 34066308 DOI: 10.3390/polym13091486
    Toxic metals in the industrial wastewaters have been liable for drastic pollution hence a powerful and economical treatment technology is needed for water purification. For this reason, some pure cellulosic materials were derived from waste fiber to obtain an economical adsorbent for wastewater treatment. Conversion of cellulose into grafting materials such as poly(methyl acrylate)-grafted cellulose was performed by free radical grafting process. Consequently, poly(hydroxamic acid) ligand was produced from the grafted cellulose. The intermediate products and poly(hydroxamic acid) ligand were analyzed by FT-IR, FE-SEM, TEM, EDX, and XPS spectroscopy. The adsorption capacity (qe) of some toxic metals ions by the polymer ligand was found to be excellent, e.g., copper capacity (qe) was 346.7 mg·g-1 at pH 6. On the other hand, several metal ions such as cobalt chromium and nickel also demonstrated noteworthy sorption capacity at pH 6. The adsorption mechanism obeyed the pseudo second-order rate kinetic model due to the satisfactory correlated experimental sorption values (qe). Langmuir model isotherm study showed the significant correlation coefficient with all metal ions (R2 > 0.99), indicating that the single or monolayer adsorption was the dominant mode on the surface of the adsorbent. This polymer ligand showed good properties on reusability. The result shows that the adsorbent may be recycled for 6 cycles without any dropping of starting sorption capabilities. This polymeric ligand showed outstanding toxic metals removal magnitude, up to 90-99% of toxic metal ions can be removed from industrial wastewater.
    Matched MeSH terms: Copper
  14. Beddu S, Abd Manan TSB, Zainoodin MM, Khan T, Wan Mohtar WHM, Nurika O, et al.
    Data Brief, 2020 Aug;31:105843.
    PMID: 32596432 DOI: 10.1016/j.dib.2020.105843
    Coal combustion by-products (CCPs) (i.e. fly (FA) and bottom (BA) ashes) generated by power plants contain heavy metals. This research presents leaching properties of coal ashes (FA and BA) collected from Jimah coal-fired power station, Port Dickson, Negeri Sembilan using USEPA standard methods namely toxicity characteristic leaching procedure (TCLP), and synthetic precipitation leaching procedure (SPLP). Heavy metals like lead (Pb), zinc (Zn), copper (Cu) and arsenic (As) were quantified using atomic absorption spectrometer (AAS). The leached of heavy metals fluxes were Cu < Zn < Pb < As. As leached the most whilst indicating of possible contamination from As. Overall, the ranges of leached concentration were adhered to permissible limits of hazardous waste criteria for metal (Pb and As) and industrial effluent (Zn and Cu). The presented data has potential reuse as reference for the coal ash concrete mixed design application in construction industries.
    Matched MeSH terms: Copper
  15. Abo-Shakeer, L.K.A., Rahman, M.F.A., Yakasai, H., Syed, M.A., Shukor M.Y., Bakar, N.A., et al.
    MyJurnal
    Bacterial based remediation of environmental toxicants is a promising innovative technology
    for molybdenum pollution. To date, the enzyme responsible for molybdate reduction to Moblue
    from bacteria show that the Michaelis-Menten constants varies by one order of magnitude.
    It is important that the constants from newer enzyme sources be characterized so that a
    comparison can be made. The aim of this study is to characterize kinetically the enzyme from a
    previously isolated Mo-reducing bacterium; Bacillus pumilus strain Lbna. The maximum
    activity of this enzyme occurred at pH 5.5 and in between 25 and 35 oC. The Km and Vmax of
    NADH were 6.646 mM and 0.057 unit/mg enzyme, while the Km and Vmax of LPPM were 3.399
    mM and 0.106 unit/mg enzyme. The results showed that the enzyme activity for Bacillus
    pumilus strain Lbna were inhibited by all heavy metals used. Zinc, copper, silver, chromium,
    cadmium and mercury all caused more than 50% inhibition to the Mo-reducing enzyme activity
    with copper being the most potent with an almost complete inhibition of enzyme activity
    observed.
    Matched MeSH terms: Copper
  16. Samson S, Basri M, Fard Masoumi HR, Abdul Malek E, Abedi Karjiban R
    PLoS One, 2016;11(7):e0157737.
    PMID: 27383135 DOI: 10.1371/journal.pone.0157737
    A predictive model of a virgin coconut oil (VCO) nanoemulsion system for the topical delivery of copper peptide (an anti-aging compound) was developed using an artificial neural network (ANN) to investigate the factors that influence particle size. Four independent variables including the amount of VCO, Tween 80: Pluronic F68 (T80:PF68), xanthan gum and water were the inputs whereas particle size was taken as the response for the trained network. Genetic algorithms (GA) were used to model the data which were divided into training sets, testing sets and validation sets. The model obtained indicated the high quality performance of the neural network and its capability to identify the critical composition factors for the VCO nanoemulsion. The main factor controlling the particle size was found out to be xanthan gum (28.56%) followed by T80:PF68 (26.9%), VCO (22.8%) and water (21.74%). The formulation containing copper peptide was then successfully prepared using optimum conditions and particle sizes of 120.7 nm were obtained. The final formulation exhibited a zeta potential lower than -25 mV and showed good physical stability towards centrifugation test, freeze-thaw cycle test and storage at temperature 25°C and 45°C.
    Matched MeSH terms: Copper/chemistry*
  17. Irshad MA, Sattar S, Al-Huqail AA, Alghanem SMS, Nawaz R, Ain NU, et al.
    Environ Sci Pollut Res Int, 2023 Nov;30(52):112575-112590.
    PMID: 37833594 DOI: 10.1007/s11356-023-30141-3
    Chromium (Cr) is one of the hazardous heavy metals that is naturally carcinogenic and causes various health problems. Metallic nanoparticles such as silver and copper nanoparticles (Ag NPs and Cu NPs) have gained great attention because of their unique chemical, physical, and biological attributes, serving diverse and significant role in various useful and sustainable applications. In the present study, both of these NPs were synthesized by green method in which Azadirachta indica plant extract was used. These nanoparticles were characterized by using advanced instrumental techniques such as Fourier transmission infrared (FTIR), X-ray diffraction (XRD), scanning electron microscope attached with energy-dispersive spectroscopy (SEM-EDS), and elemental mapping. These environmentally friendly nanoparticles were utilized for the batch removal of Cr from the wastewater. For analysis of adsorption behaviour, a range of kinetic isotherm models (Freundlich, Temkin, Dubinin, and Langmuir) and kinetic models (pseudo-first-order and pseudo-second-order) were used for the Cu-NPs and Ag-NPs. Cu NPs exhibited the highest Cr removal efficiency (96%) within a contact time of 10-15 min, closely followed by Ag NPs which achieved a removal efficiency of 94% under the similar conditions. These optimal outcomes were observed at a sorbent dose of 0.5 g/L for Ag NPs and 0.7 g/L for Cu NPs. After effectively capturing Cr using these nanoparticles, the sorbates were examined through SEM-EDX analysis to observe how much Cr metal was attached to the nanoparticles, potentially for future use. The analysis found that Ag-NPs captured 18% of Cr, while Cu-NPs captured 12% from the aqueous solution. More precise experimental conditions are needed for higher Cr removal from wastewater and determination of the best conditions for industrial-level Cr reuse. Although nanomaterial exhibit high efficiency and selectivity for Cr removal and recovery from wastewater, more research is necessary to optimize their synthesis and performance for industrial-scale applications and develop efficient methods for Cr removal and recovery.
    Matched MeSH terms: Copper/analysis
  18. Salleh MN, Runnie I, Roach PD, Mohamed S, Abeywardena MY
    J Agric Food Chem, 2002 Jun 19;50(13):3693-7.
    PMID: 12059144
    Twelve edible plant extracts rich in polyphenols were screened for their potential to inhibit oxidation of low-density lipoprotein (LDL) in vitro and to modulate LDL receptor (LDLr) activity in cultured HepG2 cells. The antioxidant activity (inhibition of LDL oxidation) was determined by measuring the formation of conjugated dienes (lag time) and thiobarbituric acid reagent substances (TBARS). Betel leaf (94%), cashew shoot (63%), Japanese mint (52%), semambu leaf (50%), palm frond (41%), sweet potato shoot, chilli fruit, papaya shoot, roselle calyx, and maman showed significantly increased lag time (>55 min, P < 0.05) and inhibition of TBARS formation (P < 0.05) compared to control. LDLr was significantly up-regulated (P < 0.05) by Japanese mint (67%), semambu (51%), cashew (50%), and noni (49%). Except for noni and betel leaf, most plant extracts studied demonstrated a positive association between antioxidant activity and the ability to up-regulate LDL receptor. Findings suggest that reported protective actions of plant polyphenols on lipoprotein metabolism might be exerted at different biochemical mechanisms.
    Matched MeSH terms: Copper/chemistry
  19. Banch TJH, Hanafiah MM, Alkarkhi AFM, Abu Amr SS
    Polymers (Basel), 2019 Aug 14;11(8).
    PMID: 31416151 DOI: 10.3390/polym11081349
    In this study, tannin-based natural coagulant was used to treat stabilized landfill leachate. Tannin modified with amino group was utilized for the treatment process. Central composite design (CCD) was used to investigate and optimize the effect of tannin dosage and pH on four responses. The treatment efficiency was evaluated based on the removal of four selected (responses) parameters; namely, chemical oxygen demand (COD), color, NH3-N and total suspended solids (TSS). The optimum removal efficiency for COD, TSS, NH3-N and color was obtained using a tannin dosage of 0.73 g at a pH of 6. Moreover, the removal efficiency for selected heavy metals from leachate; namely, iron (Fe2+), zinc (Zn2+), copper (Cu2+), chromium (Cr2+), cadmium (Cd2+), lead (Pb2+), arsenic (As3+), and cobalt (Co2+) was also investigated. The results for removal efficiency for COD, TSS, NH3-N, and color were 53.50%, 60.26%, and 91.39%, respectively. The removal of selected heavy metals from leachate for Fe2+, Zn2+, Cu2+, Cr2+, Cd2+, Pb2+, As3+ and cobalt Co2+ were 89.76%, 94.61%, 94.15%, 89.94%, 17.26%, 93.78%, 86.43% and 84.19%, respectively. The results demonstrate that tannin-based natural coagulant could effectively remove organic compounds and heavy metals from stabilized landfill leachate.
    Matched MeSH terms: Copper
  20. Shabanda IS, Koki IB, Low KH, Zain SM, Khor SM, Abu Bakar NK
    Environ Sci Pollut Res Int, 2019 Dec;26(36):37193-37211.
    PMID: 31745807 DOI: 10.1007/s11356-019-06718-2
    Human health is threatened by significant emissions of heavy metals into the urban environment due to various activities. Various studies describing health risk analyses on soil and dust have been conducted previously. However, there are limited studies that have been carried out regarding the potential health risk assessment of heavy metals in urban road dust of < 63-μm diameter, via incidental ingestion, dermal contact, and inhalation exposure routes by children and adults in developing countries. Therefore, this study evaluated the health risks of heavy metal exposure via ingestion, dermal contact, and inhalation of urban dust particles in Petaling Jaya, Malaysia. Heavy metals such as lead (Pb), chromium (Cr), zinc (Zn), copper (Cu), and manganese (Mn) were measured using dust samples obtained from industrial, high-traffic, commercial, and residential areas by using inductively coupled plasma mass spectrometry (ICP-MS). The principal component and hierarchical cluster analysis showed the dominance of these metal concentrations at sites associated with anthropogenic activities. This was suggestive of industrial, traffic emissions, atmospheric depositions, and wind as the significant contributors towards urban dust contamination in the study sites. Further exploratory analysis underlined Cr, Pb, Cu, and Zn as the most representative metals in the dust samples. In accommodating the uncertainties associated with health risk calculations and simulating the reasonable maximum exposure of these metals, the related health risks were estimated at the 75th and 95th percentiles. Furthermore, assessing the exposure to carcinogenic and non-carcinogenic metals in the dust revealed that ingestion was the primary route of consumption. Children who ingested dust particles in Petaling Jaya could be more vulnerable to carcinogenic and non-carcinogenic risks, but the exposure for both children and adults showed no potential health effects. Therefore, this study serves as an important premise for a review and reformation of the existing environmental quality standards for human health safety.
    Matched MeSH terms: Copper/analysis
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links