Displaying publications 1 - 20 of 167 in total

Abstract:
Sort:
  1. Zeeshan F, Bukhari NI
    AAPS PharmSciTech, 2010 Jun;11(2):910-6.
    PMID: 20496016 DOI: 10.1208/s12249-010-9456-2
    Modified-release multiple-unit tablets of loratadine and pseudoephedrine hydrochloride with different release profiles were prepared from the immediate-release pellets comprising the above two drugs and prolonged-release pellets containing only pseudoephedrine hydrochloride. The immediate-release pellets containing pseudoephedrine hydrochloride alone or in combination with loratadine were prepared using extrusion-spheronization method. The pellets of pseudoephedrine hydrochloride were coated to prolong the drug release up to 12 h. Both immediate- and prolonged-release pellets were filled into hard gelatin capsule and also compressed into tablets using inert tabletting granules of microcrystalline cellulose Ceolus KG-801. The in vitro drug dissolution study conducted using high-performance liquid chromatography method showed that both multiple-unit capsules and multiple-unit tablets released loratadine completely within a time period of 2 h, whereas the immediate-release portion of pseudoephedrine hydrochloride was liberated completely within the first 10 min of dissolution study. On the other hand, the release of pseudoephedrine hydrochloride from the prolonged release coated pellets was prolonged up to 12 hr and followed zero-order release kinetic. The drug dissolution profiles of multiple-unit tablets and multiple-unit capsules were found to be closely similar, indicating that the integrity of pellets remained unaffected during the compression process. Moreover, the friability, hardness, and disintegration time of multiple-unit tablets were found to be within BP specifications. In conclusion, modified-release pellet-based tablet system for the delivery of loratadine and pseudoephedrine hydrochloride was successfully developed and evaluated.
    Matched MeSH terms: Delayed-Action Preparations/chemical synthesis*
  2. Zeeshan F, Peh KK, Tan YT
    AAPS PharmSciTech, 2009;10(3):850-7.
    PMID: 19554454 DOI: 10.1208/s12249-009-9278-2
    Compaction of controlled-release coated pellets into tablets is challenging because of the fusion of pellets and the rupturing of coated film. The difficulty in compaction intensifies with the use of extremely water-soluble drugs. Therefore, the present study was conducted to prepare and compact pellets containing pseudoephedrine hydrochloride as an extremely water-soluble model drug. The pellets were produced using an extrusion-spheronization technique. The drug-loaded pellets were coated to extend the drug release up to 12-h employing various polymers, and then they were compressed into tablets using microcrystalline cellulose Ceolus KG-801 as a novel tabletting excipient. The in vitro drug release studies of coated pellets and tablets were undertaken using the USP basket method in dissolution test apparatus I. The amount of drug released was analyzed at a wavelength of 215 nm. The combined coatings of hydroxypropyl methylcellulose and Kollicoat SR-30D yielded 12-h extended-release pellets with drug release independent of pH of dissolution medium following zero-order kinetics. The drug release from the tablets prepared using inert Celous KG-801 granules as tabletting excipient was found faster than that of coated pellets. However, a modification in drug release rate occurred with the incorporation of inert Ceolus KG-801 pellets. The drug dissolution profile from tablets containing 40% w/w each of coated pellets and inert granules along with 20% w/w inert pellets was found to be closely similar to that of coated pellets. Furthermore, the friability, tensile strength, and disintegration time of the tablets were within the USP specifications.
    Matched MeSH terms: Delayed-Action Preparations
  3. Mohananaidu K, Chatterjee B, Mohamed F, Mahmood S, Hamed Almurisi S
    AAPS PharmSciTech, 2022 Oct 21;23(8):288.
    PMID: 36271212 DOI: 10.1208/s12249-022-02439-x
    Over the past decade, intranasal (IN) delivery has been gaining attention as an alternative approach to conventional drug delivery routes targeting the brain. Carbamazepine (CBZ) is available as an orally ingestible formulation. The present study aims to develop a thermoreversible in situ gelling system for delivering CBZ via IN route. A cold method of synthesis has been used to tailor and optimize the thermoreversible gel composition, using poloxamer 407 (P407) (15-20% w/v) and iota carrageenan (ɩ-Cg) (0.15-0.25% w/v). The developed in situ gel showed gelation temperatures (28-33°C), pH (4.5-6.5), rheological properties (pseudoplastic, shear thinning), and mucoadhesive strength (1755.78-2495.05 dyne/cm2). The in vitro release study has shown sustained release behavior (24 h) for gel, containing significant retardation of CBZ release. The release kinetics fit to the Korsmeyer-Peppas model, suggesting the non-Fickian diffusion type controlled release behavior. Ex vivo permeation through goat nasal mucosa showed sustained release from the gel containing 18% P407 with the highest cumulative drug permeated (243.94 µg/cm2) and a permeation flux of 10.16 µg/cm2/h. After treatment with CBZ in situ gel, the barrier function of nasal mucosa remained unaffected. Permeation through goat nasal mucosa using in situ gel has demonstrated a harmless nasal delivery, which can provide a new dimension to deliver CBZ directly to the brain bypassing the blood-brain barrier.
    Matched MeSH terms: Delayed-Action Preparations
  4. Mahmood S, Kiong KC, Tham CS, Chien TC, Hilles AR, Venugopal JR
    AAPS PharmSciTech, 2020 Oct 14;21(7):285.
    PMID: 33057878 DOI: 10.1208/s12249-020-01810-0
    Currently, pharmaceutical research is directed wide range for developing new drugs for oral administration to target disease. Acyclovir formulation is having common issues of short half-life and poor permeability, causing messy treatment which results in patient incompliance. The present study formulates a lipid polymeric hybrid nanoparticles for antiviral acyclovir (ACV) agent with Phospholipon® 90G (lecithin), chitosan, and polyethylene glycol (PEG) to improve controlled release of the drugs. The study focused on the encapsulation of the ACV in lipid polymeric particle and their sustained delivery. The formulation developed for the self-assembly of chitosan and lecithin to form a shell encapsulating acyclovir, followed by PEGylation. Optimisation was performed via Box-Behnken Design (BBD), forming nanoparticles with size of 187.7 ± 3.75 nm, 83.81 ± 1.93% drug-entrapped efficiency (EE), and + 37.7 ± 1.16 mV zeta potential. Scanning electron microscopy and transmission electron microscopy images displayed spherical nanoparticles formation. Encapsulation of ACV and complexity with other physical parameters are confirmed through analysis using Fourier transform infrared spectroscopy, differential scanning calorimetry, and X-ray diffraction. Nanoparticle produced was capable of achieving 24-h sustained release in vitro on gastric and intestinal environments. Ex vivo study proved the improvement of acyclovir's apparent permeability from 2 × 10-6 to 6.46 × 10-6 cm s-1. Acyclovir new formulation was achieved to be stable up to 60 days for controlled release of the drugs. Graphical abstract.
    Matched MeSH terms: Delayed-Action Preparations
  5. Masood A, Maheen S, Khan HU, Shafqat SS, Irshad M, Aslam I, et al.
    ACS Omega, 2021 Mar 30;6(12):8210-8225.
    PMID: 33817480 DOI: 10.1021/acsomega.0c06242
    The current research aimed at designing mesoporous silica nanoparticles (MSNs) for a controlled coadministration of salicylic acid (SA) and ketoconazole (KCZ) to effectively treat highly resistant fungal infections. The sol-gel method was used to formulate MSNs, which were further optimized using central composite rotatable design (CCRD) by investigating mathematical impact of independent formulation variables such as pH, stirring time, and stirring speed on dependent variables entrapment efficiency (EE) and drug release. The selected optimized MSNs and pure drugs were subjected to comparative in vitro/in vivo antifungal studies, skin irritation, cytotoxicity, and histopathological evaluations. The obtained negatively charged (-23.1), free flowing spherical, highly porous structured MSNs having a size distribution of 300-500 nm were suggestive of high storage stability and improved cell proliferation due to enhanced oxygen supply to cells. The physico-chemical evaluation of SA/KCZ-loaded MSNs performed through powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and thermal gravimetric analysis (TGA) indicates absolute lack of any interaction between formulation components and successful encapsulation of both drugs in MSNs. The EESA, EEKCZ, SA release, and KCZ release varied significantly from 34 to 89%, 36 to 85%, 39 to 88%, and 43 to 90%, respectively, indicating the quadratic impact of formulation variables on obtained MSNs. For MSNs, the skin tolerability and cell viability percentage rate were also having an extraordinary advantage over suspension of pure drugs. The optimized SA/KCZ-loaded MSNs demonstrated comparatively enhanced in vitro/in vivo antifungal activities and rapid wound healing efficacy in histopathological evaluation without any skin irritation impact, suggesting the MSNs potential for the simultaneous codelivery of antifungal and keratolyic agents in sustained release fashion.
    Matched MeSH terms: Delayed-Action Preparations
  6. Tang CT, Chua EC, Chew QH, He YL, Si TM, Chiu HF, et al.
    Asia Pac Psychiatry, 2020 Dec;12(4):e12393.
    PMID: 32468725 DOI: 10.1111/appy.12393
    INTRODUCTION: Patterns of clinical use of long-acting injectable (LAI) antipsychotic drugs in many countries, especially in Asia, for treatment of patients diagnosed with chronic psychotic disorders including schizophrenia are not well established.

    METHODS: Within an extensive research consortium, we evaluated prescription rates for first- (FGA) and second-generation antipsychotic (SGA) LAI drugs and their clinical correlates among 3557 subjects diagnosed with schizophrenia across 15 Asian countries and region.

    RESULTS: Overall, an average of 17.9% (638/3557; range: 0.0%-44.9%) of treated subjects were prescribed LAI antipsychotics. Those given LAI vs orally administered agents were significantly older, had multiple hospitalizations, received multiple antipsychotics more often, at 32.4% higher doses, were more likely to manifest disorganized behavior or aggression, had somewhat superior psychosocial functioning and less negative symptoms, but were more likely to be hospitalized, with higher BMI, and more tremor. Being prescribed an FGA vs SGA LAI agent was associated with male sex, aggression, disorganization, hospitalization, multiple antipsychotics, higher doses, with similar risks of adverse neurological or metabolic effects. Rates of use of LAI antipsychotic drugs to treat patients diagnosed with schizophrenia varied by more than 40-fold among Asian countries and given to an average of 17.9% of treated schizophrenia patients. We identified the differences in the clinical profiles and treatment characteristics of patients who were receiving FGA-LAI and SGA-LAI medications.

    DISCUSSION: These findings behoove clinicians to be mindful when evaluating patients' need to be on LAI antipsychotics amidst multifaceted considerations, especially downstream adverse events such as metabolic and extrapyramidal side effects.

    Matched MeSH terms: Delayed-Action Preparations
  7. Kasahara-Kiritani M, Saga Y, Wakamatsu A, Wu DB, Tsai IC
    Asian J Psychiatr, 2023 Aug;86:103671.
    PMID: 37311333 DOI: 10.1016/j.ajp.2023.103671
    BACKGROUND: Real-world evidence on the benefits of long-acting injectable (LAI) antipsychotics (AP) in patients with schizophrenia is limited, especially in the employed population in Japan. This study evaluates the effectiveness of LAI AP in preventing re-hospitalization in patients with schizophrenia, including the employed population.

    METHODS: This retrospective, observational, population-based study used the Japan Medical Data Center (JMDC) health insurance claims database to identify patients having schizophrenia before or on the day of the first LAI AP prescription (index date), and receiving LAI AP between April 1, 2012 and December 31, 2019. The number of all-cause, psychiatric-, and schizophrenia-related hospitalizations at baseline (365 days before index date) and during the 1-year follow-up period were evaluated.

    RESULTS: Of the 1692 patients who received LAI AP during the study period, 146 were included (employed: 55 [37.7 %]; dependent: 91 [62.3 %]). The mean age was 37 years; 50.7 % (n = 74) were females. During baseline period, 61 (41.8 %) patients were not hospitalized. During the follow-up period, 67 (45.9 %) patients underwent hospitalization ≤ 7 days; all-cause: 100 (68.7 %); psychiatry-related: 104 (76.2 %); schizophrenia-related: 114 (78.1 %). A higher proportion of patients were hospitalization-free during the follow-up in the employed vs. dependent population: all cause: 69.1 % vs. 61.5 %; psychiatric-related 76.4 % vs. 67.0 %, schizophrenia-related: 87.3 % vs. 71.4 %.

    CONCLUSION: This study demonstrated the effectiveness of LAI AP in preventing hospitalization in Japan. During the follow-up period, patients with schizophrenia receiving LAI AP, including the employed population, had a significant decrease in hospitalization length and re-hospitalization rate compared to baseline.

    Matched MeSH terms: Delayed-Action Preparations/therapeutic use
  8. Zaharuddin ND, Noordin MI, Kadivar A
    Biomed Res Int, 2014;2014:735891.
    PMID: 24678512 DOI: 10.1155/2014/735891
    The effectiveness of Okra gum in sustaining the release of propranolol hydrochloride in a tablet was studied. Okra gum was extracted from the pods of Hibiscus esculentus using acetone as a drying agent. Dried Okra gum was made into powder form and its physical and chemical characteristics such as solubility, pH, moisture content, viscosity, morphology study using SEM, infrared study using FTIR, crystallinity study using XRD, and thermal study using DSC and TGA were carried out. The powder was used in the preparation of tablet using granulation and compression methods. Propranolol hydrochloride was used as a model drug and the activity of Okra gum as a binder was compared by preparing tablets using a synthetic and a semisynthetic binder which are hydroxylmethylpropyl cellulose (HPMC) and sodium alginate, respectively. Evaluation of drug release kinetics that was attained from dissolution studies showed that Okra gum retarded the release up to 24 hours and exhibited the longest release as compared to HPMC and sodium alginate. The tensile and crushing strength of tablets was also evaluated by conducting hardness and friability tests. Okra gum was observed to produce tablets with the highest hardness value and lowest friability. Hence, Okra gum was testified as an effective adjuvant to produce favourable sustained release tablets with strong tensile and crushing strength.
    Matched MeSH terms: Delayed-Action Preparations
  9. Hussein-Al-Ali SH, El Zowalaty ME, Kura AU, Geilich B, Fakurazi S, Webster TJ, et al.
    Biomed Res Int, 2014;2014:651831.
    PMID: 24900976 DOI: 10.1155/2014/651831
    Nystatin is a tetraene diene polyene antibiotic showing a broad spectrum of antifungal activity. In the present study, we prepared a nystatin nanocomposite (Nyst-CS-MNP) by loading nystatin (Nyst) on chitosan (CS) coated magnetic nanoparticles (MNPs). The magnetic nanocomposites were characterized by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetry analysis (TGA), vibrating sample magnetometer (VSM), and scanning electron microscopy (SEM). The XRD results showed that the MNPs and nanocomposite are pure magnetite. The FTIR analysis confirmed the binding of CS on the surface of the MNPs and also the loading of Nyst in the nanocomposite. The Nyst drug loading was estimated using UV-Vis instrumentation and showing a 14.9% loading in the nanocomposite. The TEM size image of the MNPs, CS-MNP, and Nyst-CS-MNP was 13, 11, and 8 nm, respectively. The release profile of the Nyst drug from the nanocomposite followed a pseudo-second-order kinetic model. The antimicrobial activity of the as-synthesized Nyst and Nyst-CS-MNP nanocomposite was evaluated using an agar diffusion method and showed enhanced antifungal activity against Candida albicans. In this manner, this study introduces a novel nanocomposite that can decrease fungus activity on-demand for numerous medical applications.
    Matched MeSH terms: Delayed-Action Preparations/pharmacology; Delayed-Action Preparations/chemistry*
  10. Dua K, Rapalli VK, Shukla SD, Singhvi G, Shastri MD, Chellappan DK, et al.
    Biomed Pharmacother, 2018 Nov;107:1218-1229.
    PMID: 30257336 DOI: 10.1016/j.biopha.2018.08.101
    Tuberculosis (caused by Mycobacterium tuberculosis, Mtb) treatment involves multiple drug regimens for a prolonged period. However, the therapeutic benefit is often limited by poor patient compliance, subsequently leading to treatment failure and development of antibiotic resistance. Notably, oxidative stress is a crucial underlying factor that adversely influences the various treatment regimens in tuberculosis. Little information is available with advanced drug delivery systems that could be effectively utilized, in particular, for targeting the oxidative stress in tuberculosis. Thus, this presents an opportunity to review the utility of various available, controlled-release drug delivery systems (e.g., microspheres, liposomes, niosomes, solid lipid nanoparticles, dendrimers) that could be beneficial in tuberculosis treatments. This will help the biological and formulation scientists to pave a new path in formulating a treatment regimen for multi-drug resistant Mtb.
    Matched MeSH terms: Delayed-Action Preparations
  11. Badran MM, Alomrani AH, Harisa GI, Ashour AE, Kumar A, Yassin AE
    Biomed Pharmacother, 2018 Oct;106:1461-1468.
    PMID: 30119220 DOI: 10.1016/j.biopha.2018.07.102
    In the present study, docetaxel (DTX)-loaded poly(lactic-co-glycolic acid) (PLGA) and polycaprolactone (PCL) nanoparticles were successfully prepared and coated with chitosan (CS). The prepared nanoparticles (NPs) were evaluated for their particle size, zeta potential, particle morphology, drug entrapment efficiency (EE%), and in vitro drug release profile. The anticancer activity of DTX-loaded NPs was assessed in human HT29 colon cancer cell line utilizing MTT assay. The pharmacokinetics of DTX-loaded NPs was monitored in Wistar rats in comparison to DTX solution. The prepared NPs exhibited particle sizes in the range 177.1 ± 8.2-287.6 ± 14.3 nm. CS decorated NPs exhibited a significant increase in particle size and a switch of zeta potential from negative to positive. In addition, high EE% values were obtained for CS coated PCL NPs and PLGA NPs as 67.1 and 76.2%, respectively. Moreover, lowering the rate of DTX in vitro release was achieved within 48 h by using CS coated NPs. Furthermore, a tremendous increase in DTX cytotoxicity was observed by CS-decorated PLGA NPs compared to all other NPs including DTX-free-NPs and pure DTX. The in vivo study revealed significant enhancement in DTX bioavailability from CS-decorated PLGA NPs with more than 4-fold increase in AUC compared to DTX solution. In conclusion, CS-decorated PLGA NPs are a considerable DTX-delivery carrier with magnificent antitumor efficacy.
    Matched MeSH terms: Delayed-Action Preparations
  12. Zainuddin N, Ahmad I, Zulfakar MH, Kargarzadeh H, Ramli S
    Carbohydr Polym, 2021 Feb 15;254:117401.
    PMID: 33357890 DOI: 10.1016/j.carbpol.2020.117401
    Low bioavailability and poor water solubility have limited the utilization of curcumin in conventional dosing methods. As an alternative, microemulsions as drug carrier can improve curcumin delivery. A cetyltrimethylammonium bromide-nanocrystalline cellulose (CTAB-NCC)-based microemulsion was developed and its potential use as a topical delivery method for curcumin was investigated. The effect of microemulsion's particle size and its microstructure as well as the presence of the CTAB-NCC nanoparticle on the topical delivery of curcumin was studied. In vitro permeation studies showed higher penetration rate of curcumin from the oil-in-water type-microemulsions. The skin permeation profile of curcumin followed Higuchi release kinetics. Furthermore, use of the (CTAB-NCC)-based microemulsion enhanced curcumin accumulation in the skin and these system showed non cytotoxicity effect on L929 cell line. These results showed the potential of (CTAB-NCC)-based microemulsions as controlled-release topical systems for the delivery of curcumin and potentially other lipophilic drugs.
    Matched MeSH terms: Delayed-Action Preparations
  13. Md Ramli SH, Wong TW, Naharudin I, Bose A
    Carbohydr Polym, 2016 Nov 05;152:370-381.
    PMID: 27516284 DOI: 10.1016/j.carbpol.2016.07.021
    Conventional alginate pellets underwent rapid drug dissolution and failed to exert colon targeting unless subjected to complex coating. This study designed coatless delayed-release oral colon-specific alginate pellets for ulcerative colitis treatment. Alginate pellets, formulated with water-insoluble ethylcellulose and various calcium salts, were prepared using solvent-free melt pelletization technique which prevented reaction between processing materials during agglomeration and allowed reaction to initiate only in dissolution. Combination of acid-soluble calcium carbonate and highly water-soluble calcium acetate did not impart colon-specific characteristics to pellets due to pore formation in fragmented matrices. Combination of moderately water-soluble calcium phosphate and calcium acetate delayed drug release due to rapid alginate crosslinking by soluble calcium from acetate salt followed by sustaining alginate crosslinking by calcium phosphate. The use of 1:3 ethylcellulose-to-alginate enhanced the sustained drug release attribute. The ethylcellulose was able to maintain the pellet integrity without calcium acetate. Using hydrophobic prednisolone as therapeutic, hydrophilic alginate pellets formulated with hydrophobic ethylcellulose and moderately polar calcium phosphate exhibited colon-specific in vitro drug release and in vivo anti-inflammatory action. Coatless oral colon-specific alginate pellets can be designed through optimal formulation with melt pelletization as the processing technology.
    Matched MeSH terms: Delayed-Action Preparations
  14. Tsuji T, Ono T, Taguchi H, Leong KH, Hayashi Y, Kumada S, et al.
    Chem Pharm Bull (Tokyo), 2023;71(7):576-583.
    PMID: 37394606 DOI: 10.1248/cpb.c23-00214
    Time-domain NMR (TD-NMR) was used for continuous monitoring of the hydration behavior of hydrophilic matrix tablets. The model matrix tablets comprised high molecular weight polyethylene oxide (PEO), hydroxypropyl methylcellulose (HPMC), and polyethylene glycol (PEG). The model tablets were immersed in water. Their T2 relaxation curves were acquired by TD-NMR with solid-echo sequence. A curve-fitting analysis was conducted on the acquired T2 relaxation curves to identify the NMR signals corresponding to the nongelated core remaining in the samples. The amount of nongelated core was estimated from the NMR signal intensity. The estimated values were consistent with the experiment measurement values. Next, the model tablets immersed in water were monitored continuously using TD-NMR. The difference in hydration behaviors of the HPMC and PEO matrix tablets was then characterized fully. The nongelated core of the HPMC matrix tablets disappeared more slowly than that of the PEO matrix tablets. The behavior of HPMC was significantly affected by the PEG content in the tablets. It is suggested that the TD-NMR method has potential to be utilized to evaluate the gel layer properties, upon replacement of the immersion medium: purified (nondeuterated) water is replaced with heavy (deuterated) water. Finally, drug-containing matrix tablets were tested. Diltiazem hydrochloride (a highly water-soluble drug) was employed for this experiment. Reasonable in vitro drug dissolution profiles, which were in accordance with the results from TD-NMR experiments, were observed. We concluded that TD-NMR is a powerful tool to evaluate the hydration properties of hydrophilic matrix tablets.
    Matched MeSH terms: Delayed-Action Preparations
  15. Tong WY, Tan WN, Kamarul Azizi MA, Leong CR, El Azab IH, Lim JW, et al.
    Chemosphere, 2023 Oct;338:139492.
    PMID: 37451643 DOI: 10.1016/j.chemosphere.2023.139492
    Vancomycin is the last resort antibiotic for the treatment of severe bacterial keratitis. Its clinical application is limited due to its hydrophilicity and high molecular weight. To overcome this, this study aims to develop nanoparticles-laden contact lens for controlled ocular delivery of vancomycin. Polyvinyl alcohol (PVA) was used as encapsulant material. The nanoparticles had a negative surface charge and an average size of 147.6 nm. A satisfactory encapsulation efficiency (61.24%) was obtained. The release profile was observed to be slow and sustained, with a release rate of 1.29 μL mg-1 h-1 for 48 h. Five out of 6 test bacteria were suppressed by vancomycin nanoparticles-laden contact lens. Vancomycin is generally ineffective against Gram-negative bacteria and unable to pass through the outer membrane barrier. In this study, vancomycin inhibited Proteus mirabilis and Pseudomonas aeruginosa. Nano-encapsulation enables vancomycin to penetrate the Gram-negative cell wall and further destroy the bacterial cells. On Hohenstein challenge test, all test bacteria exhibited significant reduction in growth when exposed to vancomycin nanoparticles-laden contact lens. This study created an effective and long-lasting vancomycin delivery system via silicone hydrogel contact lenses, by using PVA as encapsulant. The antibiotic efficacy and vancomycin release should be further studied using ocular in vivo models.
    Matched MeSH terms: Delayed-Action Preparations/pharmacology
  16. Wilairat P, Kengkla K, Thayawiwat C, Phlaisaithong P, Somboonmee S, Saokaew S
    Chron Respir Dis, 2018 12 19;16:1479973118815694.
    PMID: 30558448 DOI: 10.1177/1479973118815694
    To examine clinical outcomes of theophylline use in patients with chronic obstructive pulmonary disease (COPD) receiving inhaled corticosteroids (ICS) and long-acting beta-2 agonists (LABA). Electronic data from five hospitals located in Northern Thailand between January 2011 and December 2015 were retrospectively collected. Propensity score (PS) matching (2:1 ratio) technique was used to minimize confounding factors. The primary outcome was overall exacerbations. Secondary outcomes were exacerbation not leading to hospital admission, hospitalization for exacerbation, hospitalization for pneumonia, and all-cause hospitalizations. Cox's proportional hazards models were used to estimate adjusted hazard ratio (aHR) and 95% confidence interval (CI). After PS matching, of 711 patients with COPD (mean age: 70.1 years; 74.4% male; 60.8% severe airflow obstruction), 474 theophylline users and 237 non-theophylline users were included. Mean follow-up time was 2.26 years. Theophylline significantly increased the risk of overall exacerbation (aHR: 1.48, 95% CI: 1.11-1.96; p = 0.008) and exacerbation not leading to hospital admission (aHR: 1.47, 95% CI: 1.06-2.03; p = 0.020). Theophylline use did not significantly increase the risk of hospitalization for exacerbation (aHR: 1.11, 95% CI: 0.79-1.58; p = 0.548), hospitalization for pneumonia (aHR: 1.28, 95% CI: 0.89-1.84; p = 0.185), and all-cause hospitalizations (aHR: 1.03, 95% CI: 0.80-1.33; p = 0.795). Theophylline use as add-on therapy to ICS and LABA might be associated with an increased risk for overall exacerbation in patients with COPD. A large-scale prospective study of theophylline use investigating both safety and efficacy is warranted.
    Matched MeSH terms: Delayed-Action Preparations/administration & dosage
  17. Duong JK, Kumar SS, Kirkpatrick CM, Greenup LC, Arora M, Lee TC, et al.
    Clin Pharmacokinet, 2013 May;52(5):373-84.
    PMID: 23475568 DOI: 10.1007/s40262-013-0046-9
    Metformin is contraindicated in patients with renal impairment; however, there is poor adherence to current dosing guidelines. In addition, the pharmacokinetics of metformin in patients with significant renal impairment are not well described. The aims of this study were to investigate factors influencing the pharmacokinetic variability, including variant transporters, between healthy subjects and patients with type 2 diabetes mellitus (T2DM) and to simulate doses of metformin at varying stages of renal function.
    Matched MeSH terms: Delayed-Action Preparations
  18. Othman R, Vladisavljević GT, Thomas NL, Nagy ZK
    Colloids Surf B Biointerfaces, 2016 May 01;141:187-195.
    PMID: 26852102 DOI: 10.1016/j.colsurfb.2016.01.042
    Paracetamol (PCM)-loaded composite nanoparticles (NPs) composed of a biodegradable poly(d,l-lactide) (PLA) polymer matrix filled with organically modified montmorillonite (MMT) nanoparticles were fabricated by antisolvent nanoprecipitation in a microfluidic co-flow glass capillary device. The incorporation of MMT in the polymer improved both the drug encapsulation efficiency and the drug loading, and extended the rate of drug release in simulated intestinal fluid (pH 7.4). The particle size increased on increasing both the drug loading and the concentration of MMT in the polymer matrix, and decreased on increasing the aqueous to organic flow rate ratio. The drug encapsulation efficiency in the NPs was higher at higher aqueous to organic flow rate ratio due to faster formation of the NPs. The PCM-loaded PLA NPs containing 2 wt% MMT in PLA prepared at an aqueous to organic flow rate ratio of 10 with an orifice size of 200 μm exhibited a spherical shape with a mean size of 296 nm, a drug encapsulation efficiency of 38.5% and a drug loading of 5.4%. The encapsulation of MMT and PCM in the NPs was confirmed by transmission electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, differential scanning calorimetry, thermogravimetric analysis and attenuated total reflection-Fourier transform infrared spectroscopy.
    Matched MeSH terms: Delayed-Action Preparations/pharmacokinetics; Delayed-Action Preparations/chemistry
  19. Manickam B, Sreedharan R, Elumalai M
    Curr Drug Deliv, 2014;11(1):139-45.
    PMID: 24041312
    One of the popular approaches in controlling drug delivery from the polymeric carriers is suitably achieved by the inclusion of crosslinking agents into the formulations at different concentrations. Nevertheless, addition of the chemical crosslinkers such as glutaraldehyde, formaldehyde etc, used in the drug delivery systems causes very serious cytotoxic reactions. These chemical crosslinking agents did not offer any significant advantageous effects when compared to the natural crosslinking agents for instance genipin, which is quite less toxic, biocompatible and offers very stable crosslinked products. Based on the earlier reports the safety of this particular natural crosslinker is very well established, since it has been widely used as a Chinese traditional medicine for long-time, isolated from fruits of the plant Gardenia jasminoides Ellis. This concise article largely portrayed the value of this unique natural crosslinker, utilized in controlling the drug delivery from the various formulations.
    Matched MeSH terms: Delayed-Action Preparations
  20. Ahmad A, Othman I, Md Zain AZ, Chowdhury EH
    Curr Drug Deliv, 2015;12(2):210-22.
    PMID: 22452407
    Diabetes mellitus is a chronic disease accompanied by a multitude of problems worldwide with subcutaneously administered insulin being the most common therapy currently. Controlledrelease insulin is assumed to be of high importance for long-term glycaemic control by reducing the number of daily injections. Long-acting insulin also mimics the basal insulin levels in normal individuals that may be lacking in diabetic patients. Nanoparticles of carbonate apatite as established for efficient intracellular transport of DNA and siRNA have the potential to be used for sustained release of insulin as responsive nano-carriers. The flexibility in the synthesis of the particles over a wide range of pHs with eventual adjustment of pH-dependent particle dissolution and the manageable variability of particle-integrity by incorporating selective ions into the apatite structure are the promising features that could help in the development of sustained release formulations for insulin. In particular strontium-incorporated carbonate apatite particles were formulated and compared with those of unsubstituted apatite in the context of insulin binding and subsequent release kinetics in DMEM, simulated buffer and finally human blood over a period of 20 hours. Clearly, the former demonstated to have a stronger electrostatic affinity towards the acidic insulin molecules and facilitate to some extent sustained release of insulin by preventing the initial burst effect at physiological pH in comparison with the latter. Thus, our findings suggest that optimization of the carbonate apatite particle composition and structure would serve to design an ideal insulin nano-carrier with a controlled release profile.
    Matched MeSH terms: Delayed-Action Preparations/chemical synthesis; Delayed-Action Preparations/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links