Displaying publications 1 - 20 of 40 in total

Abstract:
Sort:
  1. Raihan R, Akbar SMF, Al Mahtab M, Khan MSI, Tabassum S, Tee KK, et al.
    Viral Immunol, 2020 09;33(7):530-534.
    PMID: 32513066 DOI: 10.1089/vim.2019.0198
    Hepatitis B virus (HBV) is a noncytopathic virus and billions of HBV-infected patients live uneventful lives and do not suffer from notable liver damage. However, HBV also causes progressive liver diseases characterized by hepatic inflammation, hepatic fibrosis, and liver cancer in millions of HBV-infected patients. The goal of this study was to evaluate the role of mutant HBV in HBV pathogenesis. In a cohort of 360 chronic HBV-infected patients, mutations at T1762/A1764 of HBV genome were detected in most of the patients with HBV-induced liver cirrhosis and hepatocellular carcinoma. To explore if mutations at T1762/A1764 of HBV genome has any role in progressive liver disease, peripheral blood mononuclear cells (PBMCs) and antigen-presenting dendritic cells (DCs) were isolated from five chronic hepatitis B (CHB) patients with mutations at T1762/A1764 and five comparable patients of CHB without mutations at T1762/A1764. DCs were pulsed with hepatitis B surface antigen (HBsAg). The levels of cytokines produced by PBMCs and DCs as well as nitrite production by DCs were evaluated. Significantly higher levels of interleukin-12, tumor necrosis factor-alpha, interferon-gamma, and transforming growth factor-beta were detected in cultures of PBMCs, DCs, and HBsAg-pulsed DCs from CHB patients with mutations at T1762/A1764 compared with those without mutations (p 
    Matched MeSH terms: Dendritic Cells/immunology
  2. Mohamad A, Zamri-Saad M, Amal MNA, Al-Saari N, Monir MS, Chin YK, et al.
    Vaccines (Basel), 2021 Apr 10;9(4).
    PMID: 33920311 DOI: 10.3390/vaccines9040368
    Multiple infections of several bacterial species are often observed under natural farm conditions. The infections would cause a much more significant loss compared to a single infectious agent. Vaccination is an essential strategy to prevent diseases in aquaculture, and oral vaccination has been proposed as a promising technique since it requires no handling of the fish and is easy to perform. This research attempts to develop and evaluate a potential feed-based polyvalent vaccine that can be used to treat multiple infections by Vibrios spp., Streptococcus agalactiae, and Aeromonas hydrophila, simultaneously. The oral polyvalent vaccine was prepared by mixing formalin-killed vaccine of V. harveyi, S. agalactiae, and A. hydrophila strains with commercial feed pellet, and palm oil as an adjuvant was added to improve their antigenicity. Thereafter, a vaccinated feed pellet was tested for feed quality analysis in terms of feed stability in water, proximate nutrient analysis, and palatability, safety, and growth performance using Asian seabass, Lates calcarifer as a fish host model. For immune response analysis, a total of 300 Asian seabass juveniles (15.8 ± 2.6 g) were divided into two groups in triplicate. Fish of group 1 were not vaccinated, while group 2 was vaccinated with the feed-based polyvalent vaccine. Vaccinations were carried out on days 0 and 14 with oral administration of the feed containing the bacterin at 5% body weight. Samples of serum for antibody and lysozyme study and the spleen and gut for gene expression analysis were collected at 7-day intervals for 6 weeks. Its efficacy in protecting fish was evaluated in aquarium challenge. Following vaccination by the polyvalent feed-based vaccine, IgM antibody levels showed a significant (p < 0.05) increase in serum against Vibrio harveyi, Aeromonas hydrophila, and Streptococcus agalactiae and reached the peak at week 3, 5, and 6, respectively. The high-stimulated antibody in the serum remained significantly higher than the control (p < 0.05) at the end of the 6 weeks vaccination trial. Not only that, but the serum lysozyme level was also increased significantly at week 4 (p < 0.05) as compared to the control treatment. The immune-related gene, dendritic cells, C3, Chemokine ligand 4 (CCL4), and major histocompatibility complex class I (MHC I) showed significantly higher expression (p < 0.05) after the fish were vaccinated with the oral vaccine. In the aquarium challenge, the vaccine provided a relative percentage survival of 75 ± 7.1%, 80 ± 0.0%, and 80 ± 0.0% after challenge with V. harveyi, A. hydrophila, and S. agalactiae, respectively. Combining our results demonstrate that the feed-based polyvalent vaccine could elicit significant innate and adaptive immunological responses, and this offers an opportunity for a comprehensive immunization against vibriosis, streptococcosis, and motile aeromonad septicemia in Asian seabass, Lates calcarifer. Nevertheless, this newly developed feed-based polyvalent vaccination can be a promising technique for effective and large-scale fish immunization in the aquaculture industry shortly.
    Matched MeSH terms: Dendritic Cells
  3. Foong HBB, Chong M, Taylor EM, Carlson JA, Petrella T
    Med J Malaysia, 2013 Apr;68(2):161-3.
    PMID: 23629565 MyJurnal
    Blastic plasmacytoid dendritic cell neoplasm (a.k.a. NK cell lymphoma, CD4+CD56+ haematodermic neoplasm) is a rare aggressive tumour that arises from plasmacytoid dendritic cell precursors. We report the first case from Malaysia of a 79-year-old Chinese woman who presented with purpuric plaques and nodules produced by pleomorphic CD4+, CD56+, CD68+, CD123+ and CD303+, but CD2APmononuclear cell infiltrates. Leukemic dissemination occurred and she succumbed to disease without treatment 4 weeks after diagnosis and 9 months after onset of cutaneous disease.
    Matched MeSH terms: Dendritic Cells
  4. Wong Y, Abdul-Rahman F, Samsudin AT, Masir N
    Malays J Pathol, 2014 Aug;36(2):125-9.
    PMID: 25194535 MyJurnal
    Follicular lymphoma is characterised by the t(14;18)(q32;q21) chromosomal translocation causing BCL2 protein overexpression. A proportion of follicular lymphomas do not carry the t(14;18) translocation and lacked BCL2 protein expression. We describe a case of a BCL2 protein- and t(14;18)-negative follicular lymphoma that caused diagnostic difficulty. The usefulness of several immunomarkers including Ki67, CD79a and CD21 in aiding the diagnosis is discussed. The patient is a 51-year-old male who presented with gradually enlarging lymphadenopathy. Histopathological examination of the lymph node showed complete architectural effacement by neoplastic follicles containing expanded CD21-positive follicular dendritic cell meshwork. The neoplastic cells expressed pan-B cell markers (CD20, CD79a) and germinal centre marker (BCL6) but not BCL2 and CD10. Of interest are the staining patterns of Ki67 and CD79a. We observed that the Ki67- positive proliferating cells were evenly distributed within the neoplastic follicles without zonation. In addition, CD79a was homogeneously strong within the neoplastic follicles. These staining patterns were distinctly different from that observed in reactive lymphoid follicles. Fluorescent insitu hybridisation (FISH) analysis however showed absence of BCL2 gene rearrangement. Despite the atypical immunophenotype and lack of BCL2 gene rearrangement, the diagnosis of follicular lymphoma was made based on careful observation of the morphology as well as immunoarchitecture of the Ki67, CD79a and CD21 markers.
    Matched MeSH terms: Dendritic Cells/metabolism; Dendritic Cells/pathology*
  5. Tan YF, Leong CF, Cheong SK
    Malays J Pathol, 2010 Dec;32(2):97-102.
    PMID: 21329180 MyJurnal
    Dendritic cells (DCs) are professional antigen presenting cells of the immune system. They can be generated in vitro from peripheral blood monocytes supplemented with GM-CSF, IL-4 and TNF alpha. During induction, DCs will increase in size and acquire multiple cytoplasmic projections when compared to their precursor cells such as monocytes or haematopoietic stem cells which are usually round or spherical. Morphology of DCs can be visualized by conventional light microscopy after staining or phase-contrast inverted microscopy or confocal laser scanning microscopy. In this report, we described the morphological appearances of DCs captured using the above-mentioned techniques. We found that confocal laser scanning microscopy yielded DCs images with greater details but the operating cost for such a technique is high. On the other hand, the images obtained through light microscopy after appropriate staining or phase contrast microscopy were acceptable for identification purpose. Besides, these equipments are readily available in most laboratories and the cost of operation is affordable. Nevertheless, morphological identification is just one of the methods to characterise DCs. Other methods such as phenotypic expression markers and mixed leukocyte reactions are additional tools used in the characterisation of DCs.
    Matched MeSH terms: Dendritic Cells/cytology*
  6. Hussin HN, Zulkifli FN, Phang KS, Cheong SK
    Malays J Pathol, 2009 Dec;31(2):105-12.
    PMID: 20514853 MyJurnal
    Dendritic cells (DC) are specialized antigen presenting cells (APC) that have important roles in host defenses and in generating anti-tumour immune response. Altered frequency and maturation of DC have been reported in malignant tumours. We studied the distribution and maturation status of DC by immunohistochemistry, on the formalin-fixed, paraffin-embedded lymph node tissues of 32 histologically diagnosed lymphomas and 40 inflammatory conditions that were retrieved from the Department of Pathology, UKM Medical Centre, Kuala Lumpur. Our study showed a significant reduction in the total DC counts in the lymphoma tissues compared to the inflammatory conditions. The mature and immature DC counts were both significantly reduced (p = 0.008 and 0.001 respectively), although a greater reduction was observed in mature DC numbers. We also observed compartmentalization of DC where the immature DC were seen within the tumour tissues and the mature DC were more in peri-tumoural areas. Our findings were similar to other reports, suggesting that reduced numbers of DC appears to be a factor contributing to lack of tumour surveillance in these cases.
    Matched MeSH terms: Dendritic Cells/immunology; Dendritic Cells/metabolism; Dendritic Cells/pathology*
  7. Tan YF, Sim GC, Habsah A, Leong CF, Cheong SK
    Malays J Pathol, 2008 Dec;30(2):73-9.
    PMID: 19291915 MyJurnal
    Dendritic cells (DC) are professional antigen presenting cells of the immune system. Through the use of DC vaccines (DC after exposure to tumour antigens), cryopreserved in single-use aliquots, an attractive and novel immunotherapeutic strategy is available as an option for treatment. In this paper we describe an in vitro attempt to scale-up production of clinical-grade DC vaccines from leukemic cells. Blast cells of two relapsed AML patients were harvested for DC generation in serum-free culture medium containing clinical-grade cytokines GM-CSF, IL-4 and TNF-alpha. Cells from patient 1 were cultured in a bag and those from patient 2 were cultured in a flask. The numbers of seeding cells were 2.24 x 10(8) and 0.8 x 10(8), respectively. DC yields were 10 x 10(6) and 29.8 x 10(6) cells, giving a conversion rate of 4.7% and 37%, respectively. These DC vaccines were then cryopreserved in approximately one million cells per vial with 20% fresh frozen group AB plasma and 10% DMSO. At 12 months and 21 months post cryopreservation, these DC vaccines were thawed, and their sterility, viability, phenotype and functionality were studied. DC vaccines remained sterile up to 21 months of storage. Viability of the cryopreserved DC in the culture bag and flask was found to be 50% and 70% at 12 months post cryopreservation respectively; and 48% and 67% at 21 months post cryopreservation respectively. These DC vaccines exhibited mature DC surface phenotypic markers of CD83, CD86 and HLA-DR, and negative for haemopoietic markers. Mixed lymphocyte reaction (MLR) study showed functional DC vaccines. These experiments demonstrated that it is possible to produce clinical-grade DC vaccines in vitro from blast cells of leukemic patients, which could be cryopreserved up to 21 months for use if repeated vaccinations are required in the course of therapy.
    Matched MeSH terms: Dendritic Cells/cytology; Dendritic Cells/immunology*
  8. Fadilah SA, Cheong SK
    Malays J Pathol, 2007 Jun;29(1):1-18.
    PMID: 19108040 MyJurnal
    Owing to the importance of dendritic cells (DC) in the induction and control of immunity, an understanding of their biology is central to the development of potent immunotherapies for cancer, chronic infections, autoimmune disease, and induction of transplantation tolerance. This review surveys the heterogeneity of DC with regards to their phenotype and developmental origin, and how they initiate, modify and regulate the immune response, with emphasis on their maturation, migration, antigen-presentation and interaction with T cells and other immune cells. Much of this knowledge is obtained through research on murine DC. Research on human DC has been hampered by limitations associated with in vitro assays and limited access to human tissues. New approaches on human DC research are required in order to develop novel strategies for the treatment of microbial infections, the control of graft rejection, and the improvement of DC-based immunotherapeutic protocols for autoimmunity, allergy, and cancer.
    Matched MeSH terms: Dendritic Cells/cytology; Dendritic Cells/immunology*
  9. Lim MN, Leong CF, Cheong SK, Seow HF
    Malays J Pathol, 2003 Dec;25(2):107-12.
    PMID: 16196366
    Dendritic cells (DC) are efficient and potent antigen-presenting cells. Pilot clinical trials indicated that DC loaded with tumour antigen could induce tumour-specific immune responses in various cancers including B-cell lymphoma, melanoma and prostate cancer. Owing to extensively low number of DC in the blood circulation, a variety of sources have been used to generate DC including monocytes, CD34+ stem cells and even with leukaemic blast cells. We demonstrate here a simple method to generate DC from acute myeloid leukaemia (AML) cells and monocytes from healthy donor or remission samples. AML cells or monocytes were cultured in RPMI 1640 media supplemented with foetal bovine serum or autologous serum where possible and different combinations of cytokines GM-CSF, IL-4 and TNF-alpha. The generated DC were evaluated for their morphology by phase contrast microscopy and May Grunwald Giemsa staining. Viability of cells was determined by trypan blue dye exclusion. Percentage of yields and immunophenotypes were carried out by flow cytometry. We found that cultured AML cells and monocytes developed morphological and immuno-phenotypic characteristics of DC. Monocytes are better than AML blast in generating DC and serve as a ready source for dendritic cell vaccine development.
    Matched MeSH terms: Dendritic Cells/cytology; Dendritic Cells/drug effects; Dendritic Cells/immunology*
  10. Catapano M, Vergnano M, Romano M, Mahil SK, Choon SE, Burden AD, et al.
    J Invest Dermatol, 2020 04;140(4):816-826.e3.
    PMID: 31539532 DOI: 10.1016/j.jid.2019.08.444
    Psoriasis is an immune-mediated skin disorder associated with severe systemic comorbidities. Whereas IL-36 is a key disease driver, the pathogenic role of this cytokine has mainly been investigated in skin. Thus, its effects on systemic immunity and extracutaneous disease manifestations remain poorly understood. To address this issue, we investigated the consequences of excessive IL-36 activity in circulating immune cells. We initially focused our attention on generalized pustular psoriasis (GPP), a clinical variant associated with pervasive upregulation of IL-36 signaling. By undertaking blood and neutrophil RNA sequencing, we demonstrated that affected individuals display a prominent IFN-I signature, which correlates with abnormal IL-36 activity. We then validated the association between IL-36 deregulation and IFN-I over-expression in patients with severe psoriasis vulgaris (PV). We also found that the activation of IFN-I genes was associated with extracutaneous morbidity, in both GPP and PV. Finally, we undertook mechanistic experiments, demonstrating that IL-36 acts directly on plasmacytoid dendritic cells, where it potentiates toll-like receptor (TLR)-9 activation and IFN-α production. This effect was mediated by the upregulation of PLSCR1, a phospholipid scramblase mediating endosomal TLR-9 translocation. These findings identify an IL-36/ IFN-I axis contributing to extracutaneous inflammation in psoriasis.
    Matched MeSH terms: Dendritic Cells/immunology*; Dendritic Cells/metabolism
  11. Fadilah SA, Vuckovic S, Khalil D, Hart DN
    Stem Cells Dev, 2007 Oct;16(5):849-55.
    PMID: 17999605
    Methods that allow expansion of myeloid dendritic cells (MDCs) from CD34(+) cells are potentially important for boosting anti-leukemic responses after cord blood (CB) hematopoietic stem cell transplantation (HSCT). We showed that the combination of early-acting cytokines FLT3-ligand (FL), stem cell factor (SCF), interleukin (IL)-3, and IL-6 supported the generation of CD11c(+)CD16() CD1a()/c() MDCs from CB CD34(+) cells or CB myeloid precursors. Early-acting cytokine-derived MDCs were maintained within the myeloid CD33(+)CD14()CD15() precursors with a mean of 4 x 10(6) cells generated from 1-4 x 10(4) CB CD34(+) cells or myeloid precursors after 2 weeks. After 8-12 days of culture the MDCs expressed higher levels of HLA-DR antigen but lower levels of CD40 and CD86 antigen, compared to adult blood MDCs. At this stage of differentiation, the early-acting cytokine-derived MDCs had acquired the ability to induce greater allogeneic T cell proliferation than monocytes or granulocytes derived from same culture. Early-acting cytokine-derived MDCs exposed to the cytokine cocktail (CC) comprising IL-1beta, IL-6, tumor necrosis factor (TNF)-alpha, and prostaglandin E (PGE)-2, upregulated the surface co-stimulatory molecules CD40 and CD86 and enhanced allogeneic T cell proliferation, as is characteristic of MDCs maturation. The reliable production of MDCs from CB CD34(+) cells provides a novel way to study their lineage commitment pathway(s) and also a potential means of enriching CB with MDCs to improve prospects for DC immunotherapy following CB HSCT.
    Matched MeSH terms: Dendritic Cells/cytology*; Dendritic Cells/drug effects
  12. Loughland JR, Minigo G, Sarovich DS, Field M, Tipping PE, Montes de Oca M, et al.
    Sci Rep, 2017 06 01;7(1):2596.
    PMID: 28572564 DOI: 10.1038/s41598-017-02096-2
    Plasmacytoid dendritic cells (pDC) are activators of innate and adaptive immune responses that express HLA-DR, toll-like receptor (TLR) 7, TLR9 and produce type I interferons. The role of human pDC in malaria remains poorly characterised. pDC activation and cytokine production were assessed in 59 malaria-naive volunteers during experimental infection with 150 or 1,800 P. falciparum-parasitized red blood cells. Using RNA sequencing, longitudinal changes in pDC gene expression were examined in five adults before and at peak-infection. pDC responsiveness to TLR7 and TLR9 stimulation was assessed in-vitro. Circulating pDC remained transcriptionally stable with gene expression altered for 8 genes (FDR 
    Matched MeSH terms: Dendritic Cells/immunology*; Dendritic Cells/parasitology
  13. Sinon S, Rich A, Firth N, Seymour G
    Sains Malaysiana, 2013;42:65-71.
    Cell mediated immunity is currently thought to be involved in the pathogenesis of oral mucosal lichen planus (OMLP). However, literature reveals there is no large scale data of immunohistochemistry (IHC) study on these immune cell populations. The aim of this study was to assess and compare immune cell surface identification markers CD3, CD4, CD8, CD19 and CD83 between the OMLP (n=40) and non-specific inflammatory lesions (as control group) (n=10) qualitatively and quantitatively. Kruskal-Wallis and Mann Whitney U tests have been used to make comparison between the test and control group, p values of less than 0.05 was considered to be statistically significant. T cell surface markers (CD3+, CD4+ and CD8+), B cells (CD19+) and mature dendritic cells (CD83+) showed intense immunostaining in OMLP tissues with a significantly higher expression of positive cells than in the control group (p<0.05). CD3, CD4 and CD8+ve T cells were the predominant inflammatory cell type in OMLP rather than CD19+ B cells, supporting the role of Th1 cells in the pathogenesis of OMLP. CD83+ mature dendritic cells were present in the least number and were mostly localized to areas where there were aggregates of lymphocyte. There was a positive correlation and direct relationship between T and B lymphocyte subsets whereby as one subset increased, the other follows.
    Matched MeSH terms: Dendritic Cells
  14. Abdul Hafid SR, Chakravarthi S, Nesaretnam K, Radhakrishnan AK
    PLoS One, 2013;8(9):e74753.
    PMID: 24069344 DOI: 10.1371/journal.pone.0074753
    Tocotrienol-rich fraction (TRF) from palm oil is reported to possess anti-cancer and immune-enhancing effects. In this study, TRF supplementation was used as an adjuvant to enhance the anti-cancer effects of dendritic cells (DC)-based cancer vaccine in a syngeneic mouse model of breast cancer. Female BALB/c mice were inoculated with 4T1 cells in mammary pad to induce tumor. When the tumor was palpable, the mice in the experimental groups were injected subcutaneously with DC-pulsed with tumor lysate (TL) from 4T1 cells (DC+TL) once a week for three weeks and fed daily with 1 mg TRF or vehicle. Control mice received unpulsed DC and were fed with vehicle. The combined therapy of using DC+TL injections and TRF supplementation (DC+TL+TRF) inhibited (p<0.05) tumor growth and metastasis. Splenocytes from the DC+TL+TRF group cultured with mitomycin-C (MMC)-treated 4T1 cells produced higher (p<0.05) levels of IFN-γ and IL-12. The cytotoxic T-lymphocyte (CTL) assay also showed enhanced tumor-specific killing (p<0.05) by CD8(+) T-lymphocytes isolated from mice in the DC+TL+TRF group. This study shows that TRF has the potential to be used as an adjuvant to enhance effectiveness of DC-based vaccines.
    Matched MeSH terms: Dendritic Cells/drug effects*; Dendritic Cells/immunology*; Dendritic Cells/metabolism
  15. Chai SJ, Yap YY, Foo YC, Yap LF, Ponniah S, Teo SH, et al.
    PLoS One, 2015;10(11):e0130464.
    PMID: 26536470 DOI: 10.1371/journal.pone.0130464
    Nasopharyngeal carcinoma (NPC) is highly prevalent in South East Asia and China. The poor outcome is due to late presentation, recurrence, distant metastasis and limited therapeutic options. For improved treatment outcome, immunotherapeutic approaches focusing on dendritic and autologous cytotoxic T-cell based therapies have been developed, but cost and infrastructure remain barriers for implementing these in low-resource settings. As our prior observations had found that four-jointed box 1 (FJX1), a tumor antigen, is overexpressed in NPCs, we investigated if short 9-20 amino acid sequence specific peptides matching to FJX1 requiring only intramuscular immunization to train host immune systems would be a better treatment option for this disease. Thus, we designed 8 FJX1-specific peptides and implemented an assay system to first, assess the binding of these peptides to HLA-A2 molecules on T2 cells. After, ELISPOT assays were used to determine the peptides immunogenicity and ability to induce potential cytotoxicity activity towards cancer cells. Also, T-cell proliferation assay was used to evaluate the potential of MHC class II peptides to stimulate the expansion of isolated T-cells. Our results demonstrate that these peptides are immunogenic and peptide stimulated T-cells were able to induce peptide-specific cytolytic activity specifically against FJX1-expressing cancer cells. In addition, we demonstrated that the MHC class II peptides were capable of inducing T-cell proliferation. Our results suggest that these peptides are capable of inducing specific cytotoxic cytokines secretion against FJX1-expressing cancer cells and serve as a potential vaccine-based therapy for NPC patients.
    Matched MeSH terms: Dendritic Cells/cytology; Dendritic Cells/immunology; Dendritic Cells/metabolism
  16. Jambari NN, Liddell S, Martinez-Pomares L, Alcocer MJC
    PLoS One, 2021;16(4):e0249876.
    PMID: 33914740 DOI: 10.1371/journal.pone.0249876
    Ber e 1, a major Brazil nut allergen, has been successfully produced in the yeast Pichia pastoris expression system as homogenous recombinant Ber e 1 (rBer e 1) with similar physicochemical properties and identical immunoreactivity to its native counterpart, nBer e 1. However, O-linked glycans was detected on the P.pastoris-derived rBer e 1, which is not naturally present in nBer e 1, and may contribute to the allergic sensitisation. In this study, we addressed the glycosylation differences between P. pastoris-derived recombinant Ber e 1 and its native counterparts. We also determined whether this fungal glycosylation could affect the antigenicity and immunogenicity of the rBer e 1 by using dendritic cells (DC) as an immune cell model due to their role in modulating the immune response. We identified that the glycosylation occurs at Ser96, Ser101 and Ser110 on the large chain and Ser19 on the small polypeptide chain of rBer e 1 only. The glycosylation on rBer e 1 was shown to elicit varying degree of antigenicity by binding to different combination of human leukocyte antigens (HLA) at different frequencies compared to nBer e 1 when tested using human DC-T cell assay. However, both forms of Ber e 1 are weak immunogens based from their low response indexes (RI). Glycans present on rBer e 1 were shown to increase the efficiency of the protein recognition and internalization by murine bone marrow-derived dendritic cells (bmDC) via C-type lectin receptors, particularly the mannose receptor (MR), compared to the non-glycosylated nBer e 1 and SFA8, a weak allergenic 2S albumin protein from sunflower seed. Binding of glycosylated rBer e 1 to MR alone was found to not induce the production of IL-10 that modulates bmDC to polarise Th2 cell response by suppressing IL-12 production and DC maturation. Our findings suggest that the O-linked glycosylation by P. pastoris has a small but measurable effect on the in vitro antigenicity of the rBer e 1 compared to its non-glycosylated counterpart, nBer e 1, and thus may influence its applications in diagnostics and immunotherapy.
    Matched MeSH terms: Dendritic Cells/immunology; Dendritic Cells/metabolism*
  17. Ahmad S, Zamry AA, Tan HT, Wong KK, Lim J, Mohamud R
    Mol Immunol, 2017 11;91:123-133.
    PMID: 28898717 DOI: 10.1016/j.molimm.2017.09.001
    Gold nanoparticles (NPs) have been proposed as a highly potential tool in immunotherapies due to its advantageous properties including customizable size and shapes, surface functionality and biocompatibility. Dendritic cells (DCs), the sentinels of immune response, have been of interest to be manipulated by using gold NPs for targeted delivery of immunotherapeutic agent. Researches done especially in human DCs showed a variation of gold NPs effects on cellular uptake and internalization, DC maturation and subsequent T cells priming as well as cytotoxicity. In this review, we describe the synthesis and physiochemical properties of gold NPs as well as the importance of gold NPs in immunotherapies through their actions on human DCs.
    Matched MeSH terms: Dendritic Cells/immunology*
  18. Pooi, Pooi Leong, Heng, Fong Seow
    MyJurnal
    Cancer immunotherapy is a form of treatment protocol for cancer patients that has been studied intensively over the last two decades. The undesirable side effects during the course of conventional treatment has lead to the development of immunotherapy as an alternative treatment modality. This approach encompasses the use of three different strategies with various immunotherapeutic modalities including (i) cytokines and monoclonal antibodies; (ii) activation of antigen presentation cells (APC) by using antigen-specific peptides or sources of antigens such as tumour lysate; and finally (iii) adoptive transfer of ex vivo activated autologous cytotoxic T-cells. Due to specific-targeting by antigen-specific monoclonal antibodies, dendritic cells and activated CD8+ T-cells, immunotherapy can eliminate tumour
    cells efficiently but the normal tissues are unaffected. Despite years of investigation, the outcome of immunotherapy-based clinical trials are inconsistent with very low response rates from patients. Several mechanisms have been proposed to contribute to this failure including the presence of regulatory T-cells (Treg), immunomodulatory cytokines, and aberrant gene expression in tumour cells. This review summarises information from about 140 articles and review papers. In addition, it also provides an update on recent trends in combinational immunotherapy with conventional therapy and encouraging results have been obtained. Reevaluation of previous studies is necessary to fine-tune the design and approach of immunotherapy to ensure better treatment outcomes.
    Matched MeSH terms: Dendritic Cells
  19. Loughland JR, Woodberry T, Oyong D, Piera KA, Amante FH, Barber BE, et al.
    Malar J, 2021 Feb 16;20(1):97.
    PMID: 33593383 DOI: 10.1186/s12936-021-03642-0
    BACKGROUND: Plasmodium falciparum malaria increases plasma levels of the cytokine Fms-like tyrosine kinase 3 ligand (Flt3L), a haematopoietic factor associated with dendritic cell (DC) expansion. It is unknown if the zoonotic parasite Plasmodium knowlesi impacts Flt3L or DC in human malaria. This study investigated circulating DC and Flt3L associations in adult malaria and in submicroscopic experimental infection.

    METHODS: Plasma Flt3L concentration and blood CD141+ DC, CD1c+ DC and plasmacytoid DC (pDC) numbers were assessed in (i) volunteers experimentally infected with P. falciparum and in Malaysian patients with uncomplicated (ii) P. falciparum or (iii) P. knowlesi malaria.

    RESULTS: Plasmodium knowlesi caused a decline in all circulating DC subsets in adults with malaria. Plasma Flt3L was elevated in acute P. falciparum and P. knowlesi malaria with no increase in a subclinical experimental infection. Circulating CD141+ DCs, CD1c+ DCs and pDCs declined in all adults tested, for the first time extending the finding of DC subset decline in acute malaria to the zoonotic parasite P. knowlesi.

    CONCLUSIONS: In adults, submicroscopic Plasmodium infection causes no change in plasma Flt3L but does reduce circulating DCs. Plasma Flt3L concentrations increase in acute malaria, yet this increase is insufficient to restore or expand circulating CD141+ DCs, CD1c+ DCs or pDCs. These data imply that haematopoietic factors, yet to be identified and not Flt3L, involved in the sensing/maintenance of circulating DC are impacted by malaria and a submicroscopic infection. The zoonotic P. knowlesi is similar to other Plasmodium spp in compromising DC in adult malaria.

    Matched MeSH terms: Dendritic Cells/metabolism*
  20. Ellegård R, Crisci E, Andersson J, Shankar EM, Nyström S, Hinkula J, et al.
    J Immunol, 2015 Aug 15;195(4):1698-704.
    PMID: 26157174 DOI: 10.4049/jimmunol.1500618
    Mucosa resident dendritic cells (DCs) may represent one of the first immune cells that HIV-1 encounters during sexual transmission. The virions in body fluids can be opsonized with complement factors because of HIV-mediated triggering of the complement cascade, and this appears to influence numerous aspects of the immune defense targeting the virus. One key attribute of host defense is the ability to attract immune cells to the site of infection. In this study, we investigated whether the opsonization of HIV with complement (C-HIV) or a mixture of complement and Abs (CI-HIV) affected the cytokine and chemokine responses generated by DCs, as well as their ability to attract other immune cells. We found that the expression levels of CXCL8, CXCL10, CCL3, and CCL17 were lowered after exposure to either C-HIV or CI-HIV relative to free HIV (F-HIV). DCs exposed to F-HIV induced higher cell migration, consisting mainly of NK cells, compared with opsonized virus, and the chemotaxis of NK cells was dependent on CCL3 and CXCL10. NK cell exposure to supernatants derived from HIV-exposed DCs showed that F-HIV induced phenotypic activation (e.g., increased levels of TIM3, CD69, and CD25) and effector function (e.g., production of IFNγ and killing of target cells) in NK cells, whereas C-HIV and CI-HIV did not. The impairment of NK cell recruitment by DCs exposed to complement-opsonized HIV and the lack of NK activation may contribute to the failure of innate immune responses to control HIV at the site of initial mucosa infection.
    Matched MeSH terms: Dendritic Cells/immunology*; Dendritic Cells/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links