Displaying publications 1 - 20 of 34 in total

Abstract:
Sort:
  1. Abduljaleel SA, Shuhaimi-Othman M
    Pak J Biol Sci, 2013 Nov 15;16(22):1551-6.
    PMID: 24511699
    The influence of dietary cadmium on the accumulation and effects of dietary lead, examined in chicken. This experiment was conducted to investigate the toxic effects of dietary Cd and Pb on chick's body weight and organ, content of the tissues of these two metals was also detected. One day age chicks of Gallus gallus domesticus fed diet supplemented with 25, 50, 100 ppm of Cd, second group exposure to 300, 500, 1000 ppm of Pb in feed daily during 4 weeks. The control groups were fed without supplementation of metals. The concentrations of Cd and Pb resulted in increased of Cd and Pb content in liver, gizzard and muscle. While Cd 100 ppm and Pb 1000 ppm were increased metals content in feather. Body weight of chicks was not influenced by Cd treatment. In contrary Pb treatment was significantly (p < 0.05) decreased body weight of chicks after dietary treatment. On the other hand, Liver weigh in chicks was significantly (p < 0.05) decreased after Cd and Pb treatments.
    Matched MeSH terms: Feathers/drug effects; Feathers/metabolism
  2. Al-Shuhaib MBS, Al-Kafajy FR, Badi MA, AbdulAzeez S, Marimuthu K, Al-Juhaishi HAI, et al.
    Comput Biol Med, 2018 09 01;100:17-26.
    PMID: 29960146 DOI: 10.1016/j.compbiomed.2018.06.019
    Because of variable inconvenient living conditions in some places around the world, it is difficult to collect reliable physiological data for ostriches. Therefore, this study aims to provide a comprehensive in silico insight for the nature of polymorphism of important genetic loci that are related to physiological and reproductive traits. Sixty-nine mature ostriches ranging over half of Iraq were screened. Six exonic genetic loci, including cytochrome c oxidase I (COX1), cytochrome b (CYTB), secretogranin V (SCG5), feather keratin 2-like (FK2), prolactin (PRL) and placenta growth factor (PGF) were genotyped by PCR-single stranded conformation polymorphism (SSCP). Thirty-six novel SNPs, including seventeen nonsynonymous (ns) SNPs, were observed. Several computational software programs were utilized to assess the extent of the nsSNPs on their corresponding proteins structure, function and stability. The results showed several deleterious functional and stability changes in almost all the proteins studied. The total severity of each missense mutation was evaluated and compared with other nsSNPs accumulatively. It is evident from the extensive cumulative in silico computation that both p.E34D and p.E60K in PGF have the highest deleterious effect. The cumulative predictions from the present study are an impressive guide for the genotypes of African ostriches, which bypassed the expensive protocols for wet laboratory screening, to identify the effects of variants. To the best of our knowledge, this is the first investigation of its kind on the analyses and prediction outcome of missense mutations in African ostrich populations. The highly deleterious nsSNPs in the placenta growth factor are possible adaptive mutations which might be associated with adaptation in extreme and new environments. The flow and protocol of the computational predictions can be extended for various wild animals to identify the molecular nature of adaptations.
    Matched MeSH terms: Feathers
  3. Almalki ASA, Alhadhrami A, Alsanie WF, Kamarudin SK, Pugazhendhi A
    Environ Res, 2024 Apr 01;246:118060.
    PMID: 38157966 DOI: 10.1016/j.envres.2023.118060
    In this study, Sulphated/AlMCM-41 (S/AlMCM-41) catalysts were synthesized and used to produce biodiesel from CFMO. Different percentages of S/AlMCM-41 catalysts were prepared and characterized by X-ray diffraction, BET studies, TPD, and SEM-EDS analysis. Sulphur incorporation to the MCM framework though reduced the surface area, and pore volume of the catalyst, sufficient acidity were produced in the catalyst surface. The existence of functional groups and the composition of the biodiesel obtained was analysed by FTIR and GC-MS. S/AlMCM-41 (80%) catalyst presented a high catalytic activity with maximum biodiesel conversion % when compared to other variants. The bio-ester produced from CFMO with S/AlMCM-41 (80%) catalyst possessed the higher calorific value of 50 MJ/kg and flashpoint of 153 °C and other properties analogous to the standard biodiesel. The engine performance was examined for biodiesel blends with neat diesel, where biodiesel blends performed better than neat diesel. The exhaust gas emission studies also highlighted that the obtained biodiesel showed emission characteristics similar to the standard biodiesel, whereas marginally higher emission for CO and CO2 of about 2.2 and 7.9% was reported.
    Matched MeSH terms: Feathers
  4. Azmi NA, Idris A, Yusof NSM
    Ultrason Sonochem, 2018 Oct;47:99-107.
    PMID: 29908610 DOI: 10.1016/j.ultsonch.2018.04.016
    Feather keratin is a biomass generated in excess from various livestock industries. With appropriate processing, it holds potential as a green source for degradable biopolymer that could potentially replace current fossil fuel based materials. Several processing methods have been developed, but the use of ultrasonication has not been explored. In this study, we focus on (i) comparing and optimizing the dissolution process of turkey feather keratin through sonication and conventional processes, and (ii) generating a biodegradable polymer material, as a value added product, from the dissolved keratin that could be used in packaging and other applications. Sonication of feather keratin in pure ionic liquids (ILs) and a mixture containing ILs and different co-solvents was conducted under different applied acoustic power levels. It was found that ultrasonic irradiation significantly improved the rate of dissolution of feather keratin as compared to the conventional method, from about 2 h to less than 20 min. The amount of ILs needed was also reduced by introducing a suitable co-solvent. The keratin was then regenerated, analyzed and characterized using various methods. This material holds the potential to be reused in various appliances.
    Matched MeSH terms: Feathers/chemistry*
  5. Cheong CW, Lee YS, Ahmad SA, Ooi PT, Phang LY
    Waste Manag, 2018 Sep;79:658-666.
    PMID: 30343798 DOI: 10.1016/j.wasman.2018.08.029
    A huge amount of feathers is generated as a waste every year. Feathers can be a protein source if it is treated with an appropriate method. The present study investigates feasibility of autoclave alkaline and microwave alkaline pretreatments to be combined with enzymatic treatment for feather solubilization and protein production. Hydrolysis of chicken feather by autoclave alkaline pretreatment followed by an enzymatic method (AAS) or microwave alkaline pretreatment followed by an enzymatic method (MAS) was optimized by response surface methodology. Various NaOH concentrations for autoclave alkaline pretreatment (0.01-0.1 M) and microwave-alkaline pretreatment (0.01-0.05 M) were applied. The holding time for both pretreatments ranged from 1 to 10 min. The pretreated feathers were subjected to enzymatic hydrolysis using a commercial enzyme prior to analysis of protein content, feather solubilization, functional groups, and elemental composition (carbon, hydrogen, nitrogen and sulfur) of the treated feathers. The results revealed that both autoclave alkaline pretreatment and microwave alkaline pretreatment under optimized conditions of 0.068 M NaOH, 2 min holding time, 105 °C and 450 W, 0.05 M NaOH for 10 min, respectively, enhanced the subsequent Savinase hydrolysis of chicken feathers to achieve more than 80% degradation and more than 70% protein recovery. Fourier transform infrared spectroscopy results showed that both thermal-alkaline pretreatments weakened the structure of the feather. Reduction of carbon, nitrogen, and sulfur occurred in both thermal-alkaline pretreatments of feathers indicating degradation of the feather as well as protein release. Thermal-alkaline pretreatment may be a promising method for enhancing the enzymatic hydrolysis of chicken feathers and for producing a protein-rich hydrolysate.
    Matched MeSH terms: Feathers*
  6. Cheong, Chooi Wei, Siti Aqlima Ahmad, Ooi, Peck Toung, Phang, Lai Yee
    MyJurnal
    Feather waste is a potential renewable source to recover valuable products because it is being a rich source of keratin proteins and amino acids. It can be used to make feather meal, fertilizer and yarn sizing agent. Various treatments have been used to recover the protein from chicken feathers as the keratinous feathers cannot be easily degraded due to its tough structure. This paper reviews the existing treatment methods used to hydrolyze chicken feathers. The treatment methods for feather hydrolysis such as physical, chemical, biological and combined treatments as well as their advantages and challenges are highlighted. The effects of these treatments on feather hydrolysis are complex and vary in regards to the performance of feather hydrolysis and product yielded. Hence, it is important to choose an appropriate treatment method since the type of treatment applied affects the product yielded qualitatively and quantitatively. In addition, the economic assessment and environmental impact of the choice of treatment should be considered also.
    Matched MeSH terms: Feathers
  7. Darah I, Nur-Diyana A, Nurul-Husna S, Jain K, Lim SH
    Appl Biochem Biotechnol, 2013 Dec;171(7):1900-10.
    PMID: 24013862 DOI: 10.1007/s12010-013-0496-4
    Keratinous wastes have increasingly become a problem and accumulate in the environment mainly in the form of feathers, generated mainly from a large number of poultry industries. As keratins are very difficult to degrade by general proteases, they pose a major environmental problem. Therefore, microorganisms which would effectively degrade keratins are needed for recycling such wastes. A geophilic dermatophyte, Microsporum fulvum IBRL SD3 which was isolated from a soil sample collected from a chicken feather dumping site using a baiting technique, was capable to produce keratinase significantly. The crude keratinase was able to degrade whole chicken feathers effectively. The end product of the degradation was protein that contained essential amino acids and may have potential application in animal feed production. Thus, M. fulvum could be a novel organism to produce keratinase for chicken feathers degradation.
    Matched MeSH terms: Feathers/metabolism*
  8. Das S, Singh V, Saurabh K
    Indian J Ophthalmol, 2020 06;68(6):1209-1211.
    PMID: 32461485 DOI: 10.4103/ijo.IJO_1681_19
    Sports-related ocular traumas may be rare, but can have devastating and disabling consequences. The causes of eye-related injuries depend on the type of sports popular in a particular area or country. Badminton is a popular sport played by all age groups and socioeconomic segments and is popular in many parts of the world. It is most popular in South-East Asia, accounting for two-thirds of all ocular sports injury in Malaysia. In India, badminton has become quite popular in recent years. Shuttlecocks in badminton have been shown to be responsible for a high number of outpatient ocular sports-related, mostly blunt injuries. We report an unusual case of penetrating ocular injury due to a feather shuttlecock and its surgical management.
    Matched MeSH terms: Feathers
  9. Ee, S.C., Saari, N., Abas, F., Ismail, A., Abu Bakar, M.K., Bakar, J.
    MyJurnal
    Malaysia is a surplus poultry producing country with well-established commercial slaughtering and processing plants. Immense quantity of heads, feet, viscera, blood and feathers are usually discarded and not optimally utilized. Chicken heads are rich in protein, and could be a potential source of gelatin. The aim of the present work was therefore to find a simpler, faster, cheaper and greener gelatin extraction technology as compared to current available methods of gelatin extraction from poultry heads. A comparison of three different gelatin extraction methods with alkaline-acid pretreatment (E1), single acid pretreatment (E2) and single alkaline pretreatment (E3) were studied to extract gelatin from chicken heads. E1 and E2 produced gelatins of Type A, while E3 produced gelatin of Type B. High bloom gelatin (>300 g) with
    Matched MeSH terms: Feathers
  10. Ibrahim N, Kutschera U
    Theory Biosci, 2013 Dec;132(4):267-75.
    PMID: 23975643 DOI: 10.1007/s12064-013-0192-5
    Over many years of his life, the British naturalist Alfred Russel Wallace (1823-1913) explored the tropical forests of Malaysia, collecting numerous specimens, including hundreds of birds, many of them new to science. Subsequently, Wallace published a series of papers on systematic ornithology, and discovered a new species on top of a volcano on Ternate, where he wrote, in 1858, his famous essay on natural selection. Based on this hands-on experience, and an analysis of an Archaeopteryx fossil, Wallace suggested that birds may have descended from dinosaurian ancestors. Here, we describe the "dinosaur-bird hypothesis" that originated with the work of Thomas H. Huxley (1825-1895). We present the strong evidence linking theropod dinosaurs to birds, and briefly outline the long and ongoing controversy around this concept. Dinosaurs preserving plumage, nesting sites and trace fossils provide overwhelming evidence for the dinosaurian origin of birds. Based on these recent findings of paleontological research, we conclude that extant birds indeed descended, with some modifications, from small, Mesozoic theropod dinosaurs. In the light of Wallace's view of bird origins, we critically evaluate recent opposing views to this idea, including Ernst Mayr's (1904-2005) arguments against the "dinosaur-bird hypothesis", and document that this famous ornithologist was not correct in his assessment of this important aspect of vertebrate evolution.
    Matched MeSH terms: Feathers
  11. Iqbal F, Ayub Q, Wilson R, Song BK, Talei A, Yeong KY, et al.
    Environ Monit Assess, 2021 Mar 30;193(4):237.
    PMID: 33783594 DOI: 10.1007/s10661-021-08966-7
    A widely distributed urban bird, the house crow (Corvus splendens), was used to assess bioavailable heavy metals in urban and rural environments across Pakistan. Bioaccumulation of arsenic (As), zinc (Zn), lead (Pb), cadmium (Cd), nickel (Ni), iron (Fe), manganese (Mn), chromium (Cr), and copper (Cu) was investigated in wing feathers of 96 crows collected from eight locations and categorized into four groups pertaining to their geographical and environmental similarities. Results revealed that the concentrations of Pb, Ni, Mn, Cu, and Cr were positively correlated and varied significantly among the four groups. Zn, Fe, Cr, and Cu regarded as industrial outputs, were observed in birds both in industrialized cities and in adjoining rural agricultural areas irrigated through the Indus Basin Irrigation System. Birds in both urban regions accrued Pb more than the metal toxicity thresholds for birds. The house crow was ranked in the middle on the metal accumulation levels in feathers between highly accumulating raptor and piscivore and less contaminated insectivore and granivore species in the studied areas,. This study suggests that the house crow is an efficient bioindicator and supports the feasibility of using feathers to discriminate the local pollution differences among terrestrial environments having different levels and kinds of anthropogenic activities.
    Matched MeSH terms: Feathers
  12. Iqbal F, Wilson R, Ayub Q, Song BK, Krzeminska-Ahmedzai U, Talei A, et al.
    Environ Sci Pollut Res Int, 2023 Mar;30(13):35715-35726.
    PMID: 36536201 DOI: 10.1007/s11356-022-24712-z
    Urban-dwelling birds can be useful biomonitors to assess the impact of the urbanisation on both public and wildlife health. Widely distributed urban bird species, the House crow, was studied for heavy metal accumulation levels from nine cities of South Asia, Southeast Asia and Africa that border the Indian Ocean. Feathers were spectroscopically investigated for the deposition of ten heavy metals, i.e. As, Zn, Pb, Cd, Ni, iron Fe, Mn, Cr, Cu and Li. Fe and Zn were found to be the most prevalent metals in all sites. Measured concentrations of Pb (4.38-14.77 mg kg-1) overall, and Fe (935.66 mg kg-1) and Cu (67.17 mg kg-1) at some studied sites were above the toxicity levels reported lethal in avian toxicological studies. Multivariate analysis and linear models supported geographical location as a significant predictor for the level of most of the metals. Zn and Cu, generally and Pb, Cd, Mn, Cr at some sites exhibited potential bioaccumulation from surrounding environments. Inter-species comparisons strengthen the inference that the House crow is a reliable bioindicator species for the qualitative assessment of local urban environmental pollution and could be a useful tool for inter-regional monitoring programs.
    Matched MeSH terms: Feathers/chemistry
  13. Janaydeh M, Ismail A, Omar H, Zulkifli SZ, Bejo MH, Aziz NAA
    Environ Monit Assess, 2017 Dec 27;190(1):47.
    PMID: 29282545 DOI: 10.1007/s10661-017-6416-2
    Heavy metal pollution has become a global concern due to accumulation in tissue and transferable effects to humans via the food chain. This study focused on monitoring the accumulation of cadmium (Cd) and lead (Pb) in surface soil and body content: bone, heart, brain, liver, lung, muscle, kidney, feathers, feces, and gizzard contents of house crow Corvus splendens in the Klang region, Malaysia. The results revealed the occurrence of Pb and Cd in all biological samples from house crows, food contents, and surface soil samples. Heart and kidney accrued high amounts of Cd, while high amounts of Pb were found to accumulate in bones and feathers. Major discrepancies were also discovered in the concentrations of metals between juvenile and adults, as well as female and male bird samples. Concentrations of Pb and Cd in house crow internal tissues correlated significantly with that of bird feathers, but none could be established with that of surface soil. In addition, a significant correlation was observed between Pb concentration in the internal tissues to that of the feces, but the same was not the case when compared with the surface soil concentration. Metal accrual in the house crows feathers and feces may be through a long-term transmission via the food chain, which are eliminated from feathers via molting. This may suggest the utility of molted breast feathers of house crow in the bio-monitoring of Cd and Pb contamination, whereas feces of house crow appear only to be suitable for the bio-monitoring of Pb contamination.
    Matched MeSH terms: Feathers/chemistry
  14. Janaydeh M, Ismail A, Zulkifli SZ, Bejo MH, Aziz NA, Taneenah A
    Environ Sci Pollut Res Int, 2016 Nov;23(21):22059-22071.
    PMID: 27541152
    The Klang area of Peninsular Malaysia has experienced rapid industrial growth with intense activities, which can increase the concentration of pollutants in the environment that significantly impact on habitats and the human health. The purpose of this study was to determine the levels of selected heavy metals (Cu, Zn, Ni, Fe, and Pb) in the heart, lung, brain, liver, kidney, muscle tissues, and feathers of house crow, Corvus splendens, in Klang, Peninsular Malaysia. House crow samples were collected from the Klang area through the Department of Public Health at Majlis Perbandaran Klang. Quantitative determination of heavy metals was carried out using atomic absorption spectrophotometer (AAS). The result shows the presence of heavy metals in all biological samples of house crows. For heavy metals in all the house crow tissues analyzed, Fe concentrations were the highest, followed by those of Zn, Cu, Pb, and Ni. The feathers and kidney accumulated high concentrations of Pb, whereas the liver accumulated high concentrations of essential heavy metals (Fe > Zn > Cu > Ni). Significant variations were also detected in the concentrations of Pb among adult and juvenile and male and female bird samples. The results also revealed significant positive correlations between Pb metal concentration in the breast feathers and all internal organs. Accumulation of toxic heavy metals in feathers reflected storing and elimination processes, while the accumulation of toxic heavy metals in the kidney can be consequential to chronic exposure. The present study clearly shows the usefulness of house crow breast feather as a suitable indicator for heavy metal accumulation in the internal organs of house crows in the Klang area.
    Matched MeSH terms: Feathers/chemistry*
  15. Kamarudin NB, Sharma S, Gupta A, Kee CG, Chik SMSBT, Gupta R
    3 Biotech, 2017 Jun;7(2):127.
    PMID: 28573397 DOI: 10.1007/s13205-017-0767-9
    Uncontrolled disposal of feathers from the poultry industry and slaughterhouses is environmentally undesirable. The feathers are composed of approximately 90% of keratin which is an important ingredient of cosmetics, shampoos and hair treatment creams. This study aimed to determine the optimum conditions for the extraction of keratin from chicken feathers. The extraction of keratin using various reducing agents was studied using statistical experimental design. In the extraction process, pH, temperature, ratio of reducing agents, mass of chicken feathers and incubation time were analyzed. The keratin in the total extracted protein was purified by size exclusion chromatography, sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and further characterized using amino acids profile analysis. The surface morphology and chemical composition were studied by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) analysis. Sodium sulfide (Na2S) yielded 84.5% of keratin as compared to sodium hydroxide (43.8), urea mixture (50.6), mixture of sodium dodecyl sulfate (SDS) and sodium bisulfite (18.3) and a mixture of Na2S and sodium hydroxide (41.5%) under optimized conditions. The optimum yield of keratin was achieved at 80.9 °C in 9.5 h with 0.05 M sodium sulfide using response surface methodology (RSM). Among the five parameters screened, pH was found not to be significant because the p value was greater than 0.05.
    Matched MeSH terms: Feathers
  16. Kew PE, Wong SF, Lim PK, Mak JW
    Trop Biomed, 2014 Mar;31(1):63-76.
    PMID: 24862046 MyJurnal
    Edible bird nests (EBNs) are consumed worldwide for various health benefits. EBNs are nests built from the saliva of swiftlets of Aerodramus species. The global market for EBNs is on the rise, especially from Hong Kong and mainland China. In the past, EBNs were harvested mainly from natural caves; however in the recent years, there has been a rapid growth of swiftlet farming. Little is known about the actual composition of EBNs except for protein, carbohydrate, ash and lipid contents, amino acids, vitamins and macro/ micronutrients. Besides the biochemical components of EBNs, are there any other structures that are associated with EBNs? This paper reports on the structural analysis of raw unprocessed farm and processed commercial EBNs. The raw EBNs were purchased from swiftlet farms in five locations in Peninsula Malaysia: Kuala Sanglang (Perlis; 6° 16' 0"N, 100° 12' 0"E), Pantai Remis (Perak; 4º 27' 0" N, 100º 38' 0" E), Kluang (Johor; 02º 012 303N 103º 192 583E), Kajang (Selangor; 2º 59' 0"N, 101º 47' 0"E) and Kota Bharu (Kelantan; 6º 8' 0"N, 102º 15' 0"E). The commercial nests were purchased from five different Chinese traditional medicinal shops (Companies A-E). A portion of each EBN was randomly broken into small fragments, attached to carbon tape and coated with gold and palladium particles for examination and photography under a scanning electron microscope. Structural analysis revealed the presence of mites, fungi, bacteria and feather strands on both the raw and commercial nests. Mite eggshells and faecal pellets, and body parts of other arthropods were seen only in the raw nests. The commercial nests had a variety of unidentified structures and substances coated on the nests' surfaces that were not found on the raw nests. The presence of these contaminants may jeopardise the quality of EBNs and pose health risks to consumers. Further identification of the mites and their allergens, fungi and bacteria are on-going and will be reported separately.
    Matched MeSH terms: Feathers
  17. Krzeminska U, Wilson R, Rahman S, Song BK, Seneviratne S, Gan HM, et al.
    Mitochondrial DNA A DNA Mapp Seq Anal, 2016 Jul;27(4):2668-70.
    PMID: 26075478 DOI: 10.3109/19401736.2015.1043540
    The complete mitochondrial genomes of two jungle crows (Corvus macrorhynchos) were sequenced. DNA was extracted from tissue samples obtained from shed feathers collected in the field in Sri Lanka and sequenced using the Illumina MiSeq Personal Sequencer. Jungle crow mitogenomes have a structural organization typical of the genus Corvus and are 16,927 bp and 17,066 bp in length, both comprising 13 protein-coding genes, 22 transfer RNA genes, 2 ribosomal subunit genes, and a non-coding control region. In addition, we complement already available house crow (Corvus spelendens) mitogenome resources by sequencing an individual from Singapore. A phylogenetic tree constructed from Corvidae family mitogenome sequences available on GenBank is presented. We confirm the monophyly of the genus Corvus and propose to use complete mitogenome resources for further intra- and interspecies genetic studies.
    Matched MeSH terms: Feathers/metabolism; Feathers/physiology
  18. Lasekan A, Abu Bakar F, Hashim D
    Waste Manag, 2013 Mar;33(3):552-65.
    PMID: 22985619 DOI: 10.1016/j.wasman.2012.08.001
    By-products from different animal sources are currently being utilised for beneficial purposes. Chicken processing plants all over the world generate large amount of solid by-products in form of heads, legs, bones, viscera and feather. These wastes are often processed into livestock feed, fertilizers and pet foods or totally discarded. Inappropriate disposal of these wastes causes environmental pollution, diseases and loss of useful biological resources like protein, enzymes and lipids. Utilisation methods that make use of these biological components for producing value added products rather than the direct use of the actual waste material might be another viable option for dealing with these wastes. This line of thought has consequently led to researches on these wastes as sources of protein hydrolysates, enzymes and polyunsaturated fatty acids. Due to the multi-applications of protein hydrolysates in various branches of science and industry, and the large body of literature reporting the conversion of animal wastes to hydrolysates, a large section of this review was devoted to this subject. Thus, this review reports the known functional and bioactive properties of hydrolysates derived from chicken by-products as well their utilisation as source of peptone in microbiological media. Methods of producing these hydrolysates including their microbiological safety are discussed. Based on the few references available in the literature, the potential of some chicken by-product as sources of proteases and polyunsaturated fatty acids are pointed out along with some other future applications.
    Matched MeSH terms: Feathers
  19. Ling JWA, Chang LS, Babji AS, Lim SJ
    J Sci Food Agric, 2020 Oct;100(13):4714-4722.
    PMID: 32468613 DOI: 10.1002/jsfa.10530
    BACKGROUND: Processing of edible bird's nest (EBN) requires extensive washing to remove impurities and produces huge amounts of EBN co-products, which contain mainly feathers with glycoproteins attached, which are usually discarded. This study was conducted to recover the valuable EBN glycoproteins from the waste material. Enzymatic hydrolysis was applied to recover EBN glycopeptides from EBN co-products (EBNcoP ) and processed cleaned EBN (EBNclean ) was used as control, which were then freeze-dried into EBN hydrolysates (EBNhcoP and EBNhclean , respectively).

    RESULTS: The recovery yield for EBNhclean and EBNhcoP were 89.09 ± 0.01% and 47.64 ± 0.26%, respectively, indicating nearly 50% of glycopeptide can be recovered from the waste material. Meanwhile, N-acetylneuraminic acid, a major acid sugar in EBN glycoproteins, of EBNhcoP increased by 229% from 58.6 ± 3.9 to 192.9 ± 3.1 g kg-1 , indicating the enzymatic hydrolysis removed impurities and thus enhanced the N-acetylneuraminic acid content. Total soluble protein was more than 330 g kg-1 for all the samples. Colour parameter showed that hydrolysate samples have greater L* (lightness) values. Chroma result indicates the intensity of all the samples were low (

    Matched MeSH terms: Feathers/chemistry
  20. Mazlan LF, Bachek NF, Mahamud SNA, Idris LH, Wei TS, Omar AR, et al.
    Vet World, 2017 May;10(5):542-548.
    PMID: 28620260 DOI: 10.14202/vetworld.2017.542-548
    AIM: Genotype VII Newcastle disease virus (NDV) is the most predominant NDV strains that circulating in Malaysia; thus, this study was aimed to determine the susceptibility of Japanese quails toward genotype VII NDV. Clinical signs, gross pathological lesions of organs, positive detection of virus in organs and cloacal swabs, as well as the expression of the antibody titer, were used as parameters to assess the susceptibility of Japanese quails following infection of genotype VII NDV.

    MATERIALS AND METHODS: About 20 quails were divided into three groups (n=8 for Groups A and B; n=4 for the control group). The quails in the Groups A and B were infected via intraocular route with 0.03 ml of 103.5 ELD50 and 107.0 ELD50 of NDV strain IBS 002, respectively, while the control group received 1× phosphate-buffered saline. Cloacal swabs and necropsy were taken on day 7 post-infection for all quails were subjected to one-step reverse transcription real-time quantitative polymerase chain reaction (RT-qPCR) for detection of virus and examination for gross pathological lesion, respectively. Blood serums of infected quails were taken on day 10, 14, and 21 post-day infections and were subjected for hemagglutination inhibition (HI) assay.

    RESULTS: Depression and ruffled feathers, trachea rales, leg paralysis, and torticollis were shown in some of the quails in both infected groups. Based on statistical analysis, there was no significant difference (p>0.05) in clinical signs between the infected groups. The results for RT-qPCR were found to be negative for all groups, and no gross pathological lesions of organs observed for quails in both infected groups. Trachea, proventriculus, and cecal tonsil were taken for the detection of NDV by RT-qPCR, and some of the organ samples showed positive detection of virus in both infected groups. HI assay showed an increase in mean titers of antibody across time and between infected groups.

    CONCLUSION: In summary, Japanese quails are susceptible to genotype VII NDV based on parameters assessed.

    Matched MeSH terms: Feathers
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links