Displaying publications 1 - 20 of 68 in total

Abstract:
Sort:
  1. Chen JW, Liew FF, Tan HW, Misran M, Chung I
    Artif Cells Nanomed Biotechnol, 2023 Dec;51(1):346-360.
    PMID: 37524112 DOI: 10.1080/21691401.2023.2237534
    Extracellular vesicles (EVs) are small vesicles that are naturally released by cells and play a crucial role in cell-to-cell communication, tissue repair and regeneration. As naturally secreted EVs are limited, liposomes with different physicochemical properties, such as 1,2-dioleoyl-3-trimethylammonium propane (DOTAP) and linoleic acid (LA) with modifications have been formulated to improve EVs secretion for in vitro wound healing. Various analyses, including dynamic light scattering (DLS) and transmission electron microscopy (TEM) were performed to monitor the successful preparation of different types of liposomes. The results showed that cholesterol-LA liposomes significantly improved the secretion of EVs from immortalized adipose-derived mesenchymal stem cells (AD-MSCs) by 1.5-fold. Based on the cell migration effects obtained from scratch assay, both LA liposomal-induced EVs and cholesterol-LA liposomal-induced EVs significantly enhanced the migration of human keratinocytes (HaCaT) cell line. These findings suggested that LA and cholesterol-LA liposomes that enhance EVs secretion are potentially useful and can be extended for various tissue regeneration applications.
    Matched MeSH terms: Linoleic Acid/analysis; Linoleic Acid/metabolism
  2. Md Moshikur R, Shimul IM, Uddin S, Wakabayashi R, Moniruzzaman M, Goto M
    ACS Appl Mater Interfaces, 2022 Dec 21;14(50):55332-55341.
    PMID: 36508194 DOI: 10.1021/acsami.2c15636
    The transdermal delivery of hydrophilic drugs remains challenging owing to their poor ability to permeate the skin; formulation with oil media is difficult without adding chemical permeation enhancers or co-solvents. Herein, we synthesized 12 oil-miscible ionic liquid (IL) drugs comprising lidocaine-, imipramine-, and levamisole (Lev)-hydrochloride with fatty acid permeation enhancers, i.e., laurate, oleate, linoleate, and stearate as counterions. A set of in vitro and in vivo studies was performed to investigate the potency and deliverability of the transdermal drug formulations. All of the synthesized compounds were freely miscible with pharmaceutically acceptable solvents/agents (i.e., ethanol, N-methyl pyrrolidone, Tween 20, and isopropyl myristate (IPM)). In vitro permeation studies revealed that the oleate-based Lev formulation had 2.6-fold higher skin permeation capability than the Lev salts and also superior ability compared with the laurate-, linoleate-, and stearate-containing samples. Upon in vivo transdermal administration to mice, the peak plasma concentration, elimination half-life, and area under the plasma concentration curve values of Lev-IL were 4.6-, 2.9-, and 5.4-fold higher, respectively, than those of the Lev salt. Furthermore, in vitro skin irritation and in vivo histological studies have demonstrated that Lev-IL has excellent biocompatibility compared with a conventional ionic liquid-based carrier. The results indicate that oil-miscible IL-based drugs provide a simple and scalable strategy for the design of effective transdermal drug delivery systems.
    Matched MeSH terms: Linoleic Acid
  3. Aziz AA, Nordin FNM, Zakaria Z, Abu Bakar NK
    J Cosmet Dermatol, 2022 Jan;21(1):71-84.
    PMID: 34658114 DOI: 10.1111/jocd.14402
    BACKGROUND: The use of cosmetic products is considered a necessity for beautification in our daily lives. Cosmetic products composed of natural oils or fats as a main ingredient for various beneficial properties. Fats and oils are composed of various type of fatty acids with different compositions. Hence, fatty acids profile can be an effective chemical fingerprint for authentication analysis of cosmetic products.

    OBJECTIVE: This systematic review aims to enlighten the current detection tools developing for fatty acids profile authentication analyses of cosmetic ingredients based on the effectiveness, halal status, safety, advantages and disadvantages of the methods.

    METHODOLOGY: The data were extracted from the scientific literatures published between October 2015 and 2020 in the Web of Science, Scopus and Google Scholar databases, and analyzed with Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA).

    FINDINGS: Based on the systemic literature reviews, essential oil, argan oil, mineral oil, vegetable oil, and jojoba oil were among the mostly studied ingredients in cosmetics. Furthermore, a combination of more than one analytical instrument was utilized to profile fatty acids while the determination of the origin of the fatty acids is under scrutiny. The portable mass spectrometer combined with a direct inlet membrane (DIM) probe seems to be the best tool in terms of time consumption, cost, requires no sample preparation with high efficiency. The current review showed that the best cosmetic base is when the oil is composed of high concentration of fatty acids such as linoleic, oleic, stearic acid, and palmitic acids with concentration range from 19.7 - 46.30%, which offers various beneficial properties to cosmetic products.

    Matched MeSH terms: Linoleic Acid
  4. Halim NFAA, Ali MSM, Leow ATC, Rahman RNZRA
    Int J Biol Macromol, 2021 Jun 01;180:242-251.
    PMID: 33737181 DOI: 10.1016/j.ijbiomac.2021.03.072
    Fatty acid desaturase catalyzes the desaturation reactions by insertion of double bonds into the fatty acyl chain, producing unsaturated fatty acids. Though soluble fatty acid desaturases have been studied widely in advanced organisms, there are very limited studies of membrane fatty acid desaturases due to the difficulty of generating recombinant desaturase. Brassica napus is a rapeseed, which possesses a range of different membrane-bound desaturases capable of producing fatty acids including Δ3, Δ4, Δ8, Δ9, Δ12, and Δ15 fatty acids. The 1155 bp open reading frame of Δ12 fatty acid desaturase (FAD12) from Brassica napus codes for 383 amino acid residues with a molecular weight of 44 kDa. It was expressed in Escherichia coli at 37 °C in soluble and insoluble forms when induced with 0.5 mM IPTG. Soluble FAD12 has been purified using Ni2+-Sepharose affinity chromatography with a total protein yield of 0.728 mg/mL. Gas chromatography-mass spectrometry (GC-MS) analysis revealed that desaturase activity of FAD12 could produce linoleic acid from oleic acid at a retention time of 17.6 with a conversion rate of 47%. Characterization of purified FAD12 revealed the optimal temperature of FAD12 was 50 °C with 2 mM preferred substrate concentration of oleic acid. Analysis of circular dichroism (CD) showed FAD12 was made up of 47.3% and 0.9% of alpha-helix and β-sheet secondary structures. The predicted Tm value was 50.2 °C.
    Matched MeSH terms: Linoleic Acid
  5. Kwong SC, Abd Jamil AH, Rhodes A, Taib NA, Chung I
    Biochimie, 2020 Dec;179:23-31.
    PMID: 32931863 DOI: 10.1016/j.biochi.2020.09.005
    Different fatty acids have distinct effects on the survival of breast cancer cells, which could be mediated by fatty acid binding proteins (FABPs), a family of lipid chaperones. Due to the diverse structures of the members of FABP family, each FABP demonstrates distinct binding affinities to different fatty acids. Of note, FABP7 is predominantly expressed in triple negative breast cancer (TNBC), the most aggressive subtype of breast cancer. Yet, the role of FABP7 in modulating the effects of fatty acids on TNBC survival was unclear. In contrast to the high expression of FABP7 in human TNBC tumours, FABP7 protein was undetectable in TNBC cell lines. Hence, a FABP7 overexpression model was used for this study, in which the transduced TNBC cell lines (MDA-MB-231 and Hs578T) were treated with various mono- and polyunsaturated fatty acids. Oleic acid (OA), docosahexaenoic acid (DHA) and arachidonic acid (AA) inhibited TNBC cell growth at high concentrations, with no differences resulted from FABP7 overexpression. Interestingly, overexpression of FABP7 augmented linoleic acid-induced cell death in MDA-MB-231 cells. The increased cell death may be explained by a decrease in 13-HODE, a pro-tumorigenic oxidation product of linoleic acid. The phenotype was, however, attenuated with a rescue treatment using 25 nM 13-HODE. The decrease in 13-HODE was potentially due to fatty acid partitioning modulated by FABP7, as demonstrated by a 3-fold increase in fatty acid oxidation. Our findings suggest that linoleic acid could be a potential therapeutic strategy for FABP7-overexpressing TNBC patients.
    Matched MeSH terms: Linoleic Acids; Linoleic Acid
  6. Nodeh HR, Rashidi L, Gabris MA, Gholami Z, Shahabuddin S, Sridewi N
    J Oleo Sci, 2020 Nov 01;69(11):1359-1366.
    PMID: 33055442 DOI: 10.5650/jos.ess20128
    For the very first time, the nutritional and physicochemical properties of the oil extracted from hackberry Celtis australis fruit were investigated with the aim of possible applications of such wild fruit oil. The physicochemical properties such as peroxide value, acidity, saponification, iodine value and total fat content of the extracted oil were examined extensively. The obtained results showed that peroxide value, acidity, saponification, iodine value and total fat content of the extracted oil were found to be 4.9 meq O2/kg fat, 0.9 mg KOH/g fat, 193.6 mg KOH/g fat, 141.52 mg I2/g fat and ~5%, respectively. The predominant fatty acid found in this wild fruit is linoleic acid which was calculated to be 73.38%±1.24. In addition, gamma-tocopherol (87%) and β-sitosterol (81.2%±1.08) were the major tocopherol and sterol compositions found in Celtis australis seed oil. Moreover, equivalent carbon number (ECN) analysis has indicated that the three linoleic acids are the main composition of the triacylglycerols extracted from Celtis australis. Also, the high value of omega 6 and β-sitosterol make this oil applicable in cosmetics and pharmaceutical applications.
    Matched MeSH terms: Linoleic Acid/analysis*
  7. Uddin S, Chowdhury MR, Wakabayashi R, Kamiya N, Moniruzzaman M, Goto M
    Chem Commun (Camb), 2020 Oct 19.
    PMID: 33073787 DOI: 10.1039/d0cc04491a
    We report a new series of lipid-based biocompatible ionic liquids (LBILs) consisting of the long-chain phosphonium compound 1,2-dimyristoyl-sn-glycero-3-ethyl-phosphatidylcholine as the cation and the long-chain fatty acids stearic acid, oleic acid, or linoleic acid as anions. These materials were found to be completely miscible with many polar and nonpolar organic solvents as well as dispersible in water. These LBILs also exhibited excellent biocompatibility with an artificial three-dimensional human epidermis model.
    Matched MeSH terms: Linoleic Acid
  8. Gurdeep Singh HK, Yusup S, Quitain AT, Abdullah B, Ameen M, Sasaki M, et al.
    Environ Res, 2020 07;186:109616.
    PMID: 32668556 DOI: 10.1016/j.envres.2020.109616
    Catalytic cracking of vegetable oil mainly processed over zeolites, and among all the zeolites particularly HZMS-5 has been investigated on wide range for renewable and clean gasoline production from various plant oils. Despite the fact that HZSM-5 offers a higher conversion degree and boost aromatics yield, the isomerate yield reduces due to high cracking activity and shape selectivity of HZSM-5. Hence, to overcome these problems, in this study the transition metals, such as nickel and copper doped over HZSM-5 were tested for its efficiencies to improve the isoparaffin compounds. The catalysts were screened with linoleic acid in a catalytic cracking reaction conducted at 450 ᵒC for 90 min in an atmospheric condition in batch reactor. Then, the gasoline composition of the organic liquid product (OLP) was analysed in terms of paraffin, isoparaffin, olefin, naphthenes and aromatics (PIONA). The results showed that Cu/ZSM-5 produced the highest liquid yield of 79.1%, at the same time reduced the production of gas and coke to 18.8% and 0.7%. Furthermore, the desired isoparaffin composition in biogasoline increased from 1.6% to 6.8% and at the same time reduced the oxygenated and aromatic compounds to 15.4% and 59.7%, respectively. The linoleic acid as model compound of rubber seed oil, in the catalytic cracking reaction provides a clearer understanding of the process. Besides, the water gas shift (WGS) reaction in catalytic cracking reaction provides insitu hydrogen production to saturate the branched olefin into the desired isoparaffin and the aromatics into naphthenes.
    Matched MeSH terms: Linoleic Acid*
  9. Harjoh N, Wong TW, Caramella C
    Int J Pharm, 2020 Jun 30;584:119416.
    PMID: 32423875 DOI: 10.1016/j.ijpharm.2020.119416
    Inhaled/oral insulin have been investigated as an alternative to injectable insulin, but are met with unsatisfactory outcomes. Transdermal administration bears several advantages unmet by inhalation/oral delivery, but macromolecular drugs permeation is poor. This study explored microwave to elicit transdermal insulin permeation, and compared against conventional permeation enhancers (fatty acids) in vitro/in vivo. The transdermal insulin permeation was promoted by microwave (2450 MHz/1 mW) > oleic acid (monounsaturated) ~ linoleic acid (double unsaturated bonds). The linolenic acid (triple unsaturated bonds) or combination of microwave/fatty acid reduced skin insulin permeation. Transdermal insulin permeation enhancement was attributed to epidermal lipid bilayer fluidization (CH) and corneocyte shrinkage due to keratin condensation (OH/NH, CO), which had aqueous pore enlarged to facilitate insulin transport. Its reduction by linolenic acid, a molecularly larger and rigid fatty acid with higher surface tension, was due to reduced fatty acid permeation into epidermis and minimal skin microstructural changes. The oleic acid, despite favoured skin microstructural changes, did not provide a remarkably high insulin permeation due to it embedded in skin as hydrophobic shield to insulin transport. Microwave penetrates skin volumetrically with no chemical residue retention. It alone promoted insulin absorption and sustained blood glucose level reduction in vivo.
    Matched MeSH terms: Linoleic Acid/chemistry
  10. Nehdi IA, Sbihi HM, Tan CP, Al-Resayes SI, Rashid U, Al-Misned FA, et al.
    J Oleo Sci, 2020 May 02;69(5):413-421.
    PMID: 32281562 DOI: 10.5650/jos.ess19298
    Allium ampeloprasum L., commonly known as wild leek, is an edible vegetable that has been cultivated for centuries. However, no detailed studies have been undertaken to valorize A. ampeloprasum seed oil. This study aims to evaluate the physicochemical properties, chemical composition, and antioxidant activity of A. ampeloprasum seed oil. The seed oil content was found to be 18.20%. Gas chromatographymass spectrometry (GC-MS) showed that linoleic acid (71.65%) was the dominant acid, followed by oleic acid (14.11%) and palmitic acid (7.11%). A. ampeloprasum seed oil exhibited an oxidative stability of 5.22 h. Moreover, γ- and δ-tocotrienols were the major tocols present (79.56 and 52.08 mg/100 g oil, respectively). The total flavonoid content (16.64 µg CE /g oil) and total phenolic content (62.96 µg GAE /g oil) of the seed oil were also determined. The antioxidant capacity of the oil, as evaluated using the ABTS assay (136.30 µM TEAC/g oil), was found to be significant. These findings indicate that A. ampeloprasum seeds can be regarded as a new source of edible oil having health benefits and nutritional properties.
    Matched MeSH terms: Linoleic Acid/analysis
  11. Nur Afiqah Saparin, Mohd Muzamir Mahat, Muhd Fauzi Safian, Shahrul Hisham Zainal Ariffin, Nor Azah Mohamad Ali, Zaidah Zainal Ariffin
    Science Letters, 2020;14(1):62-67.
    MyJurnal
    The evolution of cosmetic products results in the growing demands for cosmetics that are preservatives free. Plant essential oils were found to be a promising antimicrobial and also antioxidant agent. In this study, Cymbopogon citratus (lemongrass), Laurus nobilis (bay leaf) and Backhousia citriodora (lemon myrtle) essential oils were selected and evaluated for their antimicrobial properties. It was found that Laurus nobilis exhibited strong antimicrobial activity against the selected bacteria Streptococcus saprophyticus (ATCC 49619), Streptococcus aureus (ATCC 22923), Streptococcus pyogenes (ATCC 29436), Pseudomonas aeruginosa (ATCC 13048), Klebsiella pneumoniae (ATCC 700603), Escherichia coli (ATCC 22922) with MIC ranging between 7.8 ug/mL to 250 μg/mL. The antioxidant activity of selected essential oils was determined by antioxidant assays which were 1,1-Diphenyl-2-picrylhydrazyl assay (DPPH), determination of ferric reducing antioxidant power assay (FRAP) and β-Carotene/linoleic acid bleaching assay. Backhousia citriodora and Laurus nobilis showed the highest antioxidant activity.
    n-Octanal and β-Selinene were identified to be the major components with peak area of 26.37 % and 13.92 % respectively in secondary metabolites analysis by Gas Chromatography-Mass Spectrometry (GCMS).
    Matched MeSH terms: Linoleic Acid
  12. Gurdeep Singh HK, Yusup S, Quitain AT, Kida T, Sasaki M, Cheah KW, et al.
    Environ Sci Pollut Res Int, 2019 Nov;26(33):34039-34046.
    PMID: 30232774 DOI: 10.1007/s11356-018-3223-4
    Employment of edible oils as alternative green fuel for vehicles had raised debates on the sustainability of food supply especially in the third-world countries. The non-edible oil obtained from the abundantly available rubber seeds could mitigate this issue and at the same time reduce the environmental impact. Therefore, this paper investigates the catalytic cracking reaction of a model compound named linoleic acid that is enormously present in the rubber seed oil. Batch-scale experiments were conducted using 8.8 mL Inconel batch reactor having a cyclic horizontal swing span of 2 cm with a frequency of 60 cycles per minute at 450 °C under atmospheric condition for 90 min. The performance of HZSM-5, HBeta, HFerrierite, HMordenite and HY catalysts was tested for their efficiency in favouring gasoline range hydrocarbons. The compounds present in the organic liquid product were then analysed using GC-MS and classified based on PIONA which stands for paraffin, isoparaffin, olefin, naphthenes and aromatics respectively. The results obtained show that HZSM-5 catalyst favoured gasoline range hydrocarbons that were rich in aromatics compounds and promoted the production of desired isoparaffin. It also gave a higher cracking activity; however, large gaseous as by-products were produced at the same time.
    Matched MeSH terms: Linoleic Acid/chemistry*
  13. Tan CH, Show PL, Ling TC, Nagarajan D, Lee DJ, Chen WH, et al.
    Bioresour Technol, 2019 Aug;285:121331.
    PMID: 30999192 DOI: 10.1016/j.biortech.2019.121331
    Third generation biofuels, also known as microalgal biofuels, are promising alternatives to fossil fuels. One attractive option is microalgal biodiesel as a replacement for diesel fuel. Chlamydomonas sp. Tai-03 was previously optimized for maximal lipid production for biodiesel generation, achieving biomass growth and productivity of 3.48 ± 0.04 g/L and 0.43 ± 0.01 g/L/d, with lipid content and productivity of 28.6 ± 1.41% and 124.1 ± 7.57 mg/L/d. In this study, further optimization using 5% CO2 concentration and semi-batch operation with 25% medium replacement ratio, enhanced the biomass growth and productivity to 4.15 ± 0.12 g/L and 1.23 ± 0.02 g/L/d, with lipid content and productivity of 19.4 ± 2.0% and 239.6 ± 24.8 mg/L/d. The major fatty acid methyl esters (FAMEs) were palmitic acid (C16:0), oleic acid (C18:1), and linoleic acid (C18:2). These short-chain FAMEs combined with high growth make Chlamydomonas sp. Tai-03 a suitable candidate for biodiesel synthesis.
    Matched MeSH terms: Linoleic Acid
  14. Kara J, Suwanhom P, Wattanapiromsakul C, Nualnoi T, Puripattanavong J, Khongkow P, et al.
    Arch Pharm (Weinheim), 2019 Jul;352(7):e1800310.
    PMID: 31125474 DOI: 10.1002/ardp.201800310
    Sixteen novel coumarin-based compounds are reported as potent acetylcholinesterase (AChE) inhibitors. The most active compound in this series, 5a (IC50 0.04 ± 0.01 µM), noncompetitively inhibited AChE with a higher potency than tacrine and galantamine. Compounds 5d, 5j, and 5 m showed a moderate antilipid peroxidation activity. The compounds showed cytotoxicity in the same range as the standard drugs in HEK-293 cells. Molecular docking demonstrated that 5a acted as a dual binding site inhibitor. The coumarin moiety occupied the peripheral anionic site and showed π-π interaction with Trp278. The tertiary amino group displayed significant cation-π interaction with Phe329. The aromatic group showed π-π interaction with Trp83 at the catalytic anionic site. The long chain of methylene lay along the gorge interacting with Phe330 via hydrophobic interaction. Molecular docking was applied to postulate the selectivity toward AChE of 5a in comparison with donepezil and tacrine. Structural insights into the selectivity of the coumarin derivatives toward huAChE were explored by molecular docking and 3D QSAR and molecular dynamics simulation for 20 ns. ADMET analysis suggested that the 2-(2-oxo-2H-chromen-4-yl)acetamides showed a good pharmacokinetic profile and no hepatotoxicity. These coumarin derivatives showed high potential for further development as anti-Alzheimer agents.
    Matched MeSH terms: Linoleic Acid/antagonists & inhibitors; Linoleic Acid/metabolism
  15. Mah MQ, Kuah MK, Ting SY, Merosha P, Janaranjani M, Goh PT, et al.
    PMID: 30831207 DOI: 10.1016/j.cbpb.2019.01.011
    The capacity of crustaceans to biosynthesise long-chain polyunsaturated fatty acids has yet to be fully defined, due to the lack of evidence on the functional activities of enzymes involved in desaturation or elongation of fatty acid substrates. We report here the cloning and in vitro functional analysis of an elongase from the orange mud crab, Scylla olivacea. Sequence and phylogenetic analysis placed the elovl close to the vertebrate Elovl1 and Elovl7 clade, which is distinct from the other remaining five Elovl families. The elongase was also clustered together with several elongases from crustaceans and insects. This elongase showed activities towards 16:1n-7, and at lower rate, linoleic acid (18:2n-6) and linolenic acid (18:3n-3). To our knowledge this is the first description of a functional enzyme involved in biosynthesis of long-chained polyunsaturated fatty acids in a crustacean species. Expression of the S. olivacea elovl7-like mRNA was prominent in stomach, intestine and gill tissues, due to the need to regulate the permeability of epithelial tissue through modification of fatty acid compositions. The implication of our findings, in terms of ability of Crustacea phylum to biosynthesise polyunsaturated fatty acids is discussed.
    Matched MeSH terms: Linoleic Acid
  16. Chai KF, Adzahan NM, Karim R, Rukayadi Y, Ghazali HM
    Food Chem, 2019 Feb 15;274:808-815.
    PMID: 30373014 DOI: 10.1016/j.foodchem.2018.09.065
    Rambutan seed is usually discarded during fruit processing. However, the seed contains a considerable amount of crude fat. Hence, the objective of this study was to investigate the fat properties and antinutrient content of the seed during fermentation of rambutan fruit. Results showed that the crude fat content of the seed reduced by 22% while its free fatty acid content increased by 4.3 folds after 10 days of fermentation. Arachidic acid was selectively reduced and was replaced by linoleic acid from the seventh day of fermentation onwards. Only 14.5% of triacylglycerol remained in the seed fat at the end of fermentation. The complete melting temperature, crystallization onset temperature and solid fat index at 37 °C of the fermented seed fat were higher than that of non-fermented seed fat. The saponin and tannin contents of the seed were reduced by 67% and 47%, respectively, after fermentation.
    Matched MeSH terms: Linoleic Acid/analysis; Linoleic Acid/metabolism
  17. PUTERI AFIQAH ABDUL WAHAB, AZIZ AHMAD
    MyJurnal
    Salinity is one of the major constraintsin the rice production worldwide. Rice plants have moderate tolerance towardssalinity. Salinitychangescell membrane permeability and fatty acid compositionsby releasing the free fatty acids. Nonetheless, the effect of exogenous fatty acid such as arachidonic acid (AA) on rice grown on saline soil is yetunknown. Theobjective of the current study isto determine the effectofAA onthe morphological traits and freefatty acidsofrice plantgrown under saline conditions.Rice plants grown on saline soil (EC=12 ds/m)were treated with 50 μMAAon day 45 after transplant. Leaves and panicleswere sampledafter two weeks of treatment and analysed for fatty acid profile using GC-MS. Themorphological traits were observedat the maturity stage. Results showed that AA treatment improved the grain fill-in of the saline stress riceand reduced the accumulation of free fatty acids in the cell. The AAtreatment also increased the linoleic acid (18:2), linolenic acid (18:3) in paniclesand, dihomo-γ-linolenic acid(20:3) and nervonic acid (24:1) in leaves. The finding suggests that exogenous AAregulates salinity stress in rice by reducing the accumulation offree fatty acids.
    Matched MeSH terms: Linoleic Acid
  18. Ashraf I, Zubair M, Rizwan K, Rasool N, Jamil M, Khan SA, et al.
    Chem Cent J, 2018 Dec 17;12(1):135.
    PMID: 30556121 DOI: 10.1186/s13065-018-0495-1
    This research work was executed to determine chemical composition, anti-oxidant and anti-microbial potential of the essential oils extracted from the leaves and stem of Daphne mucronata Royle. From leaves and stem oils fifty-one different constituents were identified through GC/MS examination. The antioxidant potential evaluated through DPPH free radical scavenging activity and %-inhibition of peroxidation in linoleic acid system. The stem's essential oil showed the good antioxidant activity as compared to leaves essential oil. Results of Antimicrobial activity revealed that both stem and leaves oils showed strong activity against Candida albicans with large inhibition zone (22.2 ± 0.01, 18.9 ± 0.20 mm) and lowest MIC values (0.98 ± 0.005, 2.44 ± 0.002 mg/mL) respectively. Leaves essential was also active against Escherichia coli with inhibition zone of 8.88 ± 0.01 mm and MIC values of 11.2 ± 0.40 mg/mL. These results suggested that the plant's essential oils would be a potential cradle for the natural product based antimicrobial as well as antioxidant agents.
    Matched MeSH terms: Linoleic Acid
  19. Rahman MA, Abdullah N, Aminudin N
    Saudi J Biol Sci, 2018 Dec;25(8):1515-1523.
    PMID: 30581314 DOI: 10.1016/j.sjbs.2016.01.021
    Mushrooms have been highly regarded as possessing enormous nutritive and medicinal values. In the present study, we evaluated the anti-oxidative and anti-atherosclerotic potential of shiitake mushroom (Lentinula edodes) using its solvent-solvent partitioned fractions that consisted of methanol:dichloromethane (M:DCM), hexane (HEX), dichloromethane (DCM), ethyl acetate (EA) and aqueous residue (AQ). The hexane fraction (1 mg/mL) mostly scavenged (67.38%, IC50 0.55 mg/mL) the 2,2-diphenyl-1-picryl hydrazyl (DPPH) free radical, contained the highest reducing capacity (60.16 mg gallic acid equivalents/g fraction), and most potently inhibited lipid peroxidation (67.07%), low density lipo-protein oxidation and the activity of 3-hydroxy 3-methyl glutaryl co-enzyme A reductase (HMGR). GC-MS analyses of the hexane fraction identified α-tocopherol (vitamin E), oleic acid, linoleic acid, ergosterol and butyric acid as the bio-functional components present in L. edodes. Our findings suggest that L. edodes possesses anti-atherosclerotic bio-functionality that can be applied as functional food-based therapeutics against cardiovascular diseases.
    Matched MeSH terms: Linoleic Acid
  20. Kostadinović Veličkovska S, Catalin Moţ A, Mitrev S, Gulaboski R, Brühl L, Mirhosseini H, et al.
    J Food Sci Technol, 2018 May;55(5):1614-1623.
    PMID: 29666513 DOI: 10.1007/s13197-018-3050-0
    The bioactive compounds and "in vitro" antioxidant activity measured by three antioxidant assays of some traditional and non-traditional cold-pressed edible oils from Macedonia were object of this study. The fatty acid composition showed dominance of monounsaturated oleic acid in "sweet" and "bitter" apricot kernel oils with percentages of 66.7 ± 0.5 and 57.8 ± 0.3%, respectively. The most dominant fatty acid in paprika seed oil was polyunsaturated linoleic acid with abundance of 69.6 ± 2.3%. The most abundant tocopherol was γ-tocopherol with the highest quantity in sesame seed oil (57.6 ± 0.1 mg/100 g oil). Paprika seed oil, sesame seed oil and sweet apricot oil were the richest source of phytosterols. DPPH assay was the most appropriate for the determination of the antioxidant activity of cold-pressed sunflower oil due to high abundance of α-tocopherol with a level of 22.8 ± 1.1 mg/100 g of oil. TEAC assay is the best for the determination of the antioxidant activity of sesame seed oil and paprika seed oils as the richest sources of phenolic compounds. β-carotene assay was the most suitable assay for oils obtained from high pigmented plant material. Triacylglycerols and phytosterol profiles can be used as useful markers for the origin, variety and purity of the oils.
    Matched MeSH terms: Linoleic Acid
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links